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Motivation: Szegő limit theorems

Continuous test 
function.

Asymptotic behavior of 
spectral measures!

Integrable real-
valued function

Gábor Szegő
(Stanford)

Self-adjoint 
Toeplitz matrix.
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Motivation: Schwinger’s approx. of quantum systems

Schwinger: approx. −Δ + 𝑉 on ℝ using periodic finite grids

𝑋𝑁 = 𝑗 2𝜋/𝑁: 𝑗 = 0, ±1, … , ±𝑁 , 𝑞𝑁  multiplication, 

                    𝑝𝑁 F. T. of 𝑞𝑁 ,  𝐻𝑁 =
1

2
 (𝑝𝑁

2 + 𝑉(𝑞𝑁)) 

Digernes, Varadarajan, and Varadhan: Schwinger’s method converges to 
spectra of −Δ + 𝑉 on 𝐿2(ℝ𝑑) for certain families with compact resolvent.

“Most operators that arise in practice are not presented in a representation in which 
they are diagonalized, and it is often very hard to locate even a single point in the 
spectrum. Thus, one often has to settle for numerical approximations. Unfortunately, 
there is a dearth of literature on this basic problem and, so far as we have been able to 
tell, there are no proven [general] techniques.”    W. Arveson, Berkeley (1994)

Julian Schwinger
(Harvard,

Nobel Prize in Physics 1965)

• Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. USA, 1960.
• Weyl, “The theory of groups and quantum mechanics,” Dover, 1931.
• Digernes, Varadarajan, Varadhan, “Finite approximations to quantum systems,” Rev. Math. Phys., 1994.

Given a self-adjoint Schrödinger operator −∆ + 𝑉 on ℝ𝑑,

can we approximate its spectrum from sampling 𝑉?
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• Applications: Quantum mechanics, structural mechanics, optics, acoustics, statistical 
physics, number theory, matter physics, PDEs, data analysis, neural networks and AI, 
nuclear scattering, optics, computational chemistry, …

• Rich history: D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz), 
W. Dahmen (South Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), M. 
Embree (Virginia Tech), C. Fefferman (Princeton), G. Golub (Stanford), A. Iserles 
(Cambridge), I. Ipsen (NCS), S. Jitomirskaya (UCI), A. Laptev (Imperial), L. Lin 
(Berkeley) M. Luskin (Minnesota), S. Mayboroda (Minnesota), W. Schlag (Yale), E. 
Schrödinger (DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan 
(UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski (Berkeley), ...

• Verified computations: Many computer-assisted proofs involve spectra. E.g., 
𝐸 𝑍 = inf

𝑁≥1
 inf 𝑧 ∈ Sp(𝐻𝑁,𝑍) , 𝐻𝑁,𝑍 = σ𝑘=1

𝑁 −∆𝑥𝑘
− 𝑍 𝑥𝑘

−1 + σ𝑗≤𝑘 𝑥𝑗 − 𝑥𝑘
−1

.

   Dirac-Schwinger conjecture: asymptotics of 𝐸(𝑍) as 𝑍 → ∞ (Fefferman, Seco 1996)

• Foundations: What is computationally possible? Beyond spectra etc.

Computational spectral theory
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Arveson’s work on 𝑪∗-algebras and finite 
sections of bounded operators

William Arveson
(Berkeley)

A "="
𝑎11 𝑎12 ⋯
𝑎21 𝑎22 ⋯

⋮ ⋮ ⋱
, 𝐴 ෍

𝑘=1

∞

𝑥𝑘𝑒𝑘 = ෍

𝑗=1

∞

෍

𝑘=1

∞

𝑎𝑗𝑘𝑥𝑘 𝑒𝑗

Canonical basis vectors of 𝑙2(ℕ)

Sp 𝐴 = 𝑧 ∈ ℂ: 𝐴 − 𝑧𝐼 is not invertible
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Arveson’s work on 𝑪∗-algebras and finite 
sections of bounded operators

A "="
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⋮ ⋮ ⋱
, 𝐴 ෍

𝑘=1

∞

𝑥𝑘𝑒𝑘 = ෍

𝑗=1

∞

෍

𝑘=1

∞

𝑎𝑗𝑘𝑥𝑘 𝑒𝑗

Canonical basis vectors of 𝑙2(ℕ)

𝑛

𝐴𝑛

When does Sp(𝐴𝑛) converge? In what sense?
Can we compute Sp(𝐴) from matrix entries?

William Arveson
(Berkeley)
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Arveson’s work on 𝑪∗-algebras and finite 
sections of bounded operators
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When does Sp(𝐴𝑛) converge? In what sense?
Can we compute Sp(𝐴) from matrix entries?

“Most operators that arise in practice are not presented in a representation in which they are diagonalized, 
and it is often very hard to locate even a single point in the spectrum. Thus, one often has to settle for 
numerical approximations. Unfortunately, there is a dearth of literature on this basic problem and, so far as 
we have been able to tell, there are no proven [general] techniques.”    W. Arveson, Berkeley (1994)

William Arveson
(Berkeley)
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Arveson’s work on 𝑪∗-algebras and finite 
sections of bounded operators

A "="
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𝑘=1

∞

𝑎𝑗𝑘𝑥𝑘 𝑒𝑗

Canonical basis vectors of 𝑙2(ℕ)

𝑛

𝐴𝑛

When does Sp(𝐴𝑛) converge? In what sense?
Can we compute Sp(𝐴) from matrix entries?

Goal of talk: Explore mathematical foundations of computing 𝐒𝐩(𝑨). 

William Arveson
(Berkeley)
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What can go wrong…
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Spectral pollution

Definition: Let {𝑆𝑛} ⊂ ℂ  be a sequence of closed sets 
(approximations of Sp(𝐴)). We say the sequence suffers from 
spectral pollution if there exists 𝜆 ∈ ℂ\Sp(𝐴) with

liminf
𝑛→∞

 dist 𝜆, 𝑆𝑛 = 0.

Examples of {𝑆𝑛}:

• Matrix case (𝑙2(ℕ)): truncate to 𝒫𝑛𝐴𝒫𝑛 ∈ ℂ𝑛×𝑛, 𝑆𝑛 = Sp(𝒫𝑛𝐴𝒫𝑛)
• PDE on unbounded domain: truncate domain then discretise.

