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The setup: discrete-time dynamical systems

Dynamical system: Statex c Q C R, F:Q = Q, x,11 = F(x,).
Given snapshot data: {x("’),y(”’)}"m”:1 with y(m = F(x(’”)).

Broad goal: Learn properties of the dynamical system.

Applications: Biochemistry, classical mechanics, climate, electronics, epidemiology, finance,
fluids, molecular dynamics, neuroscience, robotics, ... (anything evolving in time).
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Dynamical system: Statex c Q C R, F:Q = Q, x,11 = F(x,).
Given snapshot data: {x("’),y(”’)}"m”:1 with y(m = F(x(’”)).

Broad goal: Learn properties of the dynamical system.

Applications: Biochemistry, classical mechanics, climate, electronics, epidemiology, finance,
fluids, molecular dynamics, neuroscience, robotics, ... (anything evolving in time).

Immediate difficulties:
@ F is unknown
@ F is typically nonlinear
@ system could be chaotic




Koopman operators

Observable g : Q — C
[Kgl(x) = g(F(x)), xeQ.
K :D(K) C L2(Q,w) — L?(Q,w) is linear, but infinite-dimensional!
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Observable g : Q — C
[Kgl(x) = g(F(x)), xeQ.
K :D(K) C L2(Q,w) — L?(Q,w) is linear, but infinite-dimensional!

[ GOAL: Learn spectral properties of K. Spectrum, o(K) = {z € C : £ — z not invertible}.




Koopmania and dynamics in the big data era - a revolution parallel to deep learning
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- I. Mezi¢é, A. Banaszuk “Comparison of systems with complex behavior,” Physica D, 2004.
- |. Mezi¢ “Spectral properties of dynamical systems, model reduction and decompositions,” Nonlin. Dyn., 2085.



Why spectra? (Answer: determines properties of the system)

E.g., (A, p)) is an eigenvalue-eigenfunction pair of K, then

oa(xn) = ©a(F"(x0)) = [K"p](x0) = A"¢x(x0)-
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Why spectra? (Answer: determines properties of the system)

E.g., (A, p)) is an eigenvalue-eigenfunction pair of K, then

oa(xn) = ©a(F"(x0)) = [K"p](x0) = A"¢x(x0)-

More generally, if system is measure-preserving, g € L?(,w) has an expansion

8= Z CAPA +/[ | ¢p.g d.
—T0,T |per

discrete spectral part continuous spectral part

@ are eigenfunctions of K, ¢y € C, ¢y g are “continuously parametrised” eigenfunctions.

g0xn) = [K7gl(x0) = 3 e\ (x0) + / e 3y 5 (xo) .

e-vals A [=m /7 per

“Koopman mode decomposition”



Numerical analysis has the tools!

Global understanding of nonlinear dynamics in state-space:

“a mathematical grand challenge of the 21st century”
— S. Brunton, J. N. Kutz, Data-driven Science and Engineering, CUP, 2019
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Numerical analysis has the tools!

Global understanding of nonlinear dynamics in state-space:

“a mathematical grand challenge of the 21st century”
— S. Brunton, J. N. Kutz, Data-driven Science and Engineering, CUP, 2019

Four big well-known challenges: Solutions in this talk:

(C1) Continuous spectra. (S1) Compute smoothed approximations of spectral
measures with explicit high-order convergence.

(C2) No finite-dimensional invariant  (S2) Compute spectral properties of IC directly.
subspaces.

(C3) Spectral pollution. (S3) Compute residuals associated with o(K) with error
control = convergence and no spectral pollution.

(C4) Chaotic behaviour. (S4) Handle chaotic systems using single time steps.



Part 1: Computing residuals and spectra.

Setting: General Koopman operators.

Work in L?(,w) with inner product (-, -).




EDMD: a Galerkin approach

Subspace span{wj-};\fl C L2(Q,w), V(x) = [thi(x) - tu,(x)] € CP*Ne.

w(xM) w(y®)
For {x(M y(m — F(x(M)M_ =y, = : e CMxNk gy = : e CMxNe,
W(x(M) w(y™)

- M. Williams, I. Kevrekidis, C. Rowley “A data—driven approximation of the Koopman operator: Extending
dynamic mode decomposition,” J. Nonlin. Sci., 2015.
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w(xM) w(y®)
For {x(M y(m — F(x(M)M_ =y, = : e CMxNk gy = : e CMxNe,
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M
2
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EDMD: a Galerkin approach
Subspace bpan{wj}NK C L2(Q,w), V(x) = [thi(x) - tu,(x)] € CP*Ne.

