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“The infinite! No other question has ever moved so profoundly the spirit of
humankind; no other idea has so fruitfully stimulated the intellect; yet no
other concept stands in greater need of clarification.” — David Hilbert

“To classify is to bring order into chaos.” — George Pélya

For papers and talks, visit: http://www.damtp.cam.ac.uk/user/mjc249/home.html



Motivation: Szegd limit theorems
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Motivation: Schwinger’s approx. of quantum systems

Schwinger: approx. —A + V on R using periodic finite grids

Xy = {j 2n/N:j =0,%1, ..., iN}, qy multiplication,

Julian Schwinger

1
PN F.T.of dn, HN — E (pl%l + V(qN)) (Harvard,

Nobel Prize in Physics 1965)
Digernes, Varadarajan, and Varadhan: Schwinger’s method converges to

spectra of —A + V on L?(R%) for certain families with compact resolvent.

Given a self-adjoint Schrodinger operator —A + V on R¢,

can we approximate its spectrum from sampling V?

r Schwinger, “Unitary operator bases,” Proc. Natl. Acad. Sci. USA, 1960.
* Weyl, “The theory of groups and quantum mechanics,” Dover, 1931.
e Digernes, Varadarajan, Varadhan, “Finite approximations to quantum systems,” Rev. Math. Phys., 1994,



Computational spectral theory

* Applications: Quantum mechanics, structural mechanics, optics, acoustics, statistical
physics, number theory, matter physics, PDEs, data analysis, neural networks and Al,
nuclear scattering, optics, computational chemistry, ...

* Rich history: D. Arnold (Minnesota), W. Arveson (Berkeley), A. Bottcher (Chemnitz),
W. Dahmen (South Carolina), E. B. Davies (KCL), P. Deift (NYU), L. Demanet (MIT), M.
Embree (Virginia Tech), C. Fefferman (Princeton), G. Golub (Stanford), A. Iserles
(Cambridge), I. Ipsen (NCS), S. Jitomirskaya (UCI), A. Laptev (Imperial), L. Lin
(Berkeley) M. Luskin (Minnesota), S. Mayboroda (Minnesota), W. Schlag (Yale), E.
Schrodinger (DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan
(UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski (Berkeley), ..

* Verified computations: Many computer-assisted proofs involve spectra. E.g.,

E(Z) = Iblgg inf{z € Sp(Hy 2)}, Hyz = Zk=1(—Ax, — Z1xel ™) + X<kl _xkl

Dirac-Schwinger conjecture: asymptotics of E(Z) as Z — oo (Fefferman, Seco 1996)

* Foundations: What is computationally possible? Beyond spectra etc.



Arveson’s work on C*-algebras and finite
sections of bounded operators

o) ()Rl

Canonical basis vectors of 12(N) William Arveson
(Berkeley)

Sp(A) = {z € C: A — zI isnotinvertible}



Arveson’s work on C*-algebras and finite
sections of bounded operators
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Canonical basis vectors of 12(N) William Arveson

(Berkeley)
When does Sp(A4,,) converge? In what sense?
Can we compute Sp(A4) from matrix entries?




Arveson’s work on C*-algebras and finite
sections of bounded operators
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Canonical basis vectors of 12(N) William Arveson

(Berkeley)
When does Sp(A4,,) converge? In what sense?
Can we compute Sp(A4) from matrix entries?

“Most operators that arise in practice are not presented in a representation in which they are diagonalized,
and it is often very hard to locate even a single point in the spectrum. Thus, one often has to settle for
numerical approximations. Unfortunately, there is a dearth of literature on this basic problem and, so far as
we have been able to tell, there are no proven [general] techniques.” W. Arveson, Berkeley (1994)




Arveson’s work on C*-algebras and finite
sections of bounded operators
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Canonical basis vectors of 12(N) William Arveson
(Berkeley)
When does Sp(A4,,) converge? In what sense?
Can we compute Sp(A4) from matrix entries?

Goal of talk: Explore mathematical foundations of computing Sp(A4).




What can go wrong...



Spectral pollution

Definition: Let {S,,} € C be a sequence of closed sets
(approximations of Sp(4)). We say the sequence suffers from
spectral pollution if there exists A € C\Sp(A4) with

liminf dist(4, S,,) = 0.

n—-0o

Examples of {S, }:

e Matrix case ({(N)): truncate to P,AP, € C"*", S, = Sp(P,AP,)
* PDE on unbounded domain: truncate domain then discretise.

Pervasive: Dirac and Schrodinger operators, magnetohydrodynamics,
matter physics, photonic waveguides, ...

10
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1 eigenvalues of
Spectral pollution
H is unitarily
equivalent to a

: . g ) countable sum of
Maghnetic Schrodlnger on L (R )Z harmonic oscillators

H=(id, +y/2)? + (i0, —x/2)°,  Sp(H) = {1,3,5,..}

Use orthonormal basis ¥ (x) @ Y, (y),

__1\k k
b0 = w2 Lo
\/Zkk!\/ﬁ dxk

Hermite functions

— Sparse and self-adjoint “matrix”. BUT...



