Computing semigroups with error control And a framework for infinite-dimensional computations

Matthew Colbrook

University of Cambridge

Papers:

M.J. Colbrook, "Computing semigroups with error control"
M.J. Colbrook and L.J. Ayton, "A contour method for time-fractional PDEs"

The finite-dimensional case

Solve for $u: \underbrace{[0, \infty)}_{\text {'time }^{\prime}} \rightarrow \mathbb{C}^{n}$ s.t.

$$
\begin{gathered}
\frac{d u}{d t}=\mathbb{A} u, \quad \mathbb{A} \in \mathbb{C}^{n \times n}, \quad u(0)=u_{0} \in \mathbb{C}^{n} . \\
u(t)=\exp (t \mathbb{A}) u_{0}=\sum_{j=0}^{\infty} \frac{t^{j}}{j!} \mathbb{A}^{j} u_{0} .
\end{gathered}
$$

If $\mathbb{A}=P D P^{-1}, D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ diagonal, then

$$
u(t)=P\left(\begin{array}{llll}
e^{d_{1} t} & & & \\
& e^{d_{2} t} & & \\
& & \ddots & \\
& & & e^{d_{n} t}
\end{array}\right) P^{-1} u_{0}
$$

(Usually much better ways to compute this, but that's another story...)

The infinite-dimensional case

Linear operator A on an infinite-dimensional Hilbert space \mathcal{H},

$$
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H} .
$$

GOAL: Compute the solution at time t.

Philosophy of the approach

Typically, A is discretised to $\mathbb{A} \in \mathbb{C}^{n \times n}$ and we use some sort of finite-dimensional solver: "truncate-then-solve"

Domain truncation and absorbing boundary conditions (e.g. when A represents a differential operator on an unbounded domain), Galerkin methods, Krylov methods, rational approximations, Runge-Kutta methods, series expansions, splitting methods, exponential integrators, ...

Typical difficulties:

- Often very difficult to bound the error when we go from A to \mathbb{A}.
- Sometimes \mathbb{A} is more complicated to study (e.g. where are it's eigenvalues?).
- Sometimes \mathbb{A} does not respect key properties of the system.
- For PDEs on unbounded domains, there are two truncations: the physical domain and then the operator restricted to this domain.

PHILOSPHY OF THIS TALK: Solve-then-discretise.

Open Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist an algorithm that given a generator A of a strongly continuous semigroup on \mathcal{H}, time $t>0$, arbitrary $u_{0} \in \mathcal{H}$ and error tolerance $\epsilon>0$, computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?
Q.2: For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$, is there a large class of PDO generators A on the unbounded domain \mathbb{R}^{d} where the answer to $Q .1$ is yes?

We'll provide resolutions to these two problems!

NB: Q2 has recently been solved in the positive for Schrödinger operators using weighted Sobolev bounds on the initial condition for rigorous domain truncation [Becker \& Hansen, 2020]. We'll aim to go much broader.

Example

Aperiodic (no repeating pattern) infinite Ammann-Beenker (AB) tiling. Such structures have very interesting transport properties but notoriously difficult to compute. Graph Laplacian:

$$
\left[\Delta_{\mathrm{AB}} \psi\right]_{i}=\sum_{i \sim j}\left(\psi_{j}-\psi_{i}\right), \quad\left\{\psi_{j}\right\}_{j \in \mathbb{N}} \in I^{2}(\mathbb{N})
$$

Schrödinger equation and wave equation:

$$
i u_{t}=-\Delta_{\mathrm{AB}} u \quad \text { and } \quad u_{t t}=\Delta_{\mathrm{AB}} u
$$

Example

Solutions computed with guaranteed accuracy $\epsilon=10^{-10}$.

Top row: $\log 10(|u(t)|)$ computed for the Schrödinger equation at times $t=1$ (left), $t=10$ (middle) and $t=50$ (right). Bottom row: $u(t)$ computed for the wave equation at times $t=1$ (left), $t=30$ (middle) and $t=50$ (right).

Example

u_{FS} : solution by direct diagonalisation of 10001×10001 truncation.