Pervasive: Dirac and Schrödinger operators, magnetohydrodynamics, 
matter physics, photonic waveguides, …
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Spectral pollution

Magnetic Schrödinger on 𝐿2(ℝ2):

𝐻 = 𝑖𝜕𝑥 + 𝑦/2 2 + 𝑖𝜕𝑦 − 𝑥/2
2

,  Sp 𝐻 = 1,3,5, …

Use orthonormal basis 𝜓𝑗(𝑥) ⊗ 𝜓𝑘(𝑦),

𝜓𝑘 𝑥 =
−1 𝑘

2𝑘𝑘! 𝜋
𝑒𝑥2/2

d𝑘 

d𝑥𝑘
𝑒−𝑥2

⟶ Sparse and self-adjoint “matrix”. BUT…

Hermite functions

eigenvalues of 
infinite multiplicity:
𝐻 is unitarily 
equivalent to a 
countable sum of 
harmonic oscillators
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Spectral pollution

pollution
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Where does spectral pollution occur?
Numerical range: 𝑊 𝐴 = 𝐴𝑥, 𝑥 : 𝑥 ∈ 𝒟 𝐴 , 𝑥 = 1

Essential numerical range: 𝑊𝑒 𝐴 = 𝐵 compactځ Cl(𝑊 𝐴 + 𝐵 )

Spectral pollution occurs precisely on 𝑊𝑒(𝐴)\Sp(𝐴).

Extensions to unbounded 𝐴, domain truncation (Bögli, Marletta, Tretter, 2020)

Theorem (Pokrzywa): Let 𝐴 be a bounded operator on a separable Hilbert space 
ℋ, {𝒫𝑛} finite-rank orthogonal projections that converge strongly to 𝐼.

• If 𝑧 ∉ 𝑊𝑒(𝐴), 𝑧 ∈ Sp(𝐴) if and only if lim
𝑛→∞

dist 𝑧, Sp(𝒫𝑛𝐴𝒫𝑛) = 0.

• If 𝑆 ⊂ 𝑊𝑒(𝐴) compact, ∃ finite-rank orth. project. {𝒬𝑛} with 𝒫𝑛 ≤ 𝒬𝑛 and

lim
𝑛→∞

sup
𝑥∈Sp 𝒫𝑛𝐴𝒫𝑛 ∪𝑆

dist 𝑥, Sp(𝒬𝑛𝐴𝒬𝑛) + sup
𝑥∈Sp(𝒬𝑛𝐴𝒬𝑛)

dist 𝑥, Sp 𝒫𝑛𝐴𝒫𝑛 ∪ 𝑆  = 0

• Pokrzywa, “Method of orthogonal projections and approximation of the spectrum of a bounded operator,” Studia Mathematica, 1979.
• Bögli, Marletta, Tretter, “The essential numerical range for unbounded linear operators,” Journal of Functional Analysis, 2020
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Spectral invisibility

Definition: Let {𝑆𝑛} ⊂ ℂ  be a sequence of closed sets 
(approximations of Sp(𝐴)). We say the sequence suffers from 
spectral invisibility if there exists 𝜆 ∈ Sp(𝐴) with

limsup
𝑛→∞

 dist 𝜆, 𝑆𝑛 > 0.

Currently no known characterization of invisibility         
 (i.e., no analog to 𝑊𝑒 𝐴  for spectral pollution).
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Spectral invisibility
• Convection-diffusion operator (normal) on 𝐿2(ℝ):

ℒ𝑢 = −
d2𝑢

d𝑥2
− 2

d𝑢

d𝑥
,  Sp ℒ = 𝑘2 + 2𝑘𝑖: 𝑘 ∈ ℝ

• Truncate to [−𝑛, 𝑛] + Dirichlet BCs, 𝑆𝑛 = 1 +
𝑚2𝜋2

4𝑛2 : 𝑚 ∈ ℕ

invisibility

pollution
𝑆𝑛

Sp(ℒ) 

• Davies, “Non-self-adjoint differential operators,” Bulletin of the London Mathematical Society, 2002
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A method that always works…
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Sketch of method

𝜎inf 𝐴 = inf 𝐴𝑣 : 𝑣 ∈ 𝔇 𝐴 , 𝑣 = 1

𝛾 𝑧, 𝐴 = (𝐴 − 𝑧𝐼)−1 −1 = min 𝜎inf 𝐴 − 𝑧𝐼 , 𝜎inf 𝐴∗ − ҧ𝑧𝐼

Sp 𝐴 = 𝑧 ∈ ℂ: 𝛾 𝑧, 𝐴 = 0

                  𝒫𝑛 = orthog-projection onto span 𝑒1, … , 𝑒𝑛 .

𝛾𝑛,𝑚 𝑧, 𝐴 = min 𝜎inf 𝒫𝑚(𝐴 − 𝑧𝐼)𝒫𝑛 , 𝜎inf 𝒫𝑚(𝐴∗ − ҧ𝑧 𝒫𝑛)

𝛾𝑛 𝑧, 𝐴 = min 𝜎inf  (𝐴 − 𝑧𝐼)𝒫𝑛 , 𝜎inf  (𝐴∗ − ҧ𝑧 )𝒫𝑛  

Dini’s theorem: 𝛾𝑛,𝑚 ↑𝑚→∞ 𝛾𝑛 ↓𝑛→∞ 𝛾 uniformly on compacts

Idea:

Spectra through
injection moduli
(smallest singular value)Lipschitz-1  

in 𝑧 and 𝐴

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.

Rectangular finite section.
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Sketch of method

Hausdorff metric captures avoidance of pollution/invisibility:

𝑑H 𝑋, 𝑌 = max sup
𝑥∈𝑋

inf
𝑦∈𝑌

|𝑥 − 𝑦| , sup
𝑦∈𝑌

inf
𝑥∈𝑋

|𝑥 − 𝑦|

Algorithm that converges in 3 limits:

Γ𝑛3,𝑛2,𝑛1
𝐴 = 𝑧 ∈

1

𝑛2
ℤ + 𝑖ℤ : 𝑧 ≤ 𝑛2, 𝛾𝑛2,𝑛1

𝑧, 𝐴 +
1

𝑛2
≤

1

𝑛3

lim
𝑛2→∞

lim
𝑛1→∞

Γ𝑛3,𝑛2,𝑛1
𝐴 = Sp 1

𝑛3

𝐴 , lim
𝑛3→∞

Sp 1
𝑛3

𝐴 = Sp(𝐴)

Sp𝜖 𝐴 = 𝑧 ∈ ℂ: 𝛾 𝑧, 𝐴 ≤ 𝜖

• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
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Sketch of method

Hausdorff metric captures avoidance of pollution/invisibility:
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• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.

Can we do better (than 3 limits)?
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A mathematical structure…

20



Computational problem

Definition: A computational problem is a collection
Ξ, Ω, ℳ, Λ  consisting of:

• Input class Ω;

• Metric space (ℳ, 𝑑);

• Problem function Ξ: Ω → ℳ;

• Evaluation set, Λ, of ℂ-valued functions on Ω;

such that for 𝐴, 𝐵 ∈ Ω:

𝑓 𝐴 = 𝑓 𝐵  ∀𝑓 ∈ Λ ⇒  Ξ 𝐴 = Ξ 𝐵 .