W(xW) w(y™)
For {x(M y(m — F(x(M)M_ =y, = ; e CMxNk — yry = : c CMx Nk
W(x(M) w(y™)
Nk Ny
Given g =1 1;gj, seek Kpwp € CY M with Kg~ Y ¢y[Kepmngl;-
Jj=1 j=1

M
2

min IC B ‘ d me (m) _Wx(m) BH )
BECNLXNK/Q|5|12 1’ & Zd)’[ glj| dwlx)~ m:1W ) = W) 2

Solution: Kgpup = (WxWVx)(WEWWy) (W = diag(wi, ..., wy))
Large data limit: M|Im Wy W\Ux]jk = <’l/1k,’l/1j> and Mllm (WX W\Uy]jk = <K1)[Jk,1/}j>
— 00 — 00

- M. Williams, I. Kevrekidis, C. Rowley “A data—driven approximation of the Koopman operator: Extending
dynamic mode decomposition,” J. Nonlin. Sci., 2015.



Residual DMD (ResDMD): a new matrix

If g = ZJN:KI ;g € span{y; J/-V:Kl and )\ are a candidate eigenfunction-eigenvalue pair then

Nk
1Kg — Al Fogau = D 8187 [(Ktoks Kabj) — Mabi, Ktby) — MKW, 1) + (A (k)]
j.k=1
Nk
N BB [V Wy — AL WY — MWWy + APUS W],
j.k=1
=g" [V WUy — AW WUy ]* — AW WVy + AU Wlx] g



Residual DMD (ResDMD): a new matrix

If g = ZJN:KI ;g € span{y; J/-V:Kl and )\ are a candidate eigenfunction-eigenvalue pair then

Nk
1Kg — Al Fogau = D 8187 [(Ktoks Kabj) — Mabi, Ktby) — MKW, 1) + (A (k)]
j.k=1
Nk
N BB [V Wy — AL WY — MWWy + APUS W],
j.k=1
=g" [V WUy — AW WUy ]* — AW WVy + AU Wlx] g

New matrix: W, WWy with lim [W3 WWy ]y = (Ki, Kiy)
— 00




ResDMD: avoiding spectral pollution

& [V WWy — AW WV — AW WYy + A2V W] g

res(A\, g) P [\Ifj( W\IJX] 2

Algorithm:
1. Compute Kgpwmp, its eigenvalues and eigenvectors.
2. For each eigenpair (), g), compute res(\, g).

3. Discard eigenpairs with res(\, g) > ¢, for accuracy tolerance € > 0.

Theorem (No spectral pollution, compute residuals from above.)

Let Ay denote the eigenvalue output of above algorithm. Then

limsup max [[(K — \) 71|71 <e.
m sup max (K — 2) 71|~ <

BUT: Typically does not capture all of spectrum!



ResDMD: computing pseudospectra and spectra

7e(K) := Ujgj<co (K + B), lim 0(K) = o(K)

Algorithm:
1. Compute V5 WV x, U5 WWy, and UV WVy.
2. For each z; in a computational grid, compute 7; = min, i res(zj-,Zf(Vil Yi&k) and the
corresponding singular vectors g (generalised SVD problem).

3. Output: {z: 7; < €} (estimate of 0(K)) and e-pseudo-eigenfunctions {g;) : 7; < €}.

Theorem

No spectral pollution: {z; : 7j < €} C 0.(K) (as M — o).
Spectral inclusion: Converges uniformly to o.(K) on bounded subsets of C as Nx — oc.

NB: One can use a local optimisation strategy to choose € and compute o(K).



Example: nonlinear pendulum

X1 =xp, Xo=—sin(xy), with Q=[-m 7]per x R.

Ng =3
151

05+

-0.5¢

-1.5
15 A -0.5 0 0.5 1 1.5

Re(N)
Computed pseudospectra (e = 0.25). Eigenvalues of Kgpyp shown as dots (spectral pollution).




Example: pseudo-eigenfunctions of nonlinear pendulum

Colour represents complex argument, lines of constant modulus shown as shadowed steps.
All residuals smaller than e = 0.05 (can be made smaller by increasing N).

12/36



Part 2: Dealing with continuous spectra - computing spectral measures.

Setting: measure-preserving dynamics (e.g., Hamiltonian system, ergodic system, ...

This is equivalent to I being an isometry?:

IKgll 200y = lglliz@w) Ve € L2 (Q,w).

