Can stable and accurate neural networks
always be computed?

Matthew Colbrook (Cambridge, m.colbrook@damtp.cam.ac.uk)

Joint work with: Vegard Antun (Oslo), Anders Hansen (Cambridge)

Based on: M. Colbrook, V. Antun, A. Hansen, “Can stable and accurate neural
networks be computed? - On the barriers of deep learning and Smale’s 18th problem”

Code: www.github.com/Comp-Foundations-and-Barriers-of-AI/firenet



Interest in deep learning unprecedented and exponentially growing

Machine Learning Arxiv Papers per Year

= ML Anxiv Papers = Moore's Law growth rate (2x/2 years)
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Figure: Source: ‘Deep Learning to Solve Challenging Problems’ (Google Al)
To keep up last year, you would need to continually read a paper every < 5 mins!



Will Al replace standard algorithms in medical imaging?

“superior immunity to noise and a reduction in reconstruction artefacts compared with
conventional handcrafted reconstruction methods”

nature > letters > article a natureresearch journal
MENU Vv N (]
sl pature o ™ &
Search E-alert Submit Login

We'd like to understand how you use our websites in order to improve them. Register your interest.

Published: 22 March 2018
You have full access to this article via

lmage reconstl‘uction by domain' Universilty of Oslo Oslo University
. . Hospita
transform manifold learning Pt

I«

D load PDF
Bo Zhu, Jeremiah Z. Liu, Stephen F. Cauley, Bruce R. Rosen & Matthew S. Rosen oo

Nature 555, 487-492(2018) ‘ Cite this article
17k Accesses | 235 Citations | 197 Altmetric | Metrics Editorial Summary

Machinelearning improves image
reconstruction

Abstract

Reconstructing images from data, whether for
medical or astronomical purposes, hinges on
well-defined steps. The data sensor encodes an
intermediate representation of the observed

Image reconstruction is essential for imaging applications across the
physical and life sciences, including optical and radar systems, magnetic
resonance imaging, X-ray computed tomography, positron emission show all
tomography, ultrasound imaging and radio astronomy*2-3, During image



DL is unstable in inverse problems!
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Example

Network (33% subsampling) from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, 'A deep cascade of convolutional neural
networks for MR image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..
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Reconstruction using state-of-the-art standard methods

SoA from Ax SoA from A(x + r3)




Facebook and NYU’s 2020 FastMRI challenge

_ Ground Truth  Reconstruction Residual

8X Track 4X Track

Transfer Track

Fig. 6. Examples of reconstruction hallucinations among challenge submis-
sions with SSIM scores over residual plots (residuals magnified by 5). (rop)
A 4X submission from pi 1 a false vessel, possibly related
to susceptibilities introduced by surgical staples. (middle) An 8X submission
from ATB introduced a linear bright signal mimicking a cleft of cerebrospinal
fluid, as well as blurring of the boundaries of the extra-axial mass. (botrom) A
submission from ResoNNance introduced a false sulcus or prominent vessel.




A program for the foundations of DL and Al

Smale’s 18th problem*: What are the limits of artificial intelligence?

A program determining the foundations/limitations of deep learning and Al is needed:
» Boundaries of methodologies.
» Universal/intrinsic boundaries (e.g. no algorithm can do it).

There is a key difference between existence and construction here.

Need to also incorporate two pillars of numerical analysis:
> Stability
» Accuracy

GOAL for rest of talk: Develop some results in this direction for inverse problems.

*Steve Smale composed a list of problems for the 21st century in reply to a request of Vladimir Arnold
inspired by Hilbert’s list.



Mathematical setup

Given measurements y = Ax +e recover x ¢ CN.
» x € CN be an unknown vector,
» A c C™N be a matrix (m < N) describing modality (e.g. MRI), and

> y = Ax + e the noisy measurements of x.

Outline:
» Fundamental barriers
» Sufficient conditions and Fast Iterative REstarted NETworks (FIRENETS)

» Balancing stability and accuracy



Can we compute neural networks that solve (P;)?

Sparse regularisation (benchmark method):

min ||x||x subject to ||Ax —yl[p <7 (P1)
xeCN
min Allx[lp + |Ax — |17 (P2)
xeCN
min Al|x[[n + [|[Ax =y (Ps3)
xeCN

Denote the minimising vectors by =.

» Avoid bizarre, unnatural & pathological mappings: (P;) well-understood & well-used!
» Simpler solution map than inverse problem = stronger impossibility results.