E.g., Ω = ℬ(𝑙2(ℕ))

E.g., ℳ = ℳ𝐻 (Hausdorff metric)

Info available to algorithms
E.g. Matrix entries

Ξ(𝐴) determined by {𝑓 𝐴 : 𝑓 ∈ Λ}

Thing we want to compute E.g., Ξ = Sp
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General algorithm (consistency)

Definition: Given Ξ, Ω, ℳ, Λ , a general algorithm is a map 
Γ: Ω → ℳ such that for any 𝐴 ∈ Ω, there exists ΛΓ 𝐴 ⊂ Λ finite 
and non-empty such that for 𝐴, 𝐵 ∈ Ω,

𝑓 𝐴 = 𝑓 𝐵  ∀𝑓 ∈ ΛΓ 𝐴  ⇒  ΛΓ 𝐴 = ΛΓ 𝐵 , Γ 𝐴 = Γ(𝐵)

Can also consider restrictions (e.g., Turing or BSS machine)

Impossibility result for gen. alg. ⟹ impossibility result in any model

Info algorithm 
reads on input 𝐴.
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• ∆0: Solved in finite time (v. rare for cts problems).

• ∆1: Solved in “one limit” with full error control:

𝑑(Γ𝑛 𝐴 , Ξ(𝐴)) ≤ 2−𝑛

• ∆2: Solved in “one limit”:

lim
𝑛→∞

Γ𝑛(𝐴) = Ξ(𝐴)

• ∆3: Solved in “two successive limits”:

lim
𝑛→∞

lim
𝑚→∞

Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

  

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.

Solvability Complexity Index Hierarchy

⋮

Can work in any model. E.g., BSS machine, Turing machine, interval arithmetic, inexact input etc.

23



• ∆0: Solved in finite time (v. rare for cts problems).

• ∆1: Solved in “one limit” with full error control:
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Γ𝑛,𝑚(𝐴) = Ξ(𝐴)

  

• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
• Hansen, “On the solvability complexity index, the 𝑛-pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
• McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.
• Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.
• Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.

Solvability Complexity Index Hierarchy

⋮

Can work in any model. E.g., BSS machine, Turing machine, interval arithmetic, inexact input etc.

Smale:“Is there any purely 
rational iterative generally 
convergent algorithm for 
polynomial zero finding?”

McMullen: “Yes, if the degree is three; 
no, if the degree is higher.”

Doyle & McMullen: “The 
problem can be solved using 
successive limits for the quartic 
and quintic, but not the sextic.”

Steve Smale
(Berkeley,Fields Medal 1966)

Curt McMullen
(Harvard, Fields Medal 1998)

Peter Doyle
(Dartmouth)
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Why no proven techniques (Arveson)?
Ξ′: 𝐵 ∈ 0,1 ℕ×ℕ = Ω′, does 𝐵 have finitely many cols with finitely many 1s?

Descriptive set theory + SCI  ⟹ Ξ′, Ω′, 0,1 , Λ ∉ Δ3

For 𝛼 ∈ 0,1 ℤ define

𝐶 𝛼 𝑘,𝑙 = ቊ
1,  𝑘 < 𝑙, 𝛼𝑘 = 𝛼𝑙 = 1, 𝛼𝑛 = 0 for 𝑘 < 𝑛 < 𝑙
0,  otherwise. 

Given 𝐵 ∈ 0,1 ℕ×ℕ set

𝐴 𝐵 = ⨁𝑗=1
∞ 𝐶(𝛼𝑖

(𝑗)
), 𝛼𝑖

(𝑗)
= ቊ

1,  𝑖 ≤ 𝑗
𝐵 𝑖 −𝑗,𝑗 ,  otherwise.

If Ξ′ 𝐵 = 1, Sp(𝐵) = 𝕋. Otherwise Sp 𝐵 = 𝑧: 𝑧 ≤ 1 .

If classical spectral problem ∈ Δ3
𝐺  so is Ξ′, Ω′, 0,1 , Λ , contradiction!

∈ Δ4:  ∃{Γ𝑛3,𝑛2,𝑛1
} s.t. lim

𝑛3→∞
lim

𝑛2→∞
lim

𝑛1→∞
Γ𝑛3,𝑛2,𝑛1

𝐴 = Sp(𝐴) 

Question: Can we do better? Answer: No! Canonically embed problems such 
as:

• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
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If Ξ′ 𝐵 = 1, Sp(𝐵) = 𝕋. Otherwise Sp 𝐵 = 𝑧: 𝑧 ≤ 1 .

If classical spectral problem ∈ Δ3
𝐺  so is Ξ′, Ω′, 0,1 , Λ , contradiction!

∈ Δ4:  ∃{Γ𝑛3,𝑛2,𝑛1
} s.t. lim

𝑛3→∞
lim

𝑛2→∞
lim

𝑛1→∞
Γ𝑛3,𝑛2,𝑛1

𝐴 = Sp(𝐴) 

Question: Can we do better? Answer: No! Canonically embed problems such 
as:

• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.

shift on span 𝑒𝑖: 𝛼𝑖 = 1

Why no proven techniques (Arveson)?
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Ξ′: 𝐵 ∈ 0,1 ℕ×ℕ = Ω′, does 𝐵 have finitely many cols with finitely many 1s?

Descriptive set theory + SCI  ⟹ Ξ′, Ω′, 0,1 , Λ ∉ Δ3

For 𝛼 ∈ 0,1 ℤ define

𝐶 𝛼 𝑘,𝑙 = ቊ
1,  𝑘 < 𝑙, 𝛼𝑘 = 𝛼𝑙 = 1, 𝛼𝑛 = 0 for 𝑘 < 𝑛 < 𝑙
0,  otherwise. 

Given 𝐵 ∈ 0,1 ℕ×ℕ set

𝐴 𝐵 = ⨁𝑗=1
∞ 𝐶(𝛼𝑖

(𝑗)
), 𝛼𝑖

(𝑗)
= ቊ

1,  𝑖 ≤ 𝑗
𝐵 𝑖 −𝑗,𝑗 ,  otherwise.

If Ξ′ 𝐵 = 1, Sp 𝐵 = 0 ∪ 𝕋. Otherwise Sp 𝐵 = 𝑧: 𝑧 ≤ 1 .

If classical spectral problem ∈ Δ3 , so is Ξ′, Ω′, 0,1 , Λ , contradiction!

∈ Δ4:  ∃{Γ𝑛3,𝑛2,𝑛1
} s.t. lim

𝑛3→∞
lim

𝑛2→∞
lim

𝑛1→∞
Γ𝑛3,𝑛2,𝑛1

𝐴 = Sp(𝐴) 

Question: Can we do better? Answer: No! Canonically embed problems such 
as:

• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.

shift on span 𝑒𝑖: 𝛼𝑖 = 1

Why no proven techniques (Arveson)?
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What about additional structure?
Computing spectra with error control…
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A =
𝑎1

𝑎2

⋱

𝚲: Matrix entries of 𝐴 (readable info)

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Sp 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Sp(𝐴)

But: Can’t obtain ෠Γ𝑛 𝐴  → Sp 𝐴  with Sp(𝐴) ⊂ ෠Γ𝑛 𝐴 .