Computed Eigenvalues
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Where does spectral pollution occur?

Numerical range: W (4) = {{4x,x):x € D(A), ||x|| = 1}
Essential numerical range: W, (4) = Np compact CI(W (4 + B))

Theorem (Pokrzywa): Let A be a bounded operator on a separable Hilbert space
H, {P,} finite-rank orthogonal projections that converge strongly to I.

o Ifz & W,(A), z € Sp(A) if and only if lim dist(z, Sp(P,AP,)) = O.
Nn—>00

 IfS c W,(A) compact, 3 finite-rank orth. project. {Q,,} with P, < Q,, and

lim sup dist(x, Sp(Q,,A49,,)) + sup  dist(x, Sp(P,AR,)US) =0
N—=00 xeSp(P,AP,,)US XESP(0nA04)

Spectral pollution occurs precisely on W,(A)\Sp(4).
Extensions to unbounded A, domain truncation (Bogli, Marletta, Tretter, 2020)

* Pokrzywa, “Method of orthogonal projections and approximation of the spectrum of a bounded operator,” Studia Mathematica, 1979.
* Bogli, Marletta, Tretter, “The essential numerical range for unbounded linear operators,” Journal of Functional Analysis, 2020



Spectral invisibility

Definition: Let {S,} c C be a sequence of closed sets
(approximations of Sp(4)). We say the sequence suffers from
spectral invisibility if there exists A € Sp(A4) with

limsup dist(4, S,,) > 0.

n—0o

Currently no known characterization of invisibility
(i.e., no analog to W, (A) for spectral pollution).

14



Spectral invisibility

e Convection-diffusion operator (normal) on L% (R):

d°u _du
Lu=———2—, Sp(£L) = {k* + 2ki:k € R
“ dx? dx PL) = e+ 2l }
mZTL'z
* Truncate to [—n, n] + Dirichlet BCs, 5;, = {1 T TS N}
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* Davies, “Non-self-adjoint differential operators,” Bulletin of the London Mathematical Society, 2002



A method that always works...

16
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Sketch of method Spectra through
:‘ri]p;;hrjgz:ql / (staIIest singular value)
\ oinf(4) = inf{||Av|: v € D(A), [|[v]| = 1}
V(Z' A) — ”(A o ZI)_lll_l — min{o_inf(A o ZI): O-inf(A>|< o Z_I)}
Sp(4) ={z € C:y(z,4) = 0}

Rectangular finite section.
Idea: P, = orthog-projection onto span{ey, ..., e, }.

Ynm (Z» A) — min{a_inf(j)m (A R ZI)SDn)r O-inf(:Pm (A* R Z_):Pn)}
¥n(z,A) = min{oine( (A — zI)Py), oins( (A" — 2)) Py}

Dini’s theorem: ¥, 1, T1s00 ¥n dnooo ¥ uniformly on compacts

. Hansen, “On the solvability complexity index, the 7zpseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
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Sketch of method

Hausdorff metric captures avoidance of pollution/invisibility:

dy(X,Y) = max {sup inf |x — y|,sup inf |x — y|}

Algorithm that converges in 3 limits:

1 . 1 1
Fn3,n2,n1 (A) = {Z €E—(Z+i7Z):|z| < N2, Vn,n, (z,A) + — < _}
n2 n, ns

lim lim [, , 5 (4) =Sp1 (4), nlgiLnOOSpi(A) = Sp(4)

’nz—)OO’nl—)OO n3 n3

Sp.(A) ={z€e C:y(z,4) < €}

. Hansen, “On the solvability complexity index, the 7zpseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
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Sketch of method
Hausdorff metric captures avoidance of pollution/invisibility:

dy(X,Y) = max {sup inf |x — y|, sup inf |x — y|}

xeXx YEY yey X€X

Algorithm that converges in 3 limits:

1 1 1
Fn3,n2,n1(A) = { €E—(Z+iZ):|z| < N2, Yn,n, (z,A) + — < }
n; n, ng

lim lim [, , 5 (4) =Sp1 (4), 11m Sp 1 (4) = Sp(4)

n-—>00714 =00
2 1 ns ns

Can we do better (than 3 limits)? Spe(4) ={z € C:y(z,4) < €}

. Hansen, “On the solvability complexity index, the 7zpseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.



A mathematical structure...

20
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Computational problem

Definition: A computational problem is a collection
{Z,Q, M, A} consisting of:

* |nput class Q; E.g., (1= B(l*(N))
* Metric space (M, d); E.g., M' = My (Hausdorff metric)
 Problem function Z: Q) - M; Thing we want to compute E.g., 2 = Sp

* Evaluation set, A, of C-valued functions on (); ‘
such that for 4, B € Q.: Info available to algorithms

f(A) _ f(B) VFEA = 5(4) = E(B). E.{i. Matrix entries

Z(A) determined by {f(A): f € A}
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General algorithm (consistency) ¢ aigorithm

reads on input A.