Spectrum lives inside the unit disk.

?For analysts: we actually consider unitary extensions of L with ‘canonical’ spectral measures.




Diagonalising infinite-dimensional operators

Finite-dimensional: A € C™" with A*A = AA* has orthonormal basis of e-vectors {v;}7_;

n n
_ ¥ n _ ok n
v = Evjvj v, veC Av = E)\ijvj v, veC
= j=1

Infinite-dimensional: Operator £ : D(L) — H, (H = Hilbert space). Typically, no longer a
basis of e-vectors. Spectral Theorem: Projection-valued spectral measure £

g— (/U(c) dS(/\)) g geM Lg— (/U(O )\dé‘()\)> g gcDL)

Scalar-valued spectral measures: v, (U) = ( £(U) g,g).
——

projection




Example: £ =

and Fourier transform

2
L= —d— H projection-valued measure £
dx?2
spectral theorem
pas 1 " —IKX
X € [—7T,7T]per 8k = oy 71'g()()e kX dlxe
o(L) ={n*:n€ Lo} E(la, BDel) = Y e
d_ a<k2<b
iscrete spectrum .
vg(la, b)) = Y [&l
0 +oo a<k?<b
_ ' .
o0 < X <00 g’(k) _ 2_/ g(x)e—lkx dx
™ — 00
o(£) =[0,+00 s ik
(£) =10, 40) (. bell) = [ alet
: continuous spectrum askish
o - vlab) = [ 12l dk



Koopman mode decomposition

vg are spectral measures on [—7, 7] per

Lebesgue’s decomposition theorem:

drg(\) = > (Prg.g) 0= N)dA  + () dA+dvf) ()

S—vals Aj > continuous part
discrete part
g = Z SYERRSY + / ¢o,g dO.
e-vals \; ~ [—7,7]per
J e-functions
ctsly param e-functions
_ n _ n inf
glxn) = K8l(x0) = Y. 6 Meon (x0) s [ e g(x) .
e-vals )\, [=m,7]per

Computing v, provides diagonalisation of non-linear dynamical system!




Plemelj-type formula

K(0)

1 (1+e€)?—1 0 (2) = 1/ e’ dvg(0)
2 1+ (1+€e)2-21+€)cos(d) T 21 Jilpag. €9 -z

Poisson kernel for unit disc generalised Cauchy transform




Plemelj-type formula

1 (1+e€)?—1 1 e’ dvg(0)
Ke 9 —_ 9 CV :: - -
() 27 14 (14 €)% —2(1+¢€)cos(d) () 27 /[ﬂy,r]per el — z
Poisson kernel for unit disc generalised Cauchy transform
V5 (6) = / K. (60 — 6) dg ()
[_Wvﬁ]per
smoothed measure
=Cy, (e""O(l + e)—1> ~Cy, <ei90(1 + e)>
-1 . . .
= o [(C = ™1+ ) g K7g) + e (g, (K — (1 + ) g)]

approximate using matrices Wi WWx Wi WWy Wi WWy

Compute smoothed approximations using ResDMD discretisations of size Ni.



Po

Generalised shift, typical building block of many dynamical systems (e.g., Bernoulli shifts).

Qo

Example on /?(N) with known spectral measure

a1p0
—Q1Q
Qi p1

P2P1

P100
—pP10o
—Qo0q
—p20x1

0

0
Q32
—Q30

Q403

P3pP2
—p3Q2

—0i03

Lo = (—1Y0.950+D/2 . —

1—

|

‘ 2



Fix Nk, vary €

Ng = 40, e = 1.000000

of o °

Im(z)




Adaptive: new matrix V3, WWy key!

Ng = 10,e = 0.100000

2 250
1 2|
ON ol
E
i
0.05
-1r 4
o 05}
-0.1
0.95 1 1.05
2 ! 0
2 1 0 1 2 -3 2 1 0 1 2



But... slow convergence!

Problem: As ¢ ] 0, error is O(elog(e71)) and Nk(€) — oc.

Pointwise error for spectral density Error due to discretisation

10°

€ = 0.01

10-10 L

1071°

0 50 100 150 200




But... slow convergence!

Problem: As ¢ ] 0, error is O(elog(e71)) and Nk(€) — oc.

Pointwise error for spectral density Error due to discretisation

€=0.01

10-10 L

R L L -15
10
107 1072 1071 10° 0 50 100 150 200

Critical in data-driven computations where we want Nk to be as small as possible.
Question: Can we improve the convergence rate in €?