Small difference for small t, then grows quickly due to boundary effects. As t increases, need more vertices (basis vectors) to capture the solution method of this talk allows this to be done rigorously and adaptively.

Strongly continuous semigroup

$$
\begin{equation*}
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \in \mathcal{H} \tag{1}
\end{equation*}
$$

Definition

Strongly cts semigroup is a map $S:[0, \infty) \rightarrow \quad \underbrace{\mathcal{L}(\mathcal{H})}$
s.t. bounded operators on \mathcal{H}
(1) $S(0)=I$
(2) $S(s+t)=S(s) S(t), \quad \forall s, t \geq 0$
(3) $\lim _{t \downarrow 0} S(t) v=v$ for all $v \in \mathcal{H}$.

The infinitesimal generator A of S is defined via $A x=\lim _{t \downarrow 0} \frac{1}{t}(S(t)-I) x$, where $\mathcal{D}(A)$ is all $x \in X$ such that the limit exists, write $S(t)=\exp (t A)$.

Why we care: A generates C_{0}-semigroup \Leftrightarrow (1) well-posed

Hille-Yosida Theorem

$$
\begin{gathered}
\operatorname{Sp}(A)=\{z: A-z l \text { not invertible }\}, \quad \rho(A):=\mathbb{C} \backslash \operatorname{Sp}(A) \\
R(z, A)=(A-z I)^{-1} \text { for } z \in \rho(A)
\end{gathered}
$$

Theorem

A closed operator A generates a C_{0}-semigroup if and only if A is densely defined and there exists $\omega \in \mathbb{R}, M>0$ with
(1) $\{\lambda \in \mathbb{R}: \lambda>\omega\} \subset \rho(A)$.
(2) For all $\lambda>\omega$ and $n \in \mathbb{N},(\lambda-\omega)^{n}\left\|R(\lambda, A)^{n}\right\| \leq M$.

Under these conditions, $\|\exp (t A)\| \leq M \exp (\omega t)$ and if $\operatorname{Re}(\lambda)>\omega$ then $\lambda \in \rho(A)$ with

$$
\left\|R(\lambda, A)^{n}\right\| \leq \frac{M}{(\operatorname{Re}(\lambda)-\omega)^{n}}, \quad \forall n \in \mathbb{N}
$$

$$
\exp (t A) u_{0}=[\frac{-1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \underbrace{e^{z t}(A-z)^{-1}}_{\text {no decay?! }} d z] u_{0}, \quad \text { for } \sigma>\omega,
$$

Case 1: $\mathcal{H}=I^{2}(\mathbb{N})$

$\operatorname{span}\left\{e_{n}: n \in \mathbb{N}\right\}$ forms a core of A and $A^{*} \Rightarrow$ matrix $A_{j, k}=\left\langle A e_{k}, e_{j}\right\rangle$.
$\Omega_{C_{0}}:\left(A, u_{0}, t\right)$ s.t. A generates C_{0}-semigroup, $u_{0} \in I^{2}(\mathbb{N})$ and $t>0$.
Allow access to:

- Matrix evaluations $\left\{f_{j, k, m}^{(1)}, f_{j, k, m}^{(2)}: j, k, m \in \mathbb{N}\right\}$ such that

$$
\left|f_{j, k, m}^{(1)}(A)-\left\langle A e_{k}, e_{j}\right\rangle\right| \leq 2^{-m}, \quad\left|f_{j, k, m}^{(2)}(A)-\left\langle A e_{k}, A e_{j}\right\rangle\right| \leq 2^{-m} .
$$

- Coefficient/norm evaluations $\left\{f_{j, m}: j \in \mathbb{N} \cup\{0\}, m \in \mathbb{N}\right\}$ such that

$$
\left|f_{0, m}\left(u_{0}\right)-\left\langle u_{0}, u_{0}\right\rangle\right| \leq 2^{-m}, \quad\left|f_{j, m}\left(u_{0}\right)-\left\langle u_{0}, e_{j}\right\rangle\right| \leq 2^{-m} .
$$

- Constants M, ω satisfying conditions in Hille-Yosida Theorem.