Definition: Given {E,Q, M ,A}, a general algorithm/is a map
[': O = M such that for any A € (), there exists Ar(4) € A finite
and non-empty such that for A, B € (),

f4) =f(B) VfeAr(4) = Ar(4) =Ar(B),I'(4) =T(B)

Can also consider restrictions (e.g., Turing or BSS machine)

Impossibility result for gen. alg. = impossibility result in any model



Solvability Complexity Index Hierarchy

* Ay: Solved in finite time (v. rare for cts problems).
* A;: Solved in “one limit” with full error control:
d(l,(4),2(4)) < 27"
* A,:Solved in “one limit”:
IimI;,(4A) = Z2(4)

Nn—>00
* A3: Solved in “two successive limits”:
‘ lim lim I[3},,,(4) = Z2(4)
. n-oo m-oo -’

23

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
Hansen, “On the solvability complexity index, the 7=pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.



Smale:“Is there any purely
rational iterative generally

Solvability Complexity Index Hierarchy

* Ay: Solved in finite time (v. rare for cts problems).

convergent algorithm for
polynomial zero finding ?”

Steve Smale

* A;: Solved in “one limit” with full error control:  geicleyFields Medal 1966)

o <27
d (Fn (A)’ (A)) - 2 McMullen: “Yes, if the degree is three;
no, if the degree is higher.”

o
* A,: Solved in “one limit”: ﬂ '
Nn— oo (Harvard, Fields Medal 1998)

lim Fn(A) = :(A) Curt McMullen

* A5: Solved in “two successive limits”: Doyle & McMullen: “The
_ _ problem can be solved using
S llm llm Fn’m (A) = = (A) successive limits for the quartic

. n—-oo Mm—0oo and quintic, but not the sextic.”

Ben-Artzi, C., Hansen, Nevanlinna, Seidel, “On the solvability complexity index hierarchy and towers of algorithms,” preprint.
Hansen, “On the solvability complexity index, the 7=pseudospectrum and approximations of spectra of operators,” J. Amer. Math. Soc., 2011.
McMullen, “Families of rational maps and iterative root-finding algorithms,” Ann. of Math., 1987.

Doyle, McMullen, “Solving the quintic by iteration,” Acta Math., 1989.

Smale, “The fundamental theorem of algebra and complexity theory,” Bull. Amer. Math. Soc., 1981.



Solvability Complexity Index Hierarchy

® A 0 : SO Ive1 Families of Rational Maps and Iterative Root-Finding Algorithms

* Ay: Solve

* A,: Solve

* A;: Solve

| Can work in

Ben-Artzi, C., Hanser
Hansen, “On the solw
McMullen, “Familic
Doyle, McMullen,
Smale, “The fundamenta

A thesis presented
by
Curtis Tracy McMullen
to
The Department of Mathematics
in partial fulfillment of the requirements
for the deyree of
Doctor of Philosophy
in the subject of

Mathematics

Harvard University
Cambridge, Massachusetts

May 1985

complexity

Smale:“Is there any purely
rational iterative generally

convergent algorithm for

) bIemS). 4‘(' = R | polynomial zero finding?”
i ~ Steve Smale
ntrol: (Berkeley,Fields Medal 1966)

McMullen: “Yes, if the degree is three;
no, if the degree is higher.”

zf

Curt McMullen
(Harvard, Fields Medal 1998)

Doyle & McMullen: “The
problem can be solved using
successive limits for the quartic
and quintic, but not the sextic.”

Peter Doyle
(Dartmouth)

hine, interval arithmetic, inexact input etc.

dex hierarchy and towers of algorithms,” preprint.
oximations of spectra of operators,” J. Amer. Math. Soc., 2011.
ithms,” Ann. of Math., 1987.

J

eory,” Bull. Amer. Math. Soc., 1981.



Why no proven techniques (Arveson)?

=": B € {0,1}N*N = (' does B have finitely many cols with finitely many 1s?
Descriptive set theory + SCIl = {Z',Q',{0,1}, A} & A,

26

* C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.



Why no proven techniques (Arveson)?

=": B € {0,1}N*N = (' does B have finitely many cols with finitely many 1s?
Descriptive set theory + SCIl = {Z',Q',{0,1}, A} & A,
For a € {0,1}~ define
1, k<la,=a =1a, =0fork<n<I
[C(a)]k,; = { “ : -

0, otherwise. shift on spanf{e;: a; = 1}

Given B € {0,1}NXN et
o ' ' 1, il <
A(B) — @j=1C(0(i(])), C((]) = {

[ Bi|-jj» otherwise.

27

* C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.



Why no proven techniques (Arveson)?

=": B € {0,1}N*N = (' does B have finitely many cols with finitely many 1s?
Descriptive set theory + SCIl = {Z',Q',{0,1}, A} & A,

For a € {0,1}~ define
1, k<lLa,=a =1,a,=0fork<n<lI

[C(a)]k,; = { -
0, otherwise. shift on span{e;: a; = 1}

Given B € {0,1}NXN et

o | y _ |1 il <J
A(B) — @j=1C(0(i(])), C((]) = {

[ Bi|-jj» otherwise.

