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Spectral Measures

Finite-dimensional: A ∈ Cn×n self-adjoint, o.n. basis of e-vectors {vj}nj=1

v =

(
n∑

k=1

vkv
∗
k

)
v , v ∈ Cn Av =

(
n∑

k=1

λkvkv
∗
k

)
v , v ∈ Cn.

Infinite-dimensional: Self-adjoint operator L : D(L)→ H with spectrum

Λ(L) = {z ∈ C : L − z not bounded invertible}.

Bad news: Typically, no longer an o.n. basis of e-vectors.

Spectral Theorem: Projection-valued spectral measure E (assigns an
orthogonal projector to each Borel-measurable set) with

f =

(∫
R
dE(y)

)
f , f ∈ H Lf =

(∫
R
y dE(y)

)
f , f ∈ D(L).

Intuition: Diagonalises an infinite-dimensional operator.

GOAL: Compute (scalar versions of) E .



Motivation

Scalar-valued measures (action of projections):

µf (Ω) = 〈E(Ω)f , f 〉

Lebesgue decomposition theorem:

dµf (y) =
∑
λ∈Λp

〈Pλf , f 〉 δ(y − λ)dy︸ ︷︷ ︸
discrete part

+ ρf (y) dy + dµ
(sc)
f (y)︸ ︷︷ ︸

continuous part

.

Crucial in: quantum mechanics, scattering in particle physics, correlation
in stochastic processes/signal-processing, fluid stability, resonances,
density-of-states in materials science, orthogonal polynomials, random
matrix theory, evolution PDEs,...

Example: in quantum mechanics, µf describes the likelihood of different
outcomes when the observable L is measured. Can also solve SE

i
df

dt
= Lf , f (0) = f0, via f (t) =

(∫
R

exp(−ity) dE(y)

)
f0.



A Hard Problem!

“Most operators that arise in practice are not presented in a representation
in which they are diagonalized... this raises the question of how to
implement the methods of finite dimensional numerical linear algebra to
compute the spectra of infinite dimensional operators. Unfortunately, there
is a dearth of literature on this basic problem and, so far as we have been
able to tell, there are no proven techniques.” W. Arveson, Berkeley (1994)

Some methods do exist, but treat cases with a lot of structure (e.g.
compact perturbations of tridiagonal Toeplitz, some classes of singular
Sturm–Liouville operators, etc.)

In contrast, want a general method to resolve spectral measures of L
(e.g. PDEs, integral operators, infinite matrices,...) and not an underlying
discretisation or truncation.

finite-dimensional NLA ⇒ infinite-dimensional NLA



Ideas from OPs: Computational Favard Theorem

aj , bj ∈ R and aj > 0:

J =


b1 a1

a1 b2 a2

a2 b3
. . .

. . .
. . .


OPs orthogonal w.r.t. µJ . For z = x + iε, define

G (z) := 〈(J − z)−1e1, e1〉 =

∫
R

dµJ(x)

x − z
=

1

−z + b1 −
a2

1
−z+b2−...

.

Then have weak convergence:

lim
ε↓0

Im(G (z))

2π
= µJ .



Ideas from Physics: Smoothed Measures

Idea: For z = x + iε, use

µεf (x) = 〈(L − z)−1 − (L − z)−1

2πi
f , f 〉 =

1

π

∫
Λ(L)

ε

(x − λ)2 + ε2
dµf (λ).

Convolution with Poisson kernel: smoothed measure.

Converges weakly to measure as ε ↓ 0:∫
R
φ(y)µεf (y) dy →

∫
R
φ(y) dµf (y), as ε ↓ 0,

for any bounded, continuous function φ.

Approximate µεf via µεf ,N (N = truncation parameter).



Numerical Balancing Act: Magnetic Graphene
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Numerical Balancing Act: Magnetic Graphene



Numerical Balancing Act: Magnetic Graphene



Theorem (C. Preprint (2019))

If we know rate of off-diagonal decay of infinite matrix, can compute
measure in one limit. Extends to other operators such as PDEs.

This is through a rectangular least squares type problem that computes
(L − z)−1f with (asymptotic) error control. N(ε) chosen adaptively.



Example: Integral Operator

Lu(x) = xu(x) +

∫ 1

−1
e−(x2+y2)u(y) dy , x ∈ [−1, 1].

Discretise using adaptive Chebyshev collocation method.

Look at µf with f (x) =
√

3/2 x .
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Example: Integral Operator
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|ρf (x0)− µεf (x0)| = O(ε log(ε−1)) and need N ≈ 20/ε.