» DL has also been used to speed up sparse regularisation and tackle (P;).



The set-up

A c C™N (modality), S = {yx}F_; C C™ (samples), R < oo

Question: Given a collection Q of (A, S), does there exist a neural network
approximating = (solution map of (P;)), and can it be trained by an algorithm?

In practice, the matrix A is not known exactly or cannot be stored to infinite precision.

Assume access to: {yx ,}R_, and A, (rational approximations, e.g. floats) such that
[Yin =yl <277, [[An = A <277, VneN.

And {x.n}g_; such that inf,.c=(a,, ) [IXkn — x| <277, ¥neN.

Training set associated with (A,S) € Q is

LAS = {(Yk,mAka,n) |k =1,...,R, and n € N} .



What could go wrong?

min ||x||x subject to ||Ax —yl[p <7
xeCN
- 2
min Al + 14x I
min Al + 1A%~ vl

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii)
(iii)



What could go wrong?

min ||x||x subject to ||Ax —yl[p <7 (P1)
xeCN
min Allxln + [|[Ax — ylI% (P2)
xeCN

min Al[x[ln + [[Ax = y| 2 (P3)
xeCN




What could go wrong?

min ||x||x subject to ||Ax —yl[p <7 (P1)
x€CN
min Allx|i + [[Ax — ylI% (P2)
xeCN
min Allx[lx + [|Ax =yl (P3)
xeCN

(i) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii)



What could go wrong?

min ||x||x subject to ||Ax —yl[p <7 (P1)
x€eCN
min Al|x ||+ [|Ax — |7 (P2)
xeCN
min Al[x[[pn + [[Ax — y| 2 (P3)
x€eCN

(ii) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii) There does exist a neural network that approximates the function, and an algorithm
to construct it. However, the algorithm will need prohibitively many samples.



Bad news - can’t necessarily approximate such a neural network

N

Theorem
For (P;), N > 2 and m < N. Let K > 2 be a positive integer, L € N. Then there exists a
well-conditioned class (condition numbers < 1) Q of elements (A, S) s.t. (0 fixed in what follows):
(i) There does not exist any algorithm that, given a training set va s, produces a neural network
¢a,s with . x
min inf loas() = x'lle <107, V(AS) R (1)
Furthermore, for any p > 1/2 no probabilistic algorithm can produce a neural network ¢a,s

such that (1) holds with probability at least p.
(i) There exists an algorithm that produces a neural network ¢a s such that

. _F < —(K-1) .
max Jnf6as() ~ x'ln <107, V(a8 €0

However, for any such algorithm (even probabilistic), M € N and p € [O, %) there exists a

training set va s such that for ally € S,
]P’( in(fA )||¢A75(y) — x*||, > 10" or size of training data needed > M) > p.
x*e=(A,y
(i) There exists an algorithm using only L training data from each va s that produces a neural
network ¢a s(y) such that

inf —x"p <107 v(a Q.
max v onf,  Ieas(y) =x7llz <10 » V(AS) €




In words...

Nice classes Q where one can prove NNs with great approximation qualities exist. But:

» No algorithm, even randomised can train (or compute) such a NN accurate to K
digits with probability greater than 1/2.

P There exists a deterministic algorithm that computes a NN with K — 1 correct digits,
but any such (even randomised) algorithm needs arbitrarily many training data.

P> There exists a deterministic algorithm that computes a NN with K — 2 correct
digits using no more than L training samples.

Result independent of neural network architecture - a universal barrier.
Existence vs computation (universal approximation/interpolation theorems not enough).

Conclusion: Theorems on existence of neural networks may have little to do with the
neural networks produced in practice.



Numerical example: fails with training methods

- . - : A= AT |

dist(Wa,(yn), =3(A,y)) | dist(Pa,(yn), =3(A,y)) lyn = yllp <270 10 Qx
0.2999690 0.2597827 n=10 10T | K=1
0.3000000 0.2598050 n=20 107! | K=1
0.3000000 0.2598052 n=30 107! | K=1
0.0030000 0.0025980 n=10 1073 | K=3
0.0030000 0.0025980 n=20 1073 | K=3
0.0030000 0.0025980 n=30 1073 | K=3
0.0000030 0.0000015 n=10 107% | K=6
0.0000030 0.0000015 n=20 107% | K=6
0.0000030 0.0000015 n=30 107% | K=6

Table: (Impossibility of computing the existing neural network to arbitary accuracy). A
constructed from discrete cosine transform, R = 8000, N = 20, m = 19, solutions are 6-sparse.
We demonstrate the impossibility statement (i) on FIRENETs &4, and LISTA (learned iterative
shrinkage thresholding algorithm) networks W, . The table shows the shortest /? distance
between the output from the networks, and the true minimizer of the problem (Ps), with w; =1
and A\ = 1, for different values of n and K.