If 2/(B) = 1, Sp(B) = {0} U T. Otherwise Sp(B) = {z:|z| < 1}.

If classical spectral problem € A;, sois{Z’,Q’,{0,1}, A}, contradiction!

* C., “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” Found. Comput. Math., 2022.



What about additional structure?
Computing spectra with error control...

29



Motivation: bounded diagonal operators

o

A: Matrix entries of A (readable info)

Algorithm: I, (A) = {a,a,, ...,a,,} = Sp(4) = {a4, a,, ... } in Haus. Metric.
One-sided error control: I, (A) < Sp(4)

dH(Fn(A),Sp(A))zmaX{ sup d(x,Sp(A)), sup d(y,T,(4)) }

x€ln(A) YESp(A)



Motivation: bounded diagonal operators

o

A: Matrix entries of A (readable info)

Algorithm: I, (A) = {a,a,, ...,a,,} = Sp(4) = {a4, a,, ... } in Haus. Metric.
One-sided error control: I, (A) < Sp(4)

du(In(4),Sp(A4)) = max sup. d(x,Sp(A)) yESSlLI:()A)d(y’ [, (4))

}

31



Motivation: bounded diagonal operators

o

A: Matrix entries of A (readable info)

Algorithm: I, (A) = {a,a,, ...,a,,} = Sp(4) = {a4, a,, ... } in Haus. Metric.
One-sided error control: I, (A) < Sp(4)

dH(Fn(A),Sp(A))=maX sup. d(x,Sp(A4)) S;I()A)d(y,Fn(A)) }

But: No algorithm with T, (4) — Sp(4) with Sp(4) c [, (4).

32
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Error control for spectral problems

dy(X,Y) = max {sug d(x,Y), SUI; d(y, X)}
XE yE

i1 convergence

Z(A) = Sp(4)

e ¥,:3alg. {l,} s.t. lim[,,(A) = Z(4), maXZan(A)diSt(Z, E(4)) <27
Nn—>00

., 'The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.
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Error control for spectral problems

dy(X,Y) = max {sup d(x,Y),supd(y, X)}
xeX yeY
i1 convergence II; convergence

-

Z(A) = Sp(4)

e ¥,:3alg. {l,} s.t. lim[,,(A) = Z(4), maXZan(A)diSt(Z, E(A)) <2
Nn—>00

* I[I;: Falg. {l,} s.t. im [, (A) = E(A), max ez g dist(z, [;,(4)) <277
Nn—>00

Such problems can be used in a proof!

* C, “The foundations of infinite-dimensional spectral computations,” PhD diss., University of Cambridge, 2020.



Reasons it’s hard |

0 1
0o 0
A=®r=1]i,, i, = . 1 |E Clrxtr
() °
| {0}, sup [, < o
>p(4) = {{Z: |z| < 1}, otherwise

No {I’,} when given {l,.};-; can determine if it is bounded.

= No {I,,} computes spectra of gen. tridiagonal operators.

35
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Reasons it’s hard |

0 1
00 0
A=®r=1]i,, i, = . 1 |E Clrxtr
O
.‘ — {O}; Sup lr < 0
>P(4) =5 {{Z: |z| < 1}, otherwise

No {I’,} when given {l,.};-; can determine if it is bounded.
= No {I,,} computes spectra of gen. tridiagonal operators.

Always have: ||(A — z)71||71 < dist(z, Sp(4)) known cts. bijection
Extra assumption: g(dist(z, Sp(4))) < ||(4 — zI)~1||-1 L—Zi8>0 2 R>o



Reasons it’s hard Il

[t
\1

A =&, Alr; A =

2

0

E (Cerlr

Sp(4) = {0,2}, Sp(diag(1,0,...)) = {0,13

More involved: Suppose for a contradiction {I’;,} converges, choose

{l,.}7=1 so I[;(A) does not converge (try it!)

37



Reasons it’s hard Il

[t
\1

A=@; 4, A =

a2

0

E (Cerlr

Sp(4) = {0,2}, Sp(diag(1,0,...)) = {0,13

More involved: Suppose for a contradiction {I’;,} converges, choose

{l,.}7=1 so I[;(A) does not converge (try it!)

Assume access to (Ae;, e;), (Ae;, Ae;), (A%e;, A%e;)

38
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Sketch of method with error control (€ X)

oinf(4) = inf{|[Av]|:v € D(A), [[v|| = 1}
y(z,A) = [|(A —zD7|™! = min{oj,¢(4 — z]), o, (A" — ZI)}

P, = orthog-projection onto span{ey, ..., e,,}

Idea: \/ainf(?n(A —zI)*(A — z)P,) = oyy¢(

g_l(min{ainf([A — zIPy), oine([A" — ZI]|P )} L g_l(

A —zI|Py) L oine(A — zI)

(A —zI)71||7Y) = dist(z,Sp(4))

I(A —z)"HI™* > g(dist(z, Sp(4)))

Final ingredient: adaptive search for local minimisers.