Theorem $1\left(C_{0}\right.$-semigroups on $I^{2}(\mathbb{N})$ computed with error control)

There exists a universal algorithm Γ using the above, s.t.

$$
\left\|\Gamma\left(A, u_{0}, t, \epsilon\right)-\exp (t A) u_{0}\right\| \leq \epsilon, \quad \forall \epsilon>0,\left(A, u_{0}, t\right) \in \Omega_{C_{0}} .
$$

Idea of proof

- Regularisation:

$$
\exp (t A) u_{0}=(A-(\omega+2) I)^{2}[\frac{-1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \underbrace{\frac{e^{z t} R(z, A)}{(z-(\omega+2))^{2}}}_{\text {now decays }} d z] u_{0}
$$

- Use well-posedness to reduce to $u_{0}=e_{k}$ for some $k \in \mathbb{N}$ and

$$
\exp (t A) e_{k}=(A-(\omega+2) I)\left[\frac{-1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \frac{e^{z t} R(z, A)}{(z-(\omega+2))^{2}} d z\right](A-(\omega+2) I) e_{k}
$$

- Final reduction to

$$
\left[\frac{1}{2 \pi i} \int_{\omega+1-i \infty}^{\omega+1+i \infty} \frac{\exp (z t) R(z, A)}{(z-(\omega+2))^{2}} d z\right] e_{l} .
$$

- Truncation + quadrature for decaying integrand.

At each step, use adaptive computation of $R(z, A)$ with error control.

Case 2: $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$

$$
\begin{gathered}
{[A u](x)=\sum_{k \in \mathbb{Z}_{0}^{d},|k| \leq N} a_{k}(x) \partial^{k} u(x) .} \\
\mathcal{A}_{r}=\left\{f \in \operatorname{Meas}\left([-r, r]^{d}\right):\|f\|_{\infty}+\operatorname{TV}_{[-r, r]^{d}}(f)<\infty\right\} .
\end{gathered}
$$

$\Omega_{\text {PDE }}$ all $\left(A, u_{0}, t\right)$ with $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$ and $t>0$ s.t. A generates a strongly continuous semigroup on $L^{2}\left(\mathbb{R}^{d}\right)$ and:
(1) Smooth, compactly supported functions form a core of A and A^{*}.
(2) At most polynomial growth: There exists $C_{k}>0$ and $B_{k} \in \mathbb{N}$ s.t. almost everywhere on $\mathbb{R}^{d},\left|a_{k}(x)\right| \leq C_{k}\left(1+|x|^{2 B_{k}}\right)$.
(3) Locally bounded total variation: $\forall r>0,\left.u_{0}\right|_{[-r, r]^{d}},\left.a_{k}\right|_{[-r, r]^{d}} \in \mathcal{A}_{r}$.

NB: Very mild assumptions.
e.g. discontinuous coefficients with arbitrary wild oscillations at infinity

Case 2: $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$

Allow access to:
(a) Pointwise coefficient evaluations: $\left\{S_{k, q, m}\right\}$ s.t.

$$
\left|S_{k, q, m}(A)-a_{k}(q)\right| \leq 2^{-m}, \quad \forall q \in \mathbb{Q}^{d}
$$

(b) Pointwise initial condition evaluations: $\left\{S_{q, m}\right\}$ s.t.

$$
\left|S_{q, m}\left(u_{0}\right)-u_{0}(q)\right| \leq 2^{-m}, \quad \forall q \in \mathbb{Q}^{d}
$$

(c) Bounds on growth and total variation: $\left\{C_{k}, B_{k}\right\}$ s.t. $\left|a_{k}(x)\right| \leq C_{k}\left(1+|x|^{2 B_{k}}\right)$ and positive sequences $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{c_{n}\right\}_{n \in \mathbb{N}}$ s.t.

$$
\max _{|k| \leq N}\left\|a_{k}\right\|_{\mathcal{A}_{n}} \leq b_{n}, \quad\left\|u_{0}\right\|_{\mathcal{A}_{n}} \leq c_{n}
$$

(d) Decay of initial condition: A positive sequence $\left\{d_{n}\right\}_{n \in \mathbb{N}}$,

$$
\left\|\left.u_{0}\right|_{[-n, n]^{d}}-u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq d_{n}, \quad \lim _{n \rightarrow \infty} d_{n}=0
$$

(e) Constants M, ω satisfying conditions in Hille-Yosida Theorem.