 

Motivation: bounded diagonal operators

𝑑H Γ𝑛 𝐴 , Sp(𝐴) = max  sup
𝑥∈Γ𝑛 𝐴

𝑑(𝑥, Sp(𝐴)) , sup
𝑦∈Sp(𝐴)

𝑑(𝑦, Γ𝑛 𝐴 ) 
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A =
𝑎1

𝑎2

⋱

𝚲: Matrix entries of 𝐴 (readable info)

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Sp 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Sp(𝐴)

But: Can’t obtain ෠Γ𝑛 𝐴  → Sp 𝐴  with Sp(𝐴) ⊂ ෠Γ𝑛 𝐴 .

 

Motivation: bounded diagonal operators

𝑑H Γ𝑛 𝐴 , Sp(𝐴) = max  sup
𝑥∈Γ𝑛 𝐴

𝑑(𝑥, Sp(𝐴)) , sup
𝑦∈Sp(𝐴)

𝑑(𝑦, Γ𝑛 𝐴 ) 
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A =
𝑎1

𝑎2

⋱

𝚲: Matrix entries of 𝐴 (readable info)

Algorithm: Γ𝑛 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 → Sp 𝐴 = 𝑎1, 𝑎2, … in Haus. Metric.

One-sided error control: Γ𝑛 𝐴 ⊂ Sp(𝐴)

But: No algorithm with ෠Γ𝑛 𝐴  → Sp 𝐴  with Sp(𝐴) ⊂ ෠Γ𝑛 𝐴 .

Motivation: bounded diagonal operators

𝑑H Γ𝑛 𝐴 , Sp(𝐴) = max  sup
𝑥∈Γ𝑛 𝐴

𝑑(𝑥, Sp(𝐴)) , sup
𝑦∈Sp(𝐴)

𝑑(𝑦, Γ𝑛 𝐴 ) 
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Error control for spectral problems

• Σ1: ∃ alg. Γ𝑛  s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

Ξ 𝐴 = Sp(𝐴)

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

𝑑H 𝑋, 𝑌 = max sup
𝑥∈𝑋

𝑑(𝑥, 𝑌) , sup
𝑦∈𝑌

𝑑(𝑦, 𝑋)
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• Σ1: ∃ alg. Γ𝑛  s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Γ𝑛 𝐴 dist 𝑧, Ξ 𝐴 ≤ 2−𝑛

• Π1: ∃ alg. Γ𝑛  s.t. lim
𝑛→∞

Γ𝑛 𝐴 = Ξ 𝐴 , max𝑧∈Ξ(𝐴)dist(𝑧, Γ𝑛 𝐴 ) ≤ 2−𝑛

Such problems can be used in a proof!

Ξ 𝐴 = Sp(𝐴)

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.

Error control for spectral problems
𝑑H 𝑋, 𝑌 = max sup

𝑥∈𝑋
𝑑(𝑥, 𝑌) , sup

𝑦∈𝑌
𝑑(𝑦, 𝑋)
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Reasons it’s hard I

𝐴 = ⨁𝑟=1
∞  𝐽𝑙𝑟

, 𝐽𝑙𝑟
=

0 1
0  ⋱

 ⋱ 1
0

∈ ℂ𝑙𝑟×𝑙𝑟

Sp(𝐴) = ቊ
 0 ,  sup 𝑙𝑟 < ∞

𝑧: 𝑧 ≤ 1 ,  otherwise

No Γ𝑛  when given 𝑙𝑟 𝑟=1
∞   can determine if it is bounded.

           ⟹ No Γ𝑛  computes spectra of gen. tridiagonal operators.
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Reasons it’s hard I

𝐴 = ⨁𝑟=1
∞  𝐽𝑙𝑟

, 𝐽𝑙𝑟
=

0 1
0  ⋱

 ⋱ 1
0

∈ ℂ𝑙𝑟×𝑙𝑟

Sp(𝐴) = ቊ
 0 ,  sup 𝑙𝑟 < ∞

𝑧: 𝑧 ≤ 1 ,  otherwise

No Γ𝑛  when given 𝑙𝑟 𝑟=1
∞   can determine if it is bounded.

           ⟹ No Γ𝑛  computes spectra of gen. tridiagonal operators.

Always have: (𝐴 − 𝑧𝐼)−1 −1 ≤ dist(𝑧, Sp(𝐴))

Extra assumption: 𝑔(dist(𝑧, Sp(𝐴))) ≤ (𝐴 − 𝑧𝐼)−1 −1

Always have: (𝐴 − 𝑧𝐼)−1 −1 ≤ dist(𝑧, Sp(𝐴))
Extra assumption: 𝑔(dist(𝑧, Sp(𝐴))) ≤ (𝐴 − 𝑧𝐼)−1 −1

 

Assume:
𝑔(dist(𝑧, Sp(𝐴))) ≤ (𝐴 − 𝑧𝐼)−1 −1

known cts. bijection
𝑔: ℝ>0 → ℝ>0
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𝐴 = ⨁𝑟=1
∞  𝐴𝑙𝑟

, 𝐴𝑙𝑟
=

1 1
0

1

⋱
0

1

∈ ℂ𝑙𝑟×𝑙𝑟

Sp 𝐴 = 0,2 ,  Sp diag 1,0, … = 0,1

More involved: Suppose for a contradiction Γ𝑛  converges, choose 
𝑙𝑟 𝑟=1

∞  so Γ𝑛(𝐴) does not converge (try it!)

Reasons it’s hard II
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𝐴 = ⨁𝑟=1
∞  𝐴𝑙𝑟

, 𝐴𝑙𝑟
=

1 1
0

1

⋱
0

1

∈ ℂ𝑙𝑟×𝑙𝑟

Sp 𝐴 = 0,2 ,  Sp diag 1,0, … = 0,1

More involved: Suppose for a contradiction Γ𝑛  converges, choose 
𝑙𝑟 𝑟=1

∞  so Γ𝑛(𝐴) does not converge (try it!)

Assume access to 𝐴𝑒𝑗 , 𝑒𝑖 , 𝐴𝑒𝑗 , 𝐴𝑒𝑖 , 𝐴∗𝑒𝑗 , 𝐴∗𝑒𝑖

Reasons it’s hard II
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Sketch of method with error control (∈ Σ1)

𝜎inf 𝐴 = inf 𝐴𝑣 : 𝑣 ∈ 𝔇 𝐴 , 𝑣 = 1

𝛾 𝑧, 𝐴 = 𝐴 − 𝑧𝐼 −1 −1 = min 𝜎inf 𝐴 − 𝑧𝐼 , 𝜎inf 𝐴∗ − ҧ𝑧𝐼

𝒫𝑛 = orthog-projection onto span 𝑒1, … , 𝑒𝑛

𝜎inf 𝒫𝑛 𝐴 − 𝑧𝐼 ∗(𝐴 − 𝑧𝐼)𝒫𝑛 = 𝜎inf [𝐴 − 𝑧𝐼]𝒫𝑛 ↓ 𝜎inf 𝐴 − 𝑧𝐼

𝑔−1 min 𝜎inf [𝐴 − 𝑧𝐼]𝒫𝑛 , 𝜎inf [𝐴∗ − ҧ𝑧𝐼]𝒫𝑛 ↓ 𝑔−1 𝐴 − 𝑧𝐼 −1 −1 ≥ dist 𝑧, Sp 𝐴

(𝐴 − 𝑧)−1 −1 ≥ 𝑔(dist(𝑧, Sp(𝐴)))

Final ingredient: adaptive search for local minimisers.