* C., Roman, Hansen, “How to compute spectra with error control,” Phys. Rev. Lett.,2019.
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Schwinger’s problem

Theorem: (): class of self-adjoint diff. operators on L?(R%)
_ K
I'= Zkezg0,|k|s1v Cr(x) 0

* C°(R%) acoreofT.

* {c;} poly bounded, locally bounded total variation.
Can access:

» {ck(q)} for g € Q.
* Polynomial that bounds {c;} on R¢.
(a) Know ”Ck”TV(:_n’n]d) < b, = {Sp, O} €X,.

(b) Know |lck [l py(—n,nj¢) = O(bn) = 1Sp, 2} € A \(Z, U IL).

* C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022



Schwinger’s problem

Theorem: Q: class of self-adjoint diff. operators on L? (Rd) ‘

T = Zkezgo k|<N Cre (x) ik Sampling schemes
. Coo(le) 2 core of T B to construct matrix.
O .
* {c;} poly bounded, locally bounded total variation.

Can access: p Extends to other domains,
* {cx(q)}forq € Q% singular coefficients etc.
* Polynomial that bounds {c;} on R¢.

Verifiable
(a) Know ”Ck”TV(:_n’n]d) <b,={SpQ}eEX,. «

(b) Know llcllry(—nmjay = O(b) = {Sp, 2} € A\(Z; U TI,).
' <

Not verifiable

43

* C., Hansen, “The foundations of spectral computations via the solvability complexity index hierarchy,” J. Eur. Math. Soc., 2022



A

Carl Bender
(Washington, MIT,

Michael Berry
(Bristol, Wolf Prize 1998)

Heineman Prize 2017)

100

-100

I(T =z~

Small even away from evals X3
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Re(z)

11e-02

1 1e-04

1e-06

1e-08

1e-10

1e-12

1e-14

1e-16

Non-self-adjoint example with non-trivial g "

d2

T=——+ix30nR

J Ejto 30 digits with interval arithmetic

dx?

0O ~1 O U W =

—
o O

100

1.156 267 071 988 113 293 799 219 177 999 9
4.109 228 752 809 651 535 843 668 478 561 3
7.962 273 854 978 828 041 351 809 110 631 4

11.314 421 820 195 804 402 233 783 948 426 9
15.291 553 750 392 532 388 181 630 791 751 9
19.451 529 130 691 728 314 686 111 714 104 4
23.766 740 435 485 819 131 558 025 968 789 9
28.217 524 972 981 193 297 595 053 878 268 9
32.789 082 781 862 957 492 447 371 485 046 3
37.469 825 360 516 046 866 428 873 594 530 5
627.694 712 248 436 511 352 673 702 901 153 6

e C., “INFINITE-DIMENSIONAL SPECTRAL COMPUTATIONS, Foundations, Algorithms, and Modern Applications.,” CUP, to appear.
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
| : - —— - : v—H‘—\
[1 1 2 3
0 & S & S &
Ay & A €3,UILE A, S5, UILE A; €3, UIL
I < & < G <

20 D D T
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
l—[ 1 ompact operators 2 l‘[3
I G e | < < G
Ay & A S22, UILLE Ay S22, UILE Az S E3UIL; -
” S & IS & IS

ZO z:1 z:2 23
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
l—[ 1 ompact operators 2 l‘[3
I G e | < < G
Ay & A S22, UILLE Ay S22, UILE Az S E3UIL; -
” S & IS & IS

Normal operators
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error iontrol 1 limit 2 Iir‘nits 3 limits
’ 1 Hl Commrators Hz «—"Sparse” op'erators_l‘[;_‘
I G e | < < G
Ay & A S UILLE A, SX,UIILE Ay S3E3UIll; -
5 < & S & <
0 2 _ 2 2

Normal operators
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Sampler of results for bounded op. on [%(N)
s increasing difficulty m—)

Error control 1 limit 2 limits 3 limits
’ ‘ Compact operators ‘ “Sparse” operators
HO ]‘[1 pact op ]‘[24/ P P 1‘[3
| Z e 1 < < G
AO ; Al ;ZlUnlg Az QZZUI_IZ; AB ; 3UH3"’
I < & < G
ZO 21 / 22 23

Normal operators General operators



Sampler of results for bounded op. on I“(N)
s increasing difficulty m—)
Error control 1 limit 2 limits 3 limits
| ‘ —= A —_—
H Hl Compact operators sz”Sparse” operators H3
I G e | < < G
Ay & A S2,UILLE A, S22, UILE Az &3 UIl; -
: < & S %
ZO g 21 / 22 23

Approx. sparse normal op Normal operators General operators
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Sampler of results for bounded op. on [%(N)

s increasing difficulty m—)
Error control 1 limit 2 limits 3 limits

| : —— | |
H Hl Compact operators sz”Sparse” operators H3
I G S | < IS ¢
AO ; Al ;z:lur[l; Az QZZUHZQ A3 ; 3UH3”°
: 5 G < &

Approx. sparse normal op Normal operators General operators

Zoo of problems: spectral type (pure point, absolutely continuous, singularly continuous), Lebesgue measure and
fractal dimensions of spectra, discrete spectra, essential spectra, eigenspaces + multiplicity, spectral radii, essential
numerical ranges, geometric features of spectrum (e.g., capacity), spectral gap problem, resonances ...