Theorem 2 (PDO C_{0}-semigroups on $L^{2}\left(\mathbb{R}^{d}\right)$ computed with error control)

There exists a universal algorithm Γ using the above, s.t.

$$
\left\|\Gamma\left(A, u_{0}, t, \epsilon\right)-\exp (t A) u_{0}\right\| \leq \epsilon, \quad \forall \epsilon>0,\left(A, u_{0}, t\right) \in \Omega_{\mathrm{PDE}}
$$

Idea of proof

- Reduce to Case 1 using (tensor product) basis

$$
\psi_{m}(x)=\left(2^{m} m!\sqrt{\pi}\right)^{-1 / 2} e^{-x^{2} / 2} H_{m}(x), \quad H_{m}(x)=(-1)^{m} e^{x^{2}} \frac{d^{m}}{d x^{m}} e^{-x^{2}}
$$

- Compute inner products (with error control)

$$
\begin{aligned}
& \left\langle\hat{A} e_{k}, \hat{A} e_{j}\right\rangle=\int_{\mathbb{R}^{d}}\left(A \psi_{m(k)}\right) \overline{\left(A \psi_{m(j)}\right)} d x \\
& \left\langle\hat{A} e_{k}, e_{j}\right\rangle=\int_{\mathbb{R}^{d}}\left(A \psi_{m(k)}\right) \psi_{m(j)} d x, \quad\left\langle\hat{u}_{0}, e_{j}\right\rangle=\int_{\mathbb{R}^{d}} u_{0} \psi_{m(i)} d x
\end{aligned}
$$

using quasi-Monte Carlo numerical integration.

- Similar techniques deal with u_{0}.

NB: Choice of Hermite functions simply convenient in the proof (allows a very large class of coefficients to be treated). Other bases and domains clearly work if relevant integrals can be computed with error control.

Case 3: Analytic semigroups

$$
S_{\delta, \sigma}:=\{z \in \mathbb{C}: \arg (z-\sigma)<\pi-\delta\} .
$$

Case 3: Analytic semigroups

$$
\begin{gathered}
S_{\delta, \sigma}:=\{z \in \mathbb{C}: \arg (z-\sigma)<\pi-\delta\} \\
\gamma(s)=\sigma+\mu(1+\sin (i s-\alpha)), \quad \mu>0, \quad 0<\alpha<\frac{\pi}{2}-\delta \\
\exp (t A) u_{0} \approx \underbrace{\frac{-h}{2 \pi i} \sum_{j=-N}^{N} e^{z_{j} t} R\left(z_{j}, A\right) \gamma^{\prime}(j h)}_{\text {truncated Trapezoidal rule }}, \quad z_{j}=\gamma(j h)
\end{gathered}
$$

Case 3: Analytic semigroups

Compute $\exp (t A)$ for $t \in\left[t_{0}, t_{1}\right]$ where $0<t_{0} \leq t_{1}, \Lambda=t_{1} / t_{0}$. Using [Weideman \& Trefethen 2007], three error terms:
$\underbrace{\mathcal{O}\left(e^{\sigma t_{1}-2 \pi\left(\frac{\pi}{2}-\alpha-\delta\right) / h}\right)+\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{1}-2 \pi \frac{\alpha}{h}}\right)}_{\text {discretisation error of the integral }}+\underbrace{\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{0}(1-\sin (\alpha) \cosh (h N))}\right)}_{\text {truncation error of sum }}$

Case 3: Analytic semigroups

Compute $\exp (t A)$ for $t \in\left[t_{0}, t_{1}\right]$ where $0<t_{0} \leq t_{1}, \Lambda=t_{1} / t_{0}$. Using [Weideman \& Trefethen 2007], three error terms:
$\underbrace{\mathcal{O}\left(e^{\sigma t_{1}-2 \pi\left(\frac{\pi}{2}-\alpha-\delta\right) / h}\right)+\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{1}-2 \pi \frac{\alpha}{h}}\right)}_{\text {discretisation error of the integral }}+\underbrace{\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{0}(1-\sin (\alpha) \cosh (h N))}\right)}_{\text {truncation error of sum }}$