High-order kernels

Idea: Replace the Poisson kernel by

Ke(0) =

e G _ d
3 [e"'e —(I+ez)t e -1+ 621)}

Simple way to select suitable z;, ¢; and d; to achieve high-order kernel.
m

Ve(bo) = /[ L Hello = 0)dve(0) = [, (70 + 7)) ~ d, (01 + ez)]

j=1

C,,(z) computed using ResDMD.



Convergence

Pointwise error for spectral density

O(e™log(e™1)) convergence for: 109

@ Pointwise recovery of the density p,

@ LP recovery of pg
@ Weak convergence

im /[] SOV = [ 0(0) dvi o)

el0 [_W»W]per

-10 |
. . 10
for periodic continuous ¢.

Also recover discrete part of measure.
(i.e., eigenvalues of K) 107° ‘ ‘
103 102 . 107 10°

Evaluate at P values of ¢: Parallelisable O(N3 + PNk) computation.



Example: double pendulum (chaotic)

g = Cretie(pl+p})/2 g = Coelt2e—(Pi+r3)/2

07 —m=1
—m =6

b — 2p1 — 3p2 cos(f1 — 6)
' 716 — 9cos2(6; — 62)
i 8p> — 3p1 cos(61 — 62)
27 16— 9cos?(6y — 62) ’
pL= —3(6"1652 sin(f1 — 62) + sin(61)),

i oo 1 .
P2 = —3(—0102sin(01 — 62) + 3 sin(62)),

where p1 = 861 + 36, cos(61 — 62),
p2 = 265 + 36 cos(01 — 6-2)




Part 3: High-dimensional dynamical systems and learned dictionaries.



Curse of dimensionality

Scalar field
Q Cc R9, d = number of grid/mesh points

E.g., polynomial dictionary up to tot. deg. 5.
Small grid: d =5 x 5 = Nk = 50, 000.

Example later: d ~ 300,000 = Nk ~ 2 x 10%
> number of stars in known universe!!!!

Conclusion: Infeasible to use hand-crafted dictionary when d g 25.



Verified learned dictionaries

o Kernelized EDMD: O(d) cost using “kernel trick”.
o Forms Kepnp € CMXM with subset of eigenvalues of Kgpwp € CNkXNk

o Implicitly learns dictionary: eigenfunctions of REDMD e CMxM

- M. Williams, C. Rowley, and |. Kevrekidis “A kernel-based method for data-driven Koopman spectral
analysis,” J. Comput. Dyn., 2015.
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Verified learned dictionaries

o Kernelized EDMD: O(d) cost using “kernel trick”.
o Forms Kepnp € CMXM with subset of eigenvalues of Kgpwp € CNkXNk

o Implicitly learns dictionary: eigenfunctions of REDMD e CMxM

However, can you trust learning methods?

Combine with ResDMD: Convergence theory and a posterior verification of dictionary!

- M. Williams, C. Rowley, and |. Kevrekidis “A kernel-based method for data-driven Koopman spectral
analysis,” J. Comput. Dyn., 2015.
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Molecular dynamics

nature

‘It will change everything’: DeepMind’s Al
makes giganticleap in solving protein
structures

Google's deep-learning program for determining the 3D shapes of proteins
stands to transform biology, say scientists.

ReLareD amncLEs

Atprocei folding lgorims
S
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Molecular dynamics

nature

structures

Google's deep-learning
stands to transform bid

www.mdanalysis.org/MDAnalysisData/adk_equilibrium.html



Spectral measures in molecular dynamics, d = 20,046

1 key parts
<>

0.26

0.24

LiDv = - NMmPp

0.2

0.18

LID

0.6

0.5

0.4

0.3

0.2

NMP

A

Left: ADK with three domains: CORE (green), LID (yellow) and NMP (red).

Middle and right: Spectral measures with respect to the dihedral angles of the selected parts.




Turbulent flow past a cascade of aerofoils, d = 295,122

(Reynolds number 3.88 x 10°.)

Periodic

conditions Tnlet

Blade Outlet

/

Motivation: Reduce noise sources (e.g., turbines, wings etc.).

- R. Koch, M. Sanjosé, and S. Moreau “Large-Eddy Simulation of a Linear Compressor Cascade with Tip Gap:
Aerodynamic and Acoustic Analysis,” AIAA Aviation, 2021.