Example: Analysis helps in applications in
dynamical systems...
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Operator theory for dynamical systems

* Compact metric space (X, d) — the state space

Henri Poincaré

e x € X —the state (SObeh“e)

cts F: X — X —the dynamics: x,,,1 = F(x,)

* Poincaré, “Les méthodes nouvelles de la mécanique céleste,” Vol. 2. Gauthier-Villars et fils, imprimeurs-libraires, 1893.



54

Operator theory for dynamical systems

Bernard Koopman

* Compact metric space (X, d) — the state space (Columbia)
* x € X —the state
cts F: X — X —the dynamics: x,,,1 = F(x,)

e Borel measure w on X

* Function space L? = L*(X, w) (elements g called “observables”) Johnvon Neumann
(IAS)

» Koopman operator Kr: L? - L?; [Krg](x) = g(F(x))

NB: Pointwise definition of K needs F#w <« w — this will hold throughout.
NB: K bounded equivalent to dF#w/dw € L™ — this will hold throughout (can be dropped).

Koopman, “Hamiltonian systems and transformation in Hilbert space,” Proc. Natl. Acad. Sci. USA, 1931.
Koopman, v. Neumann, “Dynamical systems of continuous spectra,” Proc. Natl. Acad. Sci. USA, 1932.



Operator theory for dynamical systems

* Compact metric space (X, d) — the state space
e x € X —the state

* Unknown cts F: X — X —the dynamics: x,,.1 = F(x,)

* Borel measure w on X
* Function space L* = L*(X, w) (elements g called “observables”)

» Koopman operator Kr: L? - L?; [Krg](x) = g(F(x))

* Available snapshot data: {(x(m),y(m) = F(x(m))) m=1,..., M}

Can we compute spectral properties from sampling trajectories?
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Fundamental object

Fundamental in ergodic theory

Peter Walters

An Introduction
to Ergodic Theory

E&' Springer

E.g., key to ergodic theorems of
Birkhoff and von Neumann.

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.
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Fundamental object

Fundamental in ergodic theory Can provide a diagonalization of a nonlinear system.
continuous

spectrum
eigenfunction of X

J /
Peter Walters g(X) — z C)L <,0)[ (X) + ¢3 g(.X') d@
An Introduction eigenvalues 4;
to Ergodic Theory

g(xn) — :Kn (XO)

Y a0 + j 9.9 (o) dO

5 A eigenvalues A;
&) Springer

Spectral properties encode: geometric features,
invariant measures, transient behavior, long-time
behavior, coherent structures, quasiperiodicity, etc.

E.g., key to ergodic theorems of
Birkhoff and von Neumann.

Trades: Nonlinear, finite-dimensional = Linear, infinite-dimensional.




Fundamental object

+ huge recent interest in
applications of spectra
from trajectories

6000

5000

4000

3000

2000

1000

New papers on spectra of
Koopman operators

HHHHHHHHHHHH
NNNNNNNNNNNN

—number of papers

—doubles every 5 yrs
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Extended Dynamic Mode Decomposition (EDMD)

Functionsy;: X - C,j=1,..,N ‘ {x(m),y(m) _ F(x(m))}M
quadrature points m=1
(107} = Timmy Winth; ( <_>)1/> ) (VD)) P @) e Py ®) |
“ ' ! ‘ P (x®) o Yy (x M) wy ) \ P (x®) ooy (x D)

quadrature weights ¥x w Px DL
(@) e Py @™\ fwy P00 o P\

(Kpr, ;) = Tm_y winth; (x ) () = : : : :
[W) ¢1(x(M)) ¢N(x(M)) g Wm/ ¢1(Y(M)) 1/JN(Y(M)) g

! Yy w ¥, L

Finite Section

* -1y _* NXN
Approximation K — (Y W)Wy WYy €C

9

Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid Mech., 2010.
Rowley, Mezi¢, Bagheri, Schlatter, Henningson, “Spectral analysis of nonlinear flows,” J. Fluid Mech., 2009.
Williams, Kevrekidis, Rowley “A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,” J. Nonlinear Sci., 2015.
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Residual DMD (ResDMD)

(Vi ;) = Wi (x ) Py (™)) = [W " WWy]

(K, ;) = Wi (x (M) ?k(y(m)) = [V WYyl

) g

[3tpi] (™)

win ) (v ) P () = [W, Wy ]y
1 \_'_’
Uses same trajectory data

New matrix: (K, Ki;) =

= ngiMz

3
I

* C, Townsend, “Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems,” Commun. Pure Appl. Math., 2023.
* C., Ayton, Sz6ke, “Residual Dynamic Mode Decomposition,” J. Fluid Mech., 2023.
* Code: https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition



https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
https://github.com/MColbrook/Residual-Dynamic-Mode-Decomposition
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Upper bound on SCI: € X5 implies % is unitary

— \

Class of systems: Qy = {F: X — X| F cts, measure preserving, invertible}.