Problem: numerical instability as $N \rightarrow \infty$

Case 3: Analytic semigroups

Compute $\exp (t A)$ for $t \in\left[t_{0}, t_{1}\right]$ where $0<t_{0} \leq t_{1}, \Lambda=t_{1} / t_{0}$. Using [Weideman \& Trefethen 2007], three error terms:
$\underbrace{\mathcal{O}\left(e^{\sigma t_{1}-2 \pi\left(\frac{\pi}{2}-\alpha-\delta\right) / h}\right)+\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{1}-2 \pi \frac{\alpha}{h}}\right)}_{\text {discretisation error of the integral }}+\underbrace{\mathcal{O}\left(e^{\sigma t_{1}+\mu t_{0}(1-\sin (\alpha) \cosh (h N))}\right)}_{\text {truncation error of sum }}$

Problem: numerical instability as $N \rightarrow \infty$
Idea: enforce $\gamma(0) t_{1}-\sigma t_{1}=\mu t_{1}(1-\sin (\alpha)) \leq \beta$ for stability as $N \rightarrow \infty$.

$$
\begin{gathered}
h=\frac{1}{N} W\left(\Lambda N \frac{\pi(\pi-2 \delta)}{\beta \sin \left(\frac{\pi-2 \delta}{4}\right)}\left(1-\sin \left(\frac{\pi-2 \delta}{4}\right)\right)\right) \\
\mu=(1-\sin ((\pi-2 \delta) / 4))^{-1} \beta / t_{1} \\
\alpha=\left(h \mu t_{1}+\pi^{2}-2 \pi \delta\right) /(4 \pi)
\end{gathered}
$$

Case 3: Analytic semigroups

Theorem 3 (Stable \& rapidly convergent algorithm for analytic semigroups)

Suppose we use the above quadrature rule and compute each $R\left(z_{j}, A\right) u_{0}$ to an accuracy η. Let $u_{N}(t)$ denote the output for $N \in \mathbb{N}$. Then there exists a constant C s.t. for any $t_{0} \leq t \leq t_{1}$,
$\underbrace{e^{-\sigma t}\left\|\exp (t A) u_{0}-u_{N}(t)\right\|} \leq\left(2 \mu e^{\frac{\beta}{1-\sin (\alpha)}} \pi^{-1} \int_{0}^{\infty} e^{x-\mu t \sin (\alpha) \cosh (x)} d x\right) \eta$
error with intrinsic stability factor

$$
\begin{gathered}
+C e^{\frac{\beta}{1-\sin (\alpha)}} \cdot \exp \left(-\frac{N \pi(\pi-2 \delta) / 2}{\log \left(\Lambda \frac{\sin (\pi / 4-\delta / 2)^{-1}-1}{\beta} N \pi(\pi-2 \delta)\right)}\right) \\
=\mathcal{O}(\eta)+\mathcal{O}(\exp (-c N / \log (N)))
\end{gathered}
$$

Numerical example showing stability

$$
\begin{aligned}
e^{-\lambda t} & =\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{z t}}{z-\lambda} d z, \quad \lambda \geq 0 \\
M_{N} & =\text { max error for } t \in\left[t_{0}, t_{1}\right]
\end{aligned}
$$

previous optimal parameter choices

proposed quadrature rule

Numerical example on $L^{2}(\mathbb{R})$ demonstrating convergence
$u_{t}=\left[\left(1.1-1 /\left(1+x^{2}\right)\right) u_{x}\right]_{x}, \quad u_{0}(x)=e^{-\frac{(x-1)^{2}}{5}} \cos (2 x)+2\left[1+(x+1)^{4}\right]^{-1}$.
Basis: $\phi_{n}(x)=\pi^{-1 / 2}(1+i x)^{n}(1-i x)^{-(n+1)}, \quad n \in \mathbb{Z}$.

Application: Bulk Localised States

Quasicrystals: aperiodic structures with long-range order.

Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals. Right: Penrose tile, canonical model used in physics.

Vertex model: site at each vertex and bonds along edges of tiles.