⇒ Infeasible to get more than five or six digits!

Q: Can we do better?



Accelerating Convergence

Let m ∈ N, K ∈ L1(R). We say K is an mth order kernel if:

(i) Normalized:
∫
R K (x)dx = 1,

(ii) Zero moments: K (x)x j integrable,
∫
R K (x)x jdx = 0 for 0 < j < m,

(iii) Decay at ±∞: There is a constant CK , independent of x , such that

|K (x)| ≤ CK (1 + |x |)−(m+1), x ∈ R.

Theorem (C., Horning, Townsend. Preprint (2020))

If K is mth order, Kε(x) = ε−1K (xε−1) and µf locally absolutely
continuous near x0 with density ρf then

Pointwise: If ρf locally Cn,α near x0 then

|[Kε ∗ µf ](x0)− ρf (x0)| = O(εn+α) +O(εm log(ε−1))

Lp: If ρf locally Wn,p near x0 (1 ≤ p <∞) then

‖[Kε ∗ µf ]− ρf ‖Lploc = O(εn) +O(εm log(ε−1))



Rational Kernels

Idea: Replace Poisson kernel with rational kernel

K (x) =
1

2πi

m∑
j=1

αj

x − aj
− 1

2πi

m∑
j=1

βj
x − bj

.

Can compute convolution with error control using resolvent

[Kε ∗ µf ](x)

=
−1

2πi

 m∑
j=1

αj〈(L − (x − εaj))−1f , f 〉 −
m∑
j=1

βj〈(L − (x − εbj))−1f , f 〉

 .
Fix aj in UHP, bj in LHP ⇒ unique {αj , βj} s.t. K an mth order kernel.

NB: At moment recommend {aj = bj} equally spaced along {Im(z) = 1}.



Integral Operator Revisited
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See paper for general differential (even PDEs), integral and lattice
operator examples - use sparse spectral methods for discretisation.



Beautiful Fractal Structure!
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Spectral measure of magnetic graphene, computed to high precision (see log

scale) using m = 4 kernel.



OP Example: Jacobi Polynomials

dµJ =
(1− x)α(1 + x)β

N(α, β)
dx = fα,β(x)dx ,
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Left: Pointwise errors for x = −1, 0, 1 for m = 1 and α = 0.7, β = 0.3. Right:
Pointwise errors for x = −0.99, 0, 1 for m = 10 and α = 0.7, β = −0.3.



Eigenvalue Hunting

Example: Dirac operator.

Describes the motion of a relativistic electron.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential, coupled system on half-line:

DV =

(
1 + V (r) − d

dr + κ
r

d
dr + κ

r −1 + V (r)

)
.

Map to [−1, 1] and solve shifted linear systems using sparse spectral
methods.



Eigenvalue Hunting
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NB: Previous state-of-the-art achieves a few digits for a few excited states.



Programme: Foundations of Infinite-Dimensional
Spectral Computations

Key Question: What is possible in infinite-dimensional NLA?

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy measuring
their intrinsic difficulty and the optimality of algorithms.1

⇒ Algorithms that realise the boundaries of what computers can achieve.

Have foundations for: spectra with error control, spectral type (pure
point, absolutely continuous, singularly continuous), Lebesgue measure
and fractal dimensions of spectra, discrete spectra, essential spectra,
eigenvectors + multiplicity, spectral radii, essential numerical ranges,
geometric features of spectrum (e.g. capacity), spectral gap problem, ...

1Holds regardless of model of computation (Turing, analog,...).



Concluding Remarks

DIAGONALISATION: General framework for computing spectral
measures of self-adjoint operators.

Convolution with RATIONAL KERNELS:

Can be evaluated using resolvent. ALL you need to be able to do is
solve linear systems and compute inner products.
High-order kernels ⇒ high-order convergence.
Generalises to normal operators for local spectral regions on curves.

Fast, local and parallelisable ⇒ State-of-the-art results for PDEs,
integral operators and discrete operators.

Forms part of a PROGRAMME for foundations of infinite-dimensional
spectral computations.

Code: https://github.com/SpecSolve (written with Andrew Horning).