• C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett.,2019.

Idea:
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Example: Quasicrystal
Graph Laplacian

SCI alg.

SCI alg.

Er
ro

r
Er

ro
r

Er
ro

r

spectral pollution

Er
ro

r spectral
pollution

Dan Shechtman
(Iowa State, Nobel Prize 

in Chemistry 2011)
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Example: Quasicrystal

Dan Shechtman
(Iowa State, Nobel Prize 

in Chemistry 2011)

Graph Laplacian

SCI alg.

SCI alg.

Er
ro

r
Er

ro
r

Er
ro

r

spectral pollution

Er
ro

r spectral
pollution

E.g., ground state of quasicrystal
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Theorem: Ω: class of self-adjoint diff. operators on 𝐿2(ℝ𝑑)

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 

• 𝐶0
∞(ℝ𝑑) a core of 𝑇.

• 𝑐𝑘  poly bounded, locally bounded total variation.
Can access:

• 𝑐𝑘(𝑞)  for 𝑞 ∈ ℚ𝑑.
• Polynomial that bounds 𝑐𝑘  on ℝ𝑑.

(a) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) ≤ 𝑏𝑛 ⟹ Sp, Ω ∈ Σ1.

(b) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) = 𝑂(𝑏𝑛) ⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022

Schwinger’s problem
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Theorem: Ω: class of self-adjoint diff. operators on 𝐿2(ℝ𝑑)

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 

• 𝐶0
∞(ℝ𝑑) a core of 𝑇.

• 𝑐𝑘  poly bounded, locally bounded total variation.
Can access:

• 𝑐𝑘(𝑞)  for 𝑞 ∈ ℚ𝑑.
• Polynomial that bounds 𝑐𝑘  on ℝ𝑑.

(a) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) ≤ 𝑏𝑛 ⟹ Sp, Ω ∈ Σ1.

(b) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) = 𝑂(𝑏𝑛) ⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022

Not verifiable

Verifiable

Extends to other domains, 
singular coefficients etc.

Sampling schemes
to construct matrix.

Schwinger’s problem
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Non-self-adjoint example with non-trivial 𝑔 

𝑇 = −
d2 

d𝑥2
+ 𝑖𝑥3 on ℝ

𝑗 𝐸𝑗  to 30 digits with interval arithmetic

• C., “INFINITE-DIMENSIONAL SPECTRAL COMPUTATIONS, Foundations, Algorithms, and Modern Applications.,” CUP, to appear.

(𝑇 − 𝑧𝐼)−1 −1

Carl Bender
(Washington, MIT,

Heineman Prize 2017)

Small even away from evals

Michael Berry
(Bristol, Wolf Prize 1998)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Σ1

Sampler of results for bounded op. on 𝑙2(ℕ)
increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Σ1

increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits

Compact operators

Sampler of results for bounded op. on 𝑙2(ℕ)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Σ1
Normal operators

increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits

Compact operators

Sampler of results for bounded op. on 𝑙2(ℕ)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Σ1
Normal operators

increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits

Compact operators “Sparse” operators

Sampler of results for bounded op. on 𝑙2(ℕ)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Σ1
Normal operators General operators

increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits

Compact operators “Sparse” operators

Sampler of results for bounded op. on 𝑙2(ℕ)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Σ1
Normal operators General operators

increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits

Approx. sparse normal op

Compact operators “Sparse” operators

Sampler of results for bounded op. on 𝑙2(ℕ)
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Π0

Σ0

Δ0

=
=

⊊ Δ1 ⊊

Π1

Σ1 ∪ Π1 ⊊ Δ2 ⊊

Π2

Σ2

Σ2 ∪ Π2 ⊊ Δ3 ⊊

Π3

Σ3

Σ3 ∪ Π3 ⋯

Σ1
Normal operators General operators

increasing difficulty

Error control 2 limits 3 limits1 limit 3 limits

Approx. sparse normal op

Compact operators “Sparse” operators

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.
• C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy," J. Eur. Math. Soc., 2023.
• C., “Computing spectral measures and spectral types,” Commun. Math. Phys., 2021.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
• Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and 
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential 
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...

Sampler of results for bounded op. on 𝑙2(ℕ)
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Example: Analysis helps in applications in 
dynamical systems…
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

NB: Pointwise definition of 𝒦𝐹 needs 𝐹#𝜔 ≪ 𝜔 – this will hold throughout.
NB: 𝒦𝐹 bounded equivalent to d𝐹#𝜔/d𝜔 ∈ 𝐿∞ – this will hold throughout (can be dropped).

Operator theory for dynamical systems
Koopman von Neumann

Henri Poincaré
(Sorbonne)

• Poincaré, ‘’Les méthodes nouvelles de la mécanique céleste,’’ Vol. 2. Gauthier-Villars et fils, imprimeurs-libraires, 1893.
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))ta: 
= 1, … , 𝑀

NB: Pointwise definition of 𝒦𝐹 needs 𝐹#𝜔 ≪ 𝜔 – this will hold throughout.
NB: 𝒦𝐹 bounded equivalent to d𝐹#𝜔/d𝜔 ∈ 𝐿∞ – this will hold throughout (can be dropped).

Operator theory for dynamical systems
Bernard Koopman

(Columbia)

John von Neumann
(IAS)

• Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
• Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.
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• Compact metric space (𝒳, 𝑑) – the state space

• 𝑥 ∈ 𝒳 – the state

• Unknown cts 𝐹: 𝒳 → 𝒳 – the dynamics: 𝑥𝑛+1 = 𝐹(𝑥𝑛)

• Borel measure 𝜔 on 𝒳

• Function space 𝐿2 = 𝐿2(𝒳, 𝜔) (elements 𝑔 called “observables”)

• Koopman operator 𝒦𝐹: 𝐿2 → 𝐿2; [𝒦𝐹𝑔] 𝑥 = 𝑔(𝐹(𝑥))

• Available snapshot data: 𝑥 𝑚 , 𝑦 𝑚 = 𝐹 𝑥 𝑚 : 𝑚 = 1, … , 𝑀

Operator theory for dynamical systems

Can we compute spectral properties from sampling trajectories?
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Fundamental object

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Can provide a diagonalization of a nonlinear system.

