
 Consider bounded self-adjoint operators 𝐴𝐴 acting on the canonical Hilbert space 𝑙𝑙2 ℕ .
 Assume we have a function 𝑓𝑓:ℕ → ℕ describing column decay in the sense that

lim
𝑛𝑛→∞

(𝐼𝐼 − 𝑃𝑃𝑓𝑓 𝑛𝑛 )𝐴𝐴𝑃𝑃𝑛𝑛 = 0,

where 𝑃𝑃𝑛𝑛 denotes the orthogonal projection onto the span of the first 𝑛𝑛 basis vectors.
EXAMPLES: Sparse matrices, Jacobi operators, discrete Schrödinger operators, finite-
range interaction Hamiltonians on lattices,…

IDEA OF ALGORITHM:
Step I: Given a region of interest 𝒟𝒟 and a grid of points 𝒢𝒢 over 𝒟𝒟, approximate the function

𝛾𝛾𝑛𝑛 𝑧𝑧 = 𝜎𝜎1 𝑃𝑃𝑓𝑓 𝑛𝑛 𝐴𝐴 − 𝑧𝑧𝑧𝑧 𝑃𝑃𝑛𝑛 + (𝐼𝐼 − 𝑃𝑃𝑓𝑓 𝑛𝑛 )𝐴𝐴𝑃𝑃𝑛𝑛
where 𝜎𝜎1(𝐶𝐶) denotes the smallest singular value of a rectangular matrix 𝐶𝐶. This can be
done in parallel. We prove that

𝛾𝛾𝑛𝑛 𝑧𝑧 ≥ dist 𝑧𝑧, Sp 𝐴𝐴 , lim
𝑛𝑛→∞

𝛾𝛾𝑛𝑛 𝑧𝑧 = dist 𝑧𝑧, Sp 𝐴𝐴 .

Step II: For a given 𝑧𝑧 ∈ 𝒢𝒢, output the minimisers of 𝛾𝛾𝑛𝑛 𝑧𝑧 over a disc of radius 𝛾𝛾𝑛𝑛 𝑧𝑧 and
centre 𝑧𝑧. This is an approximation of the spectrum locally near 𝑧𝑧.

Physical meaning: We compute the ground state energy of folded Hamiltonian
𝑃𝑃𝑛𝑛 𝐴𝐴 − 𝑧𝑧𝑧𝑧 𝑃𝑃𝑓𝑓 𝑛𝑛 𝐴𝐴 − 𝑧𝑧𝑧𝑧 𝑃𝑃𝑛𝑛

and this contains all of the interactions of the first 𝑛𝑛 basis vectors without needing to apply
boundary conditions (such as open, periodic etc.).

EXTENSIONS:
 Arbitrary graphs and lattices (instead of ℕ) through choice of basis.
 Can extend to unbounded operators with locally uniform convergence to spectra.
 Can compute approximate states and can be adapted to compute pseudospectra.
 Can be made to handle non-Hermitian operators.
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 Spectral computations are ubiquitous in the sciences with a vast number of applications.
 In general, infinite-dimensional spectral computations suffer from spectral pollution

(“edge states” in physicists’ terminology) – eigenvalues of finite truncations that have
nothing to do with the infinite-dimensional spectrum.

 Non-normal case worse - often don’t capture the whole spectrum via standard methods.

 Despite more than 90 years of quantum theory, unknown even for general Schrödinger
operators (both on discrete lattices and also in the continuum).

References:
[1] M.J. Colbrook, B. Roman, A.C. Hansen. How to compute spectra with error control. Physical Review Letters 122.25 (2019): 250201.
[2] J. Schwinger. Unitary operator bases. Proc. Natl. Acad. Sci. U.S.A., 46(4):570–579 (1960).
[3] T. Digernes, V.S. Varadarajan, S.R.S. Varadhan. Finite approximations to quantum systems. Rev. Math. Phys., 6(4):621–648 (1994).
[4] M.J. Colbrook, A.C. Hansen. The foundations of spectral computations via the solvability complexity index hierarchy: Part I. Preprint (2019).
[5] M.J. Colbrook. The foundations of spectral computations via the solvability complexity index hierarchy: Part II. Preprint (2019).
[6] M.J. Colbrook. Computing spectral measures and spectral types: new algorithms and classifications. Preprint (2019).
[7] M.J. Colbrook, A.C. Hansen. On the infinite-dimensional QR. Numerische Mathematik 143(1): 17-83 (2019)

The Problem

Results in Discrete Case

 The above result can be extended [2], with locally uniform convergence to spectra, to
compute spectra of closed partial differential operators acting on 𝐿𝐿2(ℝ𝑑𝑑) of the form

𝑇𝑇 = �
𝑘𝑘 ≤𝑁𝑁

𝑎𝑎𝑘𝑘(𝑥𝑥)𝜕𝜕𝑘𝑘 .