Data an algorithm can use: Tp = {(x, V) |x € X, d(yyy, F(x)) < 27™}.

Theorem: There exists deterministic algorithms {FN,M} using Jr such
that lim lim Ty »,(F) = Sp(¥) for all F € Qy. (Moreover € 34

N—>ocoM - o0

Idea: Use the above matrices to compute
lim 1im yy (7, F) = [|( — z1) 71|71 = dist(z, Sp(Kr))

N = size of basis, M = amount of data (quadrature)



Example: Finite sections don’t converge
* Duffing oscillator: x =y, y = —ay + x(1 — x?), sampled At = 0.3.

* Gaussian radial basis functions, Monte Carlo integration (M = 50000)

Compute Sp,, local adaptive controlon e | 0 | SP(Xr) = {z € C:[|(% —zD) 77" < ¢}

 conservative system dissipative system
| spurious | |4, =03]|
e \ evals [/ |
HE¥ — < contour
® EDMD evals
Sl S S SRR

(c) EDMD does not converge

| e EDMD (m.p. system)

‘ Proposed (m.p. system)
--------- EDMD (dissipative system)
|sesssens Proposed (dissipative system)

.
.
8
.
.

10° o 10*
Matrix size
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Practical Gains: Arctic Sea Ice Forecasting

1.8

1.6

1.4+

N
£
w1

0.8

0.6 -

0.4

1:2'H

Sealce Extent

x107

1 1 L 1 1 l l | l
1980 1985 1990 1995 2000 2005 2010 2015 2020

Monthly average from
satellite passive
microwave sensors.

Motivation: Arctic amplification, polar bears, local communities, effect
on extreme weather in Northern hemisphere,...

Problem: Very hard to predict more than two months in advance.
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Arctic case: Avoiding spurious eigenvalues helps!

Forecast Error

Relative mean squared error over 2016-2020. Model built
from 2005-2015 data. (Solid lines moving 12-month mean.)

Ll
_-,-_p.-’r.-.-u'--.au-.--q-

-t

20 30 40
Lead Time (Months)
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Binary Accuracy

96

95.5

[{s]
4]

©
o
o

w0
=

93.5

93

== [ceNet .
==@ = SEASS
Proposed Method

1 | ‘..-"'l-

3 4 5 6
Lead Time (Months)

Mean binary accuracy over test years 2012-2020. (IceNet:
Andersson et al, “Seasonal Arctic sea ice forecasting with

probabilistic deep learning.” Nature Communications, 2021.)



Lower bOUnd on 3CI: & AZ Implies X is unitary

—

Class of systems: Qp = {F: DD — D| F cts, measure preserving, invertible}.

Data an algorithm can use: T = {(x, y,)|x € D, ||F(x) — y,,|| < 27™}.

Theorem: There does not exist any sequence of deterministic
algorithms {I’,,} using 7 such that lim I},,(F) = Sp(¥Xr) VF € Qp.
Nn—o>00

NB: Similarly, no random algorithms converging with probability > 1/2.

Double limit is necessary.

65

* (., Mezic, Stepanenko, “Adversarial Dynamical Systems Reveal Limits and Rules for Trustworthy Data-Driven Learning,” preprint, 2025.



Proof idea: Constructing an adversary

F,: rotation by , Sp(?CFO) = {1+1}

Phase transition lemma: Let X = {xq,...,xy5},Y = {y4, ..., Yy} be distinct
points in annulus A={x€e€D|I0<R<|lx|| <r<1} with XNnY =0.

There exists a measure-preserving homeomorphism H such that H acts as
the identity on D\A and H(y;) = Fo(H(x;)),j =1, ..., N.

Conjugacy of data (x; — y;) with F

Idea: Use lemma to trick any algorithm into oscillating between spectra.

66

* Brown and Halperin. “On certain area-preserving maps.” Annals of Mathematics, 1935.



Proof idea: Constructing an adversary
Suppose (for contradiction) {I’,,} uses T, 71i_r)1(}oI‘,,L(F) = Sp(Kr) VF € Qp.

Build an adversarial F...

67

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

Tp = {6 ym) | IIF(X) — ymll < 27™}



69

Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim [, (Fy) = Sp(Kx) = Iny st dist(i, I, (Fy)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (E)
Let X, Y correspond to these snapshots.

Tp = {6 ym) | IIF(X) — ymll < 27™}
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Proof idea: Constructing an adversary

Suppose (for contradiction) {I’,,} uses Tz, lim [, (F) = Sp(Kz) VF € Qp.
Nn—>00
Build an adversarial F...