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜑𝜆𝑗

(𝑥) + න

−𝜋

𝜋

𝜙𝜃,𝑔 𝑥  d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0  

= ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜆𝑗

𝑛𝜑𝜆𝑗
𝑥0 + න

−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0  d𝜃

Spectral properties encode: geometric features, 
invariant measures, transient behavior, long-time 
behavior, coherent structures, quasiperiodicity, etc.

continuous 
spectrum

eigenfunction of 𝒦

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.

Fundamental object
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Fundamental in ergodic theory

E.g., key to ergodic theorems of 
Birkhoff and von Neumann.

Can provide a diagonalization of a nonlinear system.

𝑔(𝑥) = ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜑𝜆𝑗

(𝑥) + න

−𝜋

𝜋

𝜙𝜃,𝑔 𝑥  d𝜃

𝑔 𝑥𝑛 = 𝒦𝑛𝑔 𝑥0  

= ෍

eigenvalues 𝜆𝑗

𝑐𝜆𝑗
𝜆𝑗

𝑛𝜑𝜆𝑗
𝑥0 + න

−𝜋

𝜋

𝑒𝑖𝑛𝜃𝜙𝜃,𝑔 𝑥0  d𝜃

Spectral properties encode: geometric features, 
invariant measures, transient behavior, long-time 
behavior, coherent structures, quasiperiodicity, etc.

continuous 
spectrum

eigenfunction of 𝒦

Fundamental object

Trades: Nonlinear, finite-dimensional ⟹ Linear, infinite-dimensional.

+ huge recent interest in 
applications of spectra 
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New papers on spectra of
Koopman operators

number of papers

doubles every 5 yrs
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Functions 𝜓𝑗: 𝒳 → ℂ, 𝑗 = 1, … , 𝑁 

𝒦 ⟶ Ψ𝑋
∗𝑊Ψ𝑋

−1Ψ𝑋
∗𝑊Ψ𝑌 ∈ ℂ𝑁×𝑁

𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 =

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))
⋮ ⋱ ⋮

𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋 𝑗𝑘

Extended Dynamic Mode Decomposition (EDMD)

𝒦𝜓𝑘, 𝜓𝑗 ≈ σ𝑚=1
𝑀 𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

=
𝜓1(𝑥(1)) ⋯ 𝜓𝑁(𝑥(1))

⋮ ⋱ ⋮
𝜓1(𝑥(𝑀)) ⋯ 𝜓𝑁(𝑥(𝑀))

Ψ𝑋

∗
𝑤1

⋱
𝑤𝑀

𝑊

𝜓1(𝑦(1)) ⋯ 𝜓𝑁(𝑦(1))
⋮ ⋱ ⋮

𝜓1(𝑦(𝑀)) ⋯ 𝜓𝑁(𝑦(𝑀))

Ψ𝑌 𝑗𝑘

𝑥(𝑚), 𝑦(𝑚) = 𝐹(𝑥(𝑚))
𝑚=1

𝑀

• Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
• Rowley, Mezić, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
• Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.

Finite Section
Approximation

quadrature weights

quadrature points
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• C., Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
• C., Ayton, Szőke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
• Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition

𝜓𝑘, 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑥 𝑚 = Ψ𝑋
∗𝑊Ψ𝑋 𝑗𝑘

 𝒦𝜓𝑘 , 𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑥 𝑚 𝜓𝑘 𝑦 𝑚

[𝒦𝜓𝑘] 𝑥 𝑚

= Ψ𝑋
∗𝑊Ψ𝑌 𝑗𝑘

𝒦𝜓𝑘 , 𝒦𝜓𝑗 ≈ ෍

𝑚=1

𝑀

𝑤𝑚𝜓𝑗 𝑦 𝑚 𝜓𝑘 𝑦 𝑚 = Ψ𝑌
∗𝑊Ψ𝑌 𝑗𝑘

Residual DMD (ResDMD)

New matrix:

Uses same trajectory data
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Class of systems: Ω𝒳 = 𝐹: 𝒳 → 𝒳| 𝐹 cts, measure preserving, invertible .

Data an algorithm can use: 𝒯𝐹 = 𝑥, 𝑦𝑚 |𝑥 ∈ 𝒳, 𝑑(𝑦𝑚, 𝐹 𝑥 ) ≤ 2−𝑚 .

Idea: Use the above matrices to compute

lim
𝑁→∞

lim
𝑀→∞

𝛾𝑁,𝑀 𝑧, 𝐹 = 𝒦𝐹 − 𝑧𝐼 −1 −1 = dist(𝑧, Sp(𝒦𝐹))

𝑵 = size of basis, 𝑴 = amount of data (quadrature)

• For any sequence of random algorithms Γ𝑛  that uses 𝒯𝐹 

inf
𝐹∈Ω𝔻

ℙ lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹 ≤ 1/2.

Remarks:
• Universal - any type of algorithm or computational model.
• Phase transition at ℙ = 1/2 optimal.
• Possible to learn statistics for Ω𝔻, doesn’t help!
• Extends to other 𝒳.

Upper bound on SCI: ∈ Σ2 Implies 𝓚 is unitary

Theorem: There exists deterministic algorithms Γ𝑁,𝑀  using 𝒯𝐹 such 

that lim
𝑁→∞

lim
𝑀→∞

Γ𝑁,𝑀 𝐹 = Sp 𝒦𝐹  for all 𝐹 ∈ Ω𝒳. (Moreover ∈ Σ2
𝐴)

Theorem: Ω: class of self-adjoint diff. operators on 𝐿2(ℝ𝑑)

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 

• 𝐶0
∞(ℝ𝑑) a core of 𝑇.

• 𝑐𝑘  poly bounded, locally bounded total variation.
Can access (to arbitrary precision):

• 𝑐𝑘(𝑞)  for 𝑞 ∈ ℚ𝑑.
• Polynomial that bounds 𝑐𝑘  on ℝ𝑑.

(a) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) ≤ 𝑏𝑛 ⟹ Sp, Ω ∈ Σ1.

(b) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) = 𝑂(𝑏𝑛) ⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

Theorem: Ω: class of self-adjoint diff. operators on 𝐿2(ℝ𝑑)

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 

• 𝐶0
∞(ℝ𝑑) a core of 𝑇.

• 𝑐𝑘  poly bounded, locally bounded total variation.
Can access (to arbitrary precision):

• 𝑐𝑘(𝑞)  for 𝑞 ∈ ℚ𝑑.
• Polynomial that bounds 𝑐𝑘  on ℝ𝑑.

(a) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) ≤ 𝑏𝑛 ⟹ Sp, Ω ∈ Σ1.

(b) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) = 𝑂(𝑏𝑛) ⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

Theorem: Ω: class of self-adjoint diff. operators on 𝐿2(ℝ𝑑)

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 

• 𝐶0
∞(ℝ𝑑) a core of 𝑇.