 Assume coefficients are polynomially bounded and of locally bounded total variation.
 Idea is to approximate (𝑇𝑇 − 𝑧𝑧𝑧𝑧)−1 −1 locally through point samples of the coefficients

and the theory of quasi-Mote Carlo numerical integration.
 This result can be extended to domains other than ℝ𝑑𝑑.
 Treats Schrödinger operators considerably more general than previous results [2,3].

Extensions to Partial Differential Operators

QUASICRYSTALS
 An important topic (2011 Nobel prize in chemistry) with many interesting physical

properties and potential applications.
 Few known analytic results, very difficult theoretically (particularly in dimensions larger

than one), with often fractal-like spectra.
 We study the canonical 2D model – a Penrose tile.
Example 1: Graphical Laplacian (Fig. 1) which models an electronic Hamiltonian. We
compare against standard truncation methods (finite section) with open boundary
conditions and periodic approximations of the tiling. The new method is much faster, and
converges, avoiding spectral pollution. Top right of poster: ground state (left) and state
nearest −5 (right) computed by the method without direct diagonalisation.
Example 2: Magnetic Hamiltonian (Fig. 2) with constant perpendicular magnetic force. The
new algorithm is able to cope with the fractal-like butterfly spectrum and correctly leave out
the gaps. The new algorithm can also cope with non-constant magnetic fields (which
cannot be dealt with using standard methods, even for periodic crystals).

Future work: Using the algorithm for 3D quasicrystals models.

Numerical Examples and Applications

OPEN PROBLEM: Can we devise methods that converge and avoid spectral pollution?

RESULT: We devise an algorithm Γ𝑛𝑛(𝐴𝐴) with the following desirable properties [1]:

 Converges to the full spectrum Sp(𝐴𝐴) in Hausdorff metric, avoiding spectral pollution.
 Computes an error bound 𝐸𝐸(𝑛𝑛, 𝑧𝑧) such that for any solution 𝑧𝑧 in the output Γ𝑛𝑛(𝐴𝐴),

dist(𝑧𝑧, Sp(𝐴𝐴)) ≤ 𝐸𝐸(𝑛𝑛, 𝑧𝑧) and lim
𝑛𝑛→∞

max
𝑧𝑧∈Γ𝑛𝑛(𝐴𝐴)

𝐸𝐸(𝑛𝑛, 𝑧𝑧) = 0.

 Algorithm is fast, completely local and parallelisable, avoiding direct diagonalisation.
 The algorithm is optimal, realising the boundaries of what computers can achieve.

• A wealth of spectral problems can be solved [4,5,6,7,8,9]. For example:
a) Spectral measures, decompositions and spectral types (pure point, abs. cts, sing, cts).
b) Discrete spectra, spectral gap, geometrical features such as capacity, generalised radii.
c) Lebesgue measure and fractal dimensions of spectra (applications in wavepackets).
• These computational problems can be classified into a hierarchy, precisely measuring 

their difficulty and proving optimality of the new algorithms.
• Error control allows applications in computer-assisted proofs.

Results Beyond [1]

Fig. 1: Left: Computed spectrum of graphical Laplacian. Right: Computational times and errors of methods.

Fig. 2: Spectra of magnetic model (strength 𝐵𝐵). The algorithm correctly leaves out the gaps and is able to
capture the complicated Structure.

PHASE TRANSITIONS (PT-Symmetric Hamiltonians)
 Non-self-adjoint yet can have real spectra, typically for small imaginary part of potential.
 Symmetry breaking: complex spectra when imaginary part of potential increased

beyond threshold. These types of operators used in open systems in optics.
 Study phase transition for aperiodic operator

(𝐻𝐻𝐻𝐻)𝑛𝑛= 𝑥𝑥𝑛𝑛−1 + 𝑥𝑥𝑛𝑛+1 + (cos 𝑛𝑛 + 𝑖𝑖𝛾𝛾 sin(𝑛𝑛))𝑥𝑥𝑛𝑛
 Fig. 3 shows pseudospectra of algorithm and finite section (open and periodic boundary

conditions). The algorithm predicts the phase transition at 𝛾𝛾𝑃𝑃𝑃𝑃 ≈ 1, whereas edge states
cause the phase transition to be fragile in the thermodynamic limit (suggesting 𝛾𝛾𝑃𝑃𝑃𝑃 → 0).

Fig. 3: Left: Pseudospectra for different methods. Right: Fragile PT-symmetric phase as system size increases.

FOR DISCUSSION:
SPECTRAL MEASURES [6]

 Can be used to solve infinite-
dimensional evolution PDEs
with error control.

 Right: Visualisation of spectral
measure for magneto-graphene
(field strength Φ).
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