Turbulent flow past a cascade of aerofoils, d = 295,122

\ = eO.lli \ = e0.51i \ = e0.71i
?‘Si :? a?ustic sourceM oo
N\ oss oo
a «\N’ " L
= .
) \ |
residual < 0.0054 residual < 0.0128
; & turbulent
(&) fluctuations
s »
[
0 |
[J]
o
acoustic vibrations

Top row: Modes computed by DMD. Bottom row: Modes computed by ResDMD with residuals.
Each column corresponds to different physical frequencies of noise pollution.



Wider programme: Solvability Complexity Index

Example Question: What is possible in infinite-dimensional spectral computations?

How: Replace ‘truncate-then-solve’ with infinite-dimensional numerical analysis.

= Compute many spectral properties for the first time.

Framework: Classify problems, measuring intrinsic difficulty.

= Algorithms realise the boundaries of what computers can achieve.

Framework extends to: Barriers and foundations of Al (e.g., do there exist algorithms that
train stable and accurate neural networks?), PDEs (e.g., solving the time-dependent
Shrodinger equation on L2(R9)), optimisation and precision analysis, computer-assisted proofs
(e.g., which computations can be verified?), ...

- M. Colbrook, “The Foundations of Infinite-Dimensional Spectral Computations,” PhD diss., 2020.

- M. Colbrook, V. Antun , A. Hansen “The difficulty of computing stable and accurate neural networks: On the barriers of deep learning

and Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA, 2022.

- M. Colbrook, “Computing semigroups with error control,” SINUM, 2022.

- M. Colbrook, A. Hansen “The foundations of spectral computations via the solvability complexity index hierarchy,” JEMS, under revisions.

- M. Colbrook, “On the computation of geometric features of spectra of linear operators on Hilbert spaces,” FOCM, under revisions.
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Computing spectra with error control

a3z a3 ... X1
- a1 d22 923 ... X2 °C 5
Self-adjoint A = a3, am am ... |- A X3 = Zajkxk, x € I7(N)
. . . k=1

Computes spectra with error control, i.e., outputs ',(A) and bound // PHYSICAL

Ep such that: y A REVIEW
LETTERS

ol (A) = o(A) (converges to spectrum) ' s 23z 209

o sup,er,(a) dist(z, 6(A)) <E, | 0. (error control)

Avoids spectral pollution and provably optimal.
Rigorously computes approximate states.

Extends to PDEs (solves a problem of Schwinger) and (certain)

non-normal operators.

Pkt
American Physical Saciety Eﬁ Volume 122, Number 25

- M.Colbrook, B. Roman, A. Hansen "How to compute spectra with error control” Physical Review Letters, 2019.



Computing spectral measures of self-adjoint operators

Magnetic field strength

Horizontal slice = spectral measure at constant magnetic field strength.

Software package:

SpecSolve available at https://github.com/SpecSolve
Current capabilities include: ODEs on real line & half-line,
integral operators, and discrete operators.

- M. Colbrook, “Computing spectral measures and spectral types” Communications in Mathematical Physics, 2021.
- M. Colbrook, A.Horning, A. Townsend “Computing spectral measures of self-adjoint operators” SIREV, 2021.



Barriers of deep learning:

PNAS a

The difficulty of computing stable and
accurate neural networks: On the barriers of
deep learning and Smale’s 18th problem

Matihe,

fYying

Colbrack ® B, vegard Ancun B, and Anders €. Hansen & Authors Info & Afffatior

March 16,2022 | 115(12)€2107151119 | htps:

significance
Instability is the Achilles heel of modern artificial intelligence (Al) and a paradox, with
training algorithms finding unstable neural networks (NNs) despite the existence of stable
ones. This foundational issue relates to Smale’s 18th mathematical problem for the 21st
century on the limits of Al. By expanding methodologies initiated by Godel and Turing, we
demonstrate limitations on the existence of (even randomized) algorithms for computing
NNs. Despite numerous existence results of NNs with great approximation properties,
only in specific cases do there also exist algorithms that can compute them. We initiate a
dassification theory on which NNs can be trained and introduce NNs that—under
suitable conditions—are robust to perturbations and exponentially accurate in the

number of hidden layers

stability and accuracy

matical paradox demonstrates the limits of Al

Humans are usually pretty good at recognising when they get things wrong, but

ari

ial intelligence systems are not. According to a new study, Al generally suffers

from inherent limitations due to a century-old mathematical paradox.

Like some people, Al systems often have a degree of confidence that far
exceads their actual abilties. And like an overconfident person, many Al
systems don't know when they're making mistakes. Sometimes it's even more
difficult for an AL system to realise when it's making a mistake than to produce
a correct result.