• 𝑐𝑘  poly bounded, locally bounded total variation.
Can access (to arbitrary precision):

• 𝑐𝑘(𝑞)  for 𝑞 ∈ ℚ𝑑.
• Polynomial that bounds 𝑐𝑘  on ℝ𝑑.

(a) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) ≤ 𝑏𝑛 ⟹ Sp, Ω ∈ Σ1.

(b) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) = 𝑂(𝑏𝑛) ⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 

Theorem: Ω: class of self-adjoint diff. operators on 𝐿2(ℝ𝑑)

𝑇 = σ
𝑘∈ℤ≥0

𝑑 , 𝑘 ≤𝑁
𝑐𝑘 𝑥 𝜕𝑘 

• 𝐶0
∞(ℝ𝑑) a core of 𝑇.

• 𝑐𝑘  poly bounded, locally bounded total variation.
Can access (to arbitrary precision):

• 𝑐𝑘(𝑞)  for 𝑞 ∈ ℚ𝑑.
• Polynomial that bounds 𝑐𝑘  on ℝ𝑑.

(a) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) ≤ 𝑏𝑛 ⟹ Sp, Ω ∈ Σ1.

(b) Know 𝑐𝑘 TV( −𝑛,𝑛 𝑑) = 𝑂(𝑏𝑛) ⟹ Sp, Ω ∈ Δ2\(Σ1 ∪ Π1). 
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Example: Finite sections don’t converge
• Duffing oscillator: ሶ𝑥 = 𝑦, ሶ𝑦 = −𝛼𝑦 + 𝑥(1 − 𝑥2), sampled Δ𝑡 = 0.3.

• Gaussian radial basis functions, Monte Carlo integration (𝑀 = 50000)

𝛼 = 0 𝛼 = 0.3

Spε(𝒦𝐹) = 𝑧 ∈ ℂ: 𝒦𝐹 − 𝑧𝐼 −1 −1 ≤ 𝜀

62



Practical Gains: Arctic Sea Ice Forecasting

Motivation: Arctic amplification, polar bears, local communities, effect 
on extreme weather in Northern hemisphere,…

Problem: Very hard to predict more than two months in advance.

Monthly average from 
satellite passive 
microwave sensors.
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Relative mean squared error over 2016-2020. Model built 
from 2005-2015 data. (Solid lines moving 12-month mean.)

Mean binary accuracy over test years 2012-2020. (IceNet: 
Andersson et al, “Seasonal Arctic sea ice forecasting with 
probabilistic deep learning.” Nature Communications, 2021.)

Arctic case: Avoiding spurious eigenvalues helps!
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Class of systems: Ω𝔻 = 𝐹: ഥ𝔻 → ഥ𝔻| 𝐹 cts, measure preserving, invertible .

Data an algorithm can use: 𝒯𝐹 = 𝑥, 𝑦𝑚 |𝑥 ∈ ഥ𝔻, 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚 .

Theorem: There does not exist any sequence of deterministic algorithms Γ𝑛  
using 𝒯𝐹 such that lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

NB: Similarly, no random algorithms converging with probability > 1/2.hhhh

Double limit is necessary.

• For any sequence of random algorithms Γ𝑛  that uses 𝒯𝐹 

inf
𝐹∈Ω𝔻

ℙ lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹 ≤ 1/2.

Remarks:
• Universal - any type of algorithm or computational model.
• Phase transition at ℙ = 1/2 optimal.
• Possible to learn statistics for Ω𝔻, doesn’t help!
• Extends to other 𝒳.

Lower bound on SCI: ∉ Δ2 Implies 𝓚 is unitary

Theorem: There does not exist any sequence of deterministic 
algorithms Γ𝑛  using 𝒯𝐹 such that lim

𝑛→∞
Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

• C., Mezić, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.

65



Proof idea: Constructing an adversary

𝐹0: rotation by 𝜋, Sp 𝒦𝐹0
= {±1}

Phase transition lemma: Let 𝑋 = 𝑥1, … , 𝑥𝑁 ,𝑌 = 𝑦1, … , 𝑦𝑁  be distinct 
points in annulus 𝒜 = 𝑥 ∈ 𝔻|0 < 𝑅 < 𝑥 < 𝑟 < 1  with 𝑋 ∩ 𝑌 = ∅. 
There exists a measure-preserving homeomorphism 𝐻 such that 𝐻 acts as 
the identity on 𝔻\𝒜 and 𝐻(𝑦𝑗) = 𝐹0(𝐻(𝑥𝑗)), 𝑗 = 1, … , 𝑁.

Conjugacy of data (𝒙𝒋 → 𝒚𝒋) with 𝑭𝟎

Idea: Use lemma to trick any algorithm into oscillating between spectra.

• Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.

Phase transition lemma: Let 𝑋 = 𝑥1, … , 𝑥𝑁 ,𝑌 = 𝑦1, … , 𝑦𝑁  be distinct 
points in annulus 𝒜 = 𝑥 ∈ 𝔻|0 < 𝑅 < 𝑥 < 𝑟 < 1  with 𝑋 ∩ 𝑌 = ∅ . 
There exists a measure-preserving homeomorphism 𝐻 such that 𝐻 acts as 
the identity on 𝔻\𝒜 and 𝐻(𝑦𝑗) = 𝐹0(𝐻(𝑥𝑗)), 𝑗 = 1, … , 𝑁.
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

Proof idea: Constructing an adversary

𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).
snapshots

Proof idea: Constructing an adversary

𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

lim
𝑛→∞

Γ𝑛
෪𝐹1 = Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 uses finite amount of info to output Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these snapshots.

Proof idea: Constructing an adversary

𝒯𝐹 = 𝑥, 𝑦𝑚  | 𝐹 𝑥 − 𝑦𝑚 ≤ 2−𝑚

snapshots
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Suppose (for contradiction) Γ𝑛  uses 𝒯𝐹 , lim
𝑛→∞

Γ𝑛 𝐹 = Sp 𝒦𝐹  ∀𝐹 ∈ Ω𝔻.

Build an adversarial 𝐹…

෪𝐹1 𝑟, 𝜃 = 𝑟, 𝜃 + 𝜋 + 𝜙 𝑟 , supp(𝜙) ⊂ [1/4, 3/4]
Sp(𝒦෪𝐹1

) = 𝕋 (unit circle).

lim
𝑛→∞

Γ𝑛
෪𝐹1 = Sp(𝒦෪𝐹1

) ⇒ ∃𝑛1 s.t. dist(𝑖, Γ𝑛1
෪𝐹1 ) ≤ 1.

BUT Γ𝑛1
 uses finite amount of info to output Γ𝑛1

෪𝐹1 .
Let X, Y correspond to these snapshots.

Lemma: 𝐹1 = 𝐻1
−1 ∘ 𝐹0 ∘ 𝐻1 on annulus 𝒜1.