Application: Bulk Localised States

Periodic systems have extended states (not localised), but add disorder...

Left: P. Anderson, Nobel Prize in Phys. 1977 for discovering Anderson localisation. Right: Examples in 1D and 2D photonic lattices.

What happens in aperiodic systems? Do we need disorder?

Application: Bulk Localised States

- Bulk Localised States (BLSs): New states for magnetic quasicrystals
- localised
- "in-gap" (confirmed via comp. of inf-dim (topological) Chern numbers)
- support transport
- Cause (also confirmed with toy models): Interplay of magnetic field with incommensurate areas of building blocks of quasicrystal.
- Not due to an internal edge, impurity or defect in the system.

Transport: Error control allows us to be certain of this phenomenon.

Extension: high-order Cauchy problems

$$
\begin{aligned}
& u^{(N)}+A_{N-1} u^{(N-1)}+\cdots+A_{0} u=0 \text { for } t \geq 0, \\
& u^{(j)}(0)=u_{j} \text { for } j=0, \ldots, N-1 \text {. } \\
& \begin{array}{c}
\mathcal{A}=\left(\begin{array}{cccc}
0 & I & & \\
& 0 & I & \\
& & \ddots & \ddots \\
-A_{0} & -A_{1} & \cdots & -A_{N}
\end{array}\right), \quad \mathcal{U}=\left(\begin{array}{c}
u \\
u^{(1)} \\
\vdots \\
u^{(N-1)}
\end{array}\right) . \\
\Downarrow \\
\frac{d \mathcal{U}}{d t}=\mathcal{A U} \text { for } t \geq 0 .
\end{array}
\end{aligned}
$$

Extension: time-fractional PDEs via Laplace transform

$$
\begin{gathered}
\sum_{j=1}^{M} \mathcal{I}_{j} \mathcal{D}_{t}^{\nu_{j}} A_{j} q=f(t) \text { for } t \geq 0, \\
{\left[{ }^{\mathcal{I}} \mathcal{D}_{t}^{\nu} g\right](t)=\left\{\begin{array}{l}
\frac{1}{\Gamma(n-\nu)} \frac{d^{n}}{d t^{n}} \int_{0}^{t}(t-\tau)^{n-\nu-1} g(\tau) d \tau, \quad \text { if } \mathcal{I}=\mathrm{RL}, \\
\frac{1}{\Gamma(n-\nu)} \int_{0}^{t}(t-\tau)^{n-\nu-1} g^{(n)}(\tau) d \tau, \quad \text { if } \mathcal{I}=\mathrm{C} . \\
\underbrace{\left[\sum_{j=1}^{M} z^{\nu_{j}} A_{j}\right]}_{T(z)} \hat{q}(z)=\underbrace{}_{\hat{f}(z)+\sum_{\mathcal{I}_{j}=\mathrm{C} \text { or } \nu_{j}=n_{j}} A_{j} \sum_{k=1}^{n_{j}} z^{\nu_{j}-k} q^{(k-1)}(0)} . \\
q(t)=\frac{1}{2 \pi i} \int_{\omega-i \infty}^{\omega+i \infty} e^{z t} \underbrace{\left[T(z)^{-1} K(z)\right]}_{\hat{q}(z) \in \mathcal{H}} d z,
\end{array} .\right.}
\end{gathered}
$$

Extension: time-fractional PDEs via Laplace transform

Challenges:

- Analysis of (generalised) spectrum of $T(z)$. MUCH easier to figure out for infinite-dimensional operator as opposed to truncation.
- No natural generalisation of Hille-Yosida.
- For high accuracy, need generalised spectrum to lie in LHP.
(Think of this as problem not being too stiff.)

Advantages of contour approach:

- Avoid the large memory consumption/computation time of time stepping methods applied to time-fractional PDEs.
- High accuracy over large time intervals.
- Resolvents for quadrature rule computed in parallel and reused for different times.
- For suitable generalised spectra, quadrature converges rapidly (and stably) as before.