Can we avoid this?

X =argmin f(x), f*=minf(x)

Question: Can we find ‘good’ input classes where
fx)<f"+e = |Ix—%|| Se

We shall see that the answer is yes!



State-of-the-art model for sparse regularisation

Definition [Sparsity in levels]: Let M = (My,...,M,) € N", where 1 < My < --- <]
M, = N, and s = (s1,...,s/) € N{, where sy, < My — My_1 for k =1,...,r and
Mo = 0. A vector x € CN is (s, M)-sparse in levels if

|supp(x) N {Mx_1 +1,...., Mk} <s,, k=1,..,r.

The total sparsity is s = s; + ... +s,. We denote the set of (s, M)-sparse vectors by
Y s m. We also define the following measure of distance of a vector x to > m by

com(x) = inf{l|x — 2|l : z € Tom).

wavelet levels

%\x

| | |
~N T —

S1 Sparse Sg Sparse S3 Sparse




The robust nullspace property

Definition [weighted rNSP in levels]: Let (s, M) be local sparsities and sparsity
levels respectively. For weights {w;} ; (w; > 0), we say that A € C™N satisfies the
weighted robust null space property in levels (weighted rNSPL) of order (s, M) with
constants 0 < p < 1 and v > 0 if for any (s, M) support set A,

XAc
Ixalle < ’)”A\/g”’* + 9| Ax||p,  forall x e CV,
= Zw(zk)sk, ¢ = m|n (2;()510 K= g
k=1

INSPL = [|z1 — 22| o S osm(22) + [[Az2 — vl 2

small

+ (Mlzill + 1Az = ylle = Allz2llg, — 1Az2 = yll),

F{(z1,y,A)—F§ (z2,y,))



Main result

Simplified version of Theorem: We provide an algorithm such that:
Input: Sparsity parameters (s, M), weights {w;}_,, A€ C™N (with the input A
given by {A,}) satisfying the rNSPL with constants 0 < p < 1 and v > 0,
n € N and positive {9, by, by }.

Output: A neural network ¢, with O(n) layers and the following property.

For any x € CN and y € C™ with

asm(x)iy +  Ax=yle S0 ixlle S b lylle < b
N——

distance to sparse in levels vectors  Nnoise of measurements

we have the following stable and exponential convergence guarantee in n

Pn(y) = xllp So+e".



Demonstration of convergence
Image

Fourier Sampling

Walsh Sampli
| E

Figure: Images corrupted with 2% Gaussian noise and reconstructed using 15% sampling.



Error

Demonstration of convergence

Convergence, Fourier Sampling
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Stable? AUTOMAP X

Original = |z + 1] |z + 7ol

U(A(z +r1))




Stable? FIRENETSs

Original

D(A(x + v2))




Adding FIRENET layers stabilises AUTOMAP




Stability and accuracy, and false negative

Original x Original Original + detail (x + h1)
(full size)

(cropped, red frame) (cropped, blue frame)




U-net trained without noise

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail




U-net trained with noise

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail




FIRENET

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail

Can u

sege 117




Concluding remarks

There is a need for foundations in Al/deep learning. Our results:

» There are well-conditioned problems where mappings from training data to suitable
NNs exist, but no training algorithm (even randomised) can approximate them.

» Existence of algorithms depends on desired accuracy. VK € Z>3, 3 well-conditioned
problems where simultaneously:
(i) Algorithms may compute NNs to K — 1 digits of accuracy, but not K.
(i) Achieving K — 1 digits of accuracy requires arbitrarily many training data.
(iii) Achieving K — 2 correct digits requires only one training datum.

» Under specific conditions, there are algorithms that compute stable NNs. E.g., Fast
Iterative REstarted NETworks (FIRENETS) converge exponentially in the number
of hidden layers. We prove FIRENETSs withstand adversarial attacks.

» There is a trade-off between stability and accuracy in deep learning.
Question: How do we optimally traverse the stability & accuracy trade-off? FIRENETSs
provide a balance but are likely not the end of the story.
Hopefully this talk has inspired you to build on these results and take up the challenge!