Researchers from the University of Cambridge and the University of Gslo say

that instability is the Achilles’ heel of modern Al and that a mathematical
naradnoy chnws AT limitations Nenral netwnrks the ctate-nf-the-art tanl in AT

&L There are fundamental
limits inherent in
mathematics and,
similarly, AI
algorithms can't exist
for certain problems
— Matthew Calbrook




Concluding remarks

Summary: Rigorous and practical algorithms that overcome the challenges of
(C1) Continuous spectra, (C2) Lack of finite-dimensional invariant subspaces,
(C3) Spectral pollution, and (C4) Chaotic behaviour.

Part 1: Computed spectra, pseudospectra and residuals of general Koopman operators.
Idea: New matrix for residual = ResDMD.

Part 2: Computed spectral measures of measure-preserving systems with high-order
convergence. Density of continuous spectrum, discrete spectrum and weak convergence.

Idea: Convolution with rational kernels through the resolvent and ResDMD.

Part 3: Dealt with high-dimensional dynamical systems.
Idea: ResDMD to verify learned dictionaries.

Part of a wider programme on foundations of computation and numerical analysis.



Example: Lorenz and extended Lorenz systems

X =10(Y - X), Y:X(p—Z)—Y, 7 =XY —-82Z/3.

p=>5
2 1 2
=< =
T ( &) o @,»oe )(
»—1_2 . H_ 005—/QQ
6 8 2 8
2
=
0 (
2 2
6 8 2 8 2 0 2 4 6
Re()\) Re(A)

Top row: Lorenz system. Bottom row: Extended 11-dimensional Lorenz system.

- S. Moon et al. “Periodicity and chaos of high-order Lorenz systems,” Inter. J. Bifur. Chaos, 2017.



Example: Lorenz and extended Lorenz systems

p=>5 p =28 p =140
d=3 d=11 d=3 d=11 d=3 d=11
Aj rj Aj 4 Aj 4 Aj 4 Aj f Aj 4

1.0108 | 4.9E-7 | 1.0108 | 8.6E-5 || 1.0423 | 5.1E-6 | 1.0346 | 2.6E-4 || 1.0689 | 4.6E-4 | 1.0046 | 6.2E-04
1.0217 | 3.8E-4 | 1.1550 | 1.1E-6 || 1.0712 | 7.9E-4 | 1.0423 | 1.9E-5 || 1.2214 | 2.9E-6 | 1.0868 | 1.1E-04
1.1550 | 5.1E-8 | 1.3339 | 1.0E-5 || 1.0862 | 6.3E-4 | 1.0472 | 4.8E-4 || 1.4191 | 9.9E-4 | 1.2214 | 1.3E-05
1.1675 | 7.6E-5 | 1.3380 | 5.2E-4 || 1.3839 | 7.5E-5 | 1.0594 | 7.7E-5 || 1.4823 | 4.9E-4 | 1.2419 | 8.3E-07
1.3340 | 1.3E-6 | 1.5410 | 4.0E-4 || 1.5810 | 4.4E-7 | 1.0598 | 2.0E-6 || 1.4916 | 4.8E-4 | 1.2452 | 6.7E-04
1.3385 | 6.9E-4 1.8065 | 7.4E-8 | 1.0685 | 9.8E-4 || 1.6216 | 5.2E-5 | 1.2526 | 1.2E-04
1.5410 | 3.1E-4 1.8829 | 5.8E-4 | 1.0707 | 9.4E-4 || 1.8527 | 1.7E-7 | 1.3498 | 1.7E-04

2.8561 | 7.2E-5 | 1.0862 | 8.2E-4 || 2.1170 | 7.5E-8 | 1.3541 | 9.6E-04

3.2633 | 2.9E-7 | 1.1964 | 2.4E-4 || 2.5857 | 3.7E-4 | 1.4251 | 1.5E-04

5.8954 | 3.1E-4 | 1.3675 | 1.3E-6 || 3.9223 | 6.2E-5 | 1.4788 | 6.9E-04

Eigenvalues computed using Algorithm 1 with € = 0.001 along with the computed residuals r;.




Example: tent map, F(x) =2min{x,1 —x}, Q =[0,1]

C, 0>0.78
f) = C|o — 1/3| + Csin(200 ’ ’
g(0) = Cl0 —1/3] + Cssin( >+{0’ o< 078

Smoothed approximations Vg'()l

10"

eigenvalue

Added benefit: Avoid oversmoothing, and have better localisation of singular parts.
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