Consistent data ⇒ Γ𝑛1
𝐹1 = Γ𝑛1

෪𝐹1 , dist(𝑖, Γ𝑛1
𝐹1 ) ≤ 1

BUT Sp(𝒦𝐹1
) = Sp(𝒦𝐹0

) = {±1}

snapshots

Sp(𝒦) = 𝕋

Sp 𝒦 = {±1}

snapshots

Rotation by 𝜋

Proof idea: Constructing an adversary
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, 𝐹𝑘 = 𝐻𝑘
−1 ∘ 𝐹0 ∘ 𝐻𝑘 on 𝒜𝑘. 𝐹 = lim

𝑘→∞
𝐹𝑘

Consistent data ⇒ Γ𝑛𝑘
𝐹 = Γ𝑛𝑘

(෪𝐹𝑘), dist(𝑖, Γ𝑛𝑘
𝐹 ) ≤ 1, 𝑛𝑘 → ∞

BUT Sp(𝒦𝐹) = Sp(𝒦𝐹0
) = {±1}

𝒜1

𝒜2

𝒜3

⋮

CANNOT CONVERGE
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, 𝐹𝑘 = 𝐻𝑘
−1 ∘ 𝐹0 ∘ 𝐻𝑘 on 𝒜𝑘. 𝐹 = lim

𝑘→∞
𝐹𝑘

Consistent data ⇒ Γ𝑛𝑘
𝐹 = Γ𝑛𝑘

(෪𝐹𝑘), dist(𝑖, Γ𝑛𝑘
𝐹 ) ≤ 1, 𝑛𝑘 → ∞

BUT Sp(𝒦𝐹) = Sp(𝒦𝐹0
) = {±1}

𝒜1

𝒜2

𝒜3

⋮

CANNOT CONVERGE
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Classification for Koopman

Different classes:

Ω𝒳 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts  

Ω𝒳
𝑚 = 𝐹: 𝒳 → 𝒳 | 𝐹 cts, m. p.  

Ω𝒳
𝛼 = 𝐹: 𝒳 → 𝒳 | 𝐹 mod. cty. 𝛼  

[𝑑𝒳(𝐹(𝑥), 𝐹(𝑦)) ≤ 𝛼(𝑑𝒳 𝑥, 𝑦 )]

Optimal algorithms and 
classifications of 
dynamical systems.

3 limits needed 
in general!

Lower + upper bounds
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Classification for 
Koopman II
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Example: Theorem
For smooth, measure-preserving 
systems on a torus, learning 
eigenfunctions or even determining 
if there are any has SCI = 2 (even if 
we can sample derivatives).

Finding finite-dimensional 
embeddings in which the dynamics 
are linear is very hard!

Classification for 
Koopman II
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Conclusion: FOUNDATIONS  ⟷  METHODS

• ∃ interesting mathematical structure in inf.-dim. spectral computations.

• Many spectral problems in inf. dim. are impossible. Some harder than others

• SCI hierarchy is a tool for discovering the foundations of computation.      

 Lower bounds ⟹ spot assumptions needed to lower SCI.

 Upper bounds ⟹ new “inf.-dim.” algorithms. Rigorous, optimal, practical.

• Σ1 ∪ Π1 ⟹ computer-assisted proofs (e.g., Dirac-Schwinger poof implicit Σ1)

Further examples not covered in talk: foundations of AI, optimization, PDEs, 
resonances, computer-assisted proofs, spectral measures,…

• Much of computational literature not sharp!

• The resolvent plays a key role in computations.

Example 2: Need for foundations in data-driven learning.

• Adversarial dynamical systems: Widespread and prevent learning of properties.

• New provably convergent and optimal algorithms for Koopman operators.

Could this framework be useful in your area?

• C., “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
• Ben-Artzi, Marletta, Rösler, “Computing scattering resonances,” J. Eur. Math. Soc., 2022.
• Bastounis, Hansen, Vlačić, “The extended Smale's 9th problem,” preprint.
• Webb, Olver, “Spectra of Jacobi operators via connection coefficient matrices,” CIMP, 2021. 
• C., Antun, Hansen, "The difficulty of computing stable and accurate neural networks: On the barriers of deep learning and Smale’s 18th problem," PNAS, 2022.
• C., Horning, Townsend, “Computing spectral measures of self-adjoint operators,” SIAM Rev., 2021.
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Shameless final plug…
Upcoming book with CUP:

INFINITE-DIMENSIONAL SPECTRAL 
COMPUTATIONS

Foundations, Algorithms, and Modern 
Applications

100s of: classifications, algorithms,  
examples (including full code), figures, 
exercises (including full solutions).

**Out this (2025) holiday season 
(hopefully!)…**

If something interests you, 
please speak to me after.
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INFINITE-DIMENSIONAL SPECTRAL 
COMPUTATIONS

Foundations, Algorithms, and Modern 
Applications

100s of: classifications, algorithms,  
examples (including full code), figures, 
exercises (including full solutions).

**Out this (2025) holiday season 
(hopefully!)…**

If something interests you, 
please speak to me after.

Connections with 
harmonic analysis. Main 

tool is computing 
𝐴, 𝑧, 𝑢 ↦ 𝐴 − 𝑧𝐼 −1𝑢
Lower bounds through 

things like Anderson 
localization.
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Shameless final plug…
Upcoming book with CUP:

INFINITE-DIMENSIONAL SPECTRAL 
COMPUTATIONS

Foundations, Algorithms, and Modern 
Applications

100s of: classifications, algorithms,  
examples (including full code), figures, 
exercises (including full solutions).

**Out this (2025) holiday season 
(hopefully!)…**

If something interests you, 
please speak to me after.

Use 𝛾(𝑧, 𝐴) to compute 
more complex objects like 

fractal dimensions. 
Applications include 
aperiodic operators.
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Shameless final plug…
Upcoming book with CUP:

INFINITE-DIMENSIONAL SPECTRAL 
COMPUTATIONS

Foundations, Algorithms, and Modern 
Applications

100s of: classifications, algorithms,  
examples (including full code), figures, 
exercises (including full solutions).

**Out this (2025) holiday season 
(hopefully!)…**

If something interests you, 
please speak to me after.

Main tool is essential injection moduli (Edmunds & Evans 1987):

𝜏inf 𝐴 = inf liminf
𝑛→∞

𝐴𝑥𝑛 : 𝑥𝑛 ∈ 𝒟 𝐴 , 𝑥𝑛 = 1 , 𝑥𝑛 →𝑤 0

Typically incurs and extra limit. 𝑊𝑒 𝐴  is universally Π2
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Shameless final plug…
Upcoming book with CUP:

INFINITE-DIMENSIONAL SPECTRAL 
COMPUTATIONS

Foundations, Algorithms, and Modern 
Applications

100s of: classifications, algorithms,  
examples (including full code), figures, 
exercises (including full solutions).

**Out this (2025) holiday season 
(hopefully!)…**

If something interests you, 
please speak to me after.

Injection moduli for 𝑇(𝑧).
Contour methods for discrete 

spectra of holomorphic familes.
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