Example: complex perturbed fractional diffusion equation

$$
\begin{aligned}
& \operatorname{Sp}(A) \subset \overline{\mathcal{N}(A)} \cup \overline{\mathcal{N}\left(A^{*}\right)}, \quad \mathcal{N}(A):=\{\langle A x, x\rangle: x \in \mathcal{D}(A),\|x\|=1\} . \\
& \|R(z, A)\| \leq[\operatorname{dist}(z, \overline{\mathcal{N}(A)})]^{-1} \forall z \notin \overline{\mathcal{N}(A)} \cup \overline{\mathcal{N}\left(A^{*}\right)} . \\
& \quad D_{t}^{\iota} u=u_{x x}+i u /\left(1+x^{2}\right), \quad 0<\iota \leq 1 .
\end{aligned}
$$

Solutions $\left(\epsilon=10^{-12}\right.$) for various ι at $t=1$ (blue), $t=5$ (red) and $t=50$ (yellow). The real parts are shown as solid lines, and the imaginary parts as dashed lines (u_{0} shown in black).

Fractional beam equations

Viscoelastic constituent equation (stress-strain relation):

$$
\underbrace{\sigma(x, z, t)}_{\text {stress }}=E_{0}(x) \underbrace{\epsilon(x, z, t)}_{\text {axial strain }}+E_{1}(x)^{\mathcal{I}} \mathcal{D}_{t}^{\nu} \epsilon(x, z, t) .
$$

Leads to ($y=$ transverse displacement)

$$
\frac{\partial^{2} y}{\partial t^{2}}+\frac{1}{\tilde{\rho}(x)} \frac{\partial^{2}}{\partial x^{2}}\left[a(x) \frac{\partial^{2} y}{\partial x^{2}}+b(x)^{\mathcal{I}} \mathcal{D}_{t}^{\nu} \frac{\partial^{2} y}{\partial x^{2}}\right]=\frac{F(x, t)}{\tilde{\rho}(x)}, \quad x \in[-1,1]
$$

Quasi-linearisation of $T(z)$

$\mathcal{H}_{\mathrm{BC} 1}^{2}$ and $\mathcal{H}_{\mathrm{BC} 2}^{2}$ suitable Sobolev spaces capturing BCs. Consider the product space $\mathcal{H}_{\mathrm{BC} 1}^{2} \times L_{\tilde{\rho}}^{2}(-1,1)$ equipped with

$$
\left\langle\left(u_{0}, u_{1}\right),\left(v_{0}, v_{1}\right)\right\rangle=\int_{-1}^{1} a(x) u_{0}^{\prime \prime}(x) \overline{v_{0}^{\prime \prime}(x)} d x+\int_{-1}^{1} \tilde{\rho}(x) u_{1}(x) \overline{v_{1}(x)} d x .
$$

For $z \in \mathbb{C} \backslash \mathbb{R}_{\leq 0}$, consider the following operator

$$
\begin{aligned}
& {[\mathcal{A}(z)]\left(u_{0}, u_{1}\right)=z\left(u_{0}, u_{1}\right)+\left(-u_{1}, \frac{1}{\tilde{\rho}}\left(a u_{0}^{\prime \prime}+z^{\nu-1} b u_{1}^{\prime \prime}\right)^{\prime \prime}\right)} \\
& \mathcal{D}(\mathcal{A}(z))=\left\{\left(u_{0}, u_{1}\right) \in \mathcal{H}_{\mathrm{BC} 1}^{2} \times \mathcal{H}_{\mathrm{BC} 1}^{2}: a u_{0}^{\prime \prime}+z^{\nu-1} b u_{1}^{\prime \prime} \in \mathcal{H}_{\mathrm{BC} 2}^{2}\right\} . \\
& {[\mathcal{A}(z)]^{-1}(0, v)=\left([T(z)]^{-1} v, z[T(z)]^{-1} v\right), \quad \forall v \in L_{\tilde{\rho}}^{2}(-1,1)}
\end{aligned}
$$

Key point: Generalised spectrum of $\mathcal{A}(z)$ much easier to study.
\Rightarrow can compute solutions with error control as before
$\nu=0.7$

$\nu=1.3$

$\nu=1$

Example

$a=\cosh (x), \quad b=\sin (\pi x)+2, \quad \tilde{\rho}=\tanh (x)+2, \quad F(x, t)=\cos (20 t) \sin (\pi x)$,

$$
y(x, 0)=\sin (2 \pi x)\left(1-x^{2}\right)(1-x), \quad \frac{\partial y}{\partial t}(x, 0)=0
$$

Recall Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist an algorithm that given a generator A of a strongly continuous semigroup on \mathcal{H}, time $t>0$, arbitrary $u_{0} \in \mathcal{H}$ and error tolerance $\epsilon>0$, computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?