Extending the Framework to Neural Networks
Antun, C., Hansen, “Can stable and accurate neural networks be
computed? - On the barriers of deep learning and Smale’s 18th problem”

bounds and optimality of algorithms, which has recently been used to settle longstanding questions in SC [1,S2-S5,T1]. (The SCI 
generalises, for example, fundamental problems of Smale on the existence of algorithms [22,23] and the work of McMullen [24].) Based on 
a study of weighted square-root Lasso problems and exploitation of an approximate Łojasiewicz-type inequality, the PI also introduced Fast 
Iterative REstarted NETworks (FIRENETs). FIRENETs (a type of adaptive residual NN (ResNet)) were rigorously proven to be stable, 
even to adversarial attacks (Fig. 2b), and exponentially convergent (in the number of layers) for reconstruction from undersampled Fourier 
measurements. This objective will build upon these breakthroughs and extend them to optimal transport (OT) in machine learning (ML).  
The first task will be to explore the optimal trade-off between stability and accuracy. This will be done through learned FIRENETs and the 
extension to further sparsity applications and super-resolution. Recovery problems which are easier to solve from a statistical point of view 
are often also easier to solve numerically [25,26], exhibiting approximate Łojasiewicz-type inequalities that allow generalisations of 
FIRENETs to be constructed. A crucial component will be the development of a framework for numerical stability of NN-based 
algorithms/implementations (such a theory is currently lacking but desperately needed [27,28]), which will be transferable to other problems. 
The second task will develop these techniques for OT, where similar Łojasiewicz-type inequalities can occur in Wasserstein space or for 
gradient descent [29,30]. OT is an elegant and useful way to formalise many problems in ML, yet existing theory is mainly limited to convex 
problems [31] or two-layer NNs [32,33]. In particular, the use of Wasserstein distances (or entropic regularisations and Sinkhorn divergences 
[34]) as loss functions in ML will be explored in the context of generative adversarial networks (GANs) [35,36]. It is hoped that studying 
such gradient flows and taking the tools from FIRENETs will lead to improvements in ResNets in accuracy (for a computational/architecture 
size budget), speed (of training and execution) and stability, as well as theoretical guarantees. 
FURTHER BENEFITS OF POST-DOCTORAL FELLOWSHIP: By synthesising recent trends and breakthroughs in FOCM to push 
the field to the next level, the project will make a strong contribution to the numerical analysis of inverse problems and the FOCM in spectral 
and NN computations. As well as the long term needs and applications addressed above, the project will impact other disciplines such as 
computational quantum mechanics in objective (i) and computational PDEs in objective (ii) [e.g. 37]. The PI will bring expertise in numerical 
functional analysis and FOCM, which will be combined with the Tutor’s expertise in inverse problems (e.g. computational OT [31]). 
The PI will be integrated into the newly created ENS center for data science (directed by the tutor), establishing collaborations and 
interactions with the mathematics community at ENS, with scientists such as Stéphane Mallat (DI), Emmanuel Dupoux (DEC) and Giulio 
Biroli (LPS) who will join the ENS center for data science next September. This will enable future collaborative work beyond the fellowship, 
solving many further problems. The fellowship will strengthen ties between the PI, the UK’s functional analysis, approximation theory and 
numerical analysis communities (strengths of the UK’s mathematics community), and researchers at ENS and, more widely, in Paris (e.g. 
interactions and lectures at monthly seminars on imaging sciences). The Tutor will facilitate connections with the wider imaging and 
numerical analysis community (particularly in continental Europe), which will help the PI build further collaborations. The international 
exposure enabled by the fellowship comes at a critical time to build sustainable research partnerships in line with the PI’s long-term strategic 
vision for research. Finally, the PI will teach and mentor ENS students as well as master students from PSL University. 
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Figure 2: (a): Instability test of [16] applied to the 
NN AUTOMAP (Nature [38]) for subsampled 
Fourier Transform. Top row: |𝑥𝑥 + 𝑟𝑟𝑗𝑗|, 𝑥𝑥 the 
original image and the 𝑟𝑟𝑗𝑗 ’s are adversarial 
perturbations. Bottom row: Reconstruction using 
AUTOMAP (Ψ). This shows severe instability. 
(b): Instability test, now applied to FIRENET 
from [S1] (Φ). The perturbations 𝑣𝑣𝑗𝑗 (computed 
to be adversarial for the FIRENET) are ensured 
to have �𝑣𝑣𝑗𝑗�2 ≥ �𝑟𝑟𝑗𝑗�2. This verifies stability 
against adversarial attacks (proven rigorously 
in [S1]). 

(b) (a) 

Left: Instability of AUTOMAP (Zhu et. al. Nature, 2018). Right: Stability of
Fast Iterative REstarted NETworks (FIRENETs), proven to be accurate and also
stable against adversarial attack.

Establishing the foundations of computation (boundaries of what can
achieved) in deep learning and AI: a fundamental problem for the 21st
century.
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For further papers in this program and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html

If you have further ideas or problems for collaboration, please get in touch!
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