Fi(r,0) = (1,0 + T+ ¢(r)), supp(¢p) < [1/4, 3/4]
Sp(Kz) = T (unit circle).

lim I (Fl) = Sp(Kg;) = 3Any s.t. dist(i, [, (Fl)) < 1.

n—00

BUT [}, uses finite amount of info to output I3, (Fl).
Let X, Y correspond to these snapshots.

Rotation by i

i Mm\\\\\

Lemma: F; = H;! o Fy o H; on annulus A;.
Consistent data = I, (F;) = [}, (F7), dist(i, [, (F)) <1
BUT Sp(Kp,) = Sp(Kf,) = {£1} Sp(X) = {+1}
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,
Consistent data = T, (F) = I, (Fy), dist(i, Iy (F)) < 1, nj, = o0

BUT Sp(KFr) = Sp(Kp,) = {£1}

CANNOT CONVERGE

k— o0

A

~

O

Cascade of disks
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Proof idea: Constructing an adversary

Inductive step: Repeat on annuli, F;, = Hi* o Fy o Hy, on Ay. F = lim F,,

— k— oo
Consistent data = I3, (F) = I3, (F), dist(i, I}, (F)) < 1, ny » o
BUT Sp(KFr) = Sp(Xp,) = {£1} CANNOT CONVERGE Py
1
A,
s

Sp(K) = {z:1z| = 1} Sp(¥) = {1} Cascade of disks



Lower + upper bounds

SCI hierarchy of computing the spectrum )
Key ’l 1
| ]1scl=1[_|noexampleclass o 3
[]SCI=2 =»strictinclusion | . Qy: General systems |
\:I SCI = 3 - “ L H
? .-""’l AS k ....
3 ..... A
= 2k ; 4 I
o i Measure- [ %e i T 0% Uniform mod. of oty
C = | preservingsystems . : .
R ——— :
8 0:0
6 ‘,oﬂ Az T’ .....
E “““““ y LI
Zl k ...... D e ? Hl
. Q% N Q): Measure- A'
=« preserving and uniform 1
5 mod. of cty. :

Classification for Koopman _ 3iimits needed

in general!

Different classes:

Qy ={F: X - X | F cts}

Q¥ ={F:X - X | F cts,m.p.}
O ={F:X - X | F mod.cty.a}
[dx (F(x), F(¥)) < a(dx(x,y))]

Optimal algorithms and
classifications of
dynamical systems.
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Classification for
Koopman Il

-

Increasing difficulty

N NN NN R NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEED)

SCI hierarchy of computing spectral types N

Quantum

Key

23

[ 1sCl=1[_]noexampleclass
|| SCl=2 > strictinclusion

S.C. spectrum

¥ [ ]SCI=3 = example

walk .,
0‘1 A3 F’.
/.___ — __..\. _
) Il
= T 2 2
- Yilis
: // P.P. spectrum S.C. part of measure
T P.P.part of measure | Isitergodic?
Limit cycle A.C. spectrum I \
/A.C. part of measure T i
. - . ) S N— 3 _‘-—:z;
Is it wef.lkly mixing” ( \;5:_:{.;_(
AE=— """
Hyperbolic A High Re Ergodic partition
manifold : chaotic flow || of standard map
Lorenz attractor | =
“‘.7| Az |‘-.'~.
‘o’.‘. A ..'o.
2y - [
?".... a ‘..‘v

A]_ e

Full spectral measure
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Classification for
Koopman Il

Example: Theorem
For smooth, measure-preservin
systems on a torus, learning
eigenfunctions or even determining
if there are any has SCI = 2 (even if
we can sample derivatives).

Finding finite-dimensional
embeddings in which the dynamics
are linear is very hard!

-

Increasing difficulty

SCI hierarchy of computing spectral types

=

Quantum

\

]scli=1] |no example class
|| SCl=2 > strictinclusion
| | SCI=3 == example

Key

Limit cycle |

A.C. spectrum

Hyperbolic

. /A.C. part of measure

(7= ¥ Isitweakly mixing?

walk
.;1 AS k:o
f,,«""d( g i‘= - z:2 l_[2
Y|
\ f P.P. spectrum S.C. part of measure
b T P.P.part of measure | Isitergodic?

AN

o /\:s..
_— —_—
- -

High Re

Ergodic partition

Full spectral measure :

manifold chaotic flow || of standard map
Lorenz attractor | &
o'ﬂ Az k.".
"""" A
2q : I
T. ..... —_— ?
oy Al .
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Conclusion: FOUNDATIONS «— METHODS

* J interesting mathematical structure in inf.-dim. spectral computations.

* Many spectral problems in inf. dim. are impossible. Some harder than others

* SCI hierarchy is a tool for discovering the foundations of computation.

Lower bounds = spot assumptions needed to lower SCI.

Upper bounds = new “inf.-dim.” algorithms. Rigorous, optimal, practical.

* ¥, U Il; = computer-assisted proofs (e.g., Dirac-Schwinger poof implicit X;)

Further examples not covered in talk: foundations of Al, optimization, PDEs,
resonances, computer-assisted proofs, spectral measures,...
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