Recall Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist an algorithm that given a generator A of a strongly continuous semigroup on \mathcal{H}, time $t>0$, arbitrary $u_{0} \in \mathcal{H}$ and error tolerance $\epsilon>0$, computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?

YES!

Recall Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist an algorithm that given a generator A of a strongly continuous semigroup on \mathcal{H}, time $t>0$, arbitrary $u_{0} \in \mathcal{H}$ and error tolerance $\epsilon>0$, computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?

YES!

Q.2: For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$, is there a large class of PDO generators A on the unbounded domain \mathbb{R}^{d} where the answer to $Q .1$ is yes?

Recall Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist an algorithm that given a generator A of a strongly continuous semigroup on \mathcal{H}, time $t>0$, arbitrary $u_{0} \in \mathcal{H}$ and error tolerance $\epsilon>0$, computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?

YES!

Q.2: For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$, is there a large class of PDO generators A on the unbounded domain \mathbb{R}^{d} where the answer to $Q .1$ is yes?

YES!

Recall Foundations Questions

Q.1: Can we compute semigroups with error control? I.e., does there exist an algorithm that given a generator A of a strongly continuous semigroup on \mathcal{H}, time $t>0$, arbitrary $u_{0} \in \mathcal{H}$ and error tolerance $\epsilon>0$, computes an approximation of $\exp (t A) u_{0}$ to accuracy ϵ in \mathcal{H} ?

YES!

Q.2: For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$, is there a large class of PDO generators A on the unbounded domain \mathbb{R}^{d} where the answer to $Q .1$ is yes?

YES!

Moreover, results and techniques carry over to a wide class of time-fractional PDEs.

Wider Framework

How: Deal with operators directly, instead of previous 'truncate-then-solve' \Rightarrow Compute many properties for the first time.

Framework: Classify problems in a computational hierarchy measuring their intrinsic difficulty and the optimality of algorithms.
\Rightarrow Algorithms that realise the boundaries of what computers can achieve.

Other recent examples:

- Computing spectra.
- Computing spectral measures.
- Optimisation and neural networks.

Conclusion

Key points:

- Semigroups can be computed with error control via a universal algorithm.
- Extends to PDEs (e.g. unbounded domains).
- New stable quadrature rule for analytic semigroups.
- Results carry over to time-fractional PDEs via Laplace transform (but need to bound generalised spectrum).
- Methods are part of a wider framework that deals with operators directly in an infinite-dimensional manner.

Future work:

- Nonlinear cases (e.g. splitting).
- Non-autonomous cases.
- Efficient methods with error control for Schrödinger semigroups.
- Whole host of time-fractional PDEs can now be tackled.

For further papers and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html

References

- M.J. Colbrook. "Computing semigroups with error control." preprint.
- M.J. Colbrook, and L.J. Ayton. "A contour method for time-fractional PDEs." preprint.
- M.J. Colbrook, B. Roman, and A.C. Hansen. "How to compute spectra with error control." Physical Review Letters (2019).
- D. Johnstone, M.J. Colbrook, A.E. Nielsen, P. Ohberg, and C.W. Duncan. "In-Gap Bulk Localised States for Quasicrystals via Magnetic Aperiodicity." preprint.
- M.J. Colbrook. "Computing spectral measures and spectral types." Communications in Mathematical Physics (2021).
- M.J. Colbrook, A. Horning, and A. Townsend. "Computing spectral measures of self-adjoint operators." SIAM Review (to appear).
- M.J. Colbrook, V. Antun, A.C. Hansen. "Can stable and accurate neural networks be computed? - On the barriers of deep learning and Smale's 18th problem." preprint.

