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The infinite-dimensional problem

In discrete setting, operator acting on `2(N):

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , (Ax)j =
∑
k∈N

ajkxk .

In cts setting, deal with differential operators, integral operators etc.

Finite Case Infinite Case
Eigenvalues ⇒ Spectrum

Sp(A) = {z ∈ C : A− z not bounded invertible}
Eigenvectors ⇒ Spectral Measure (normal case)

Goal: compute spectral properties of the operator from matrix elements,
PDE coefficients, or other suitable information.

MUCH harder and more subtle than finite dimensions!



Computational spectral problem

Many applications: quantum mechanics, chemistry, matter physics,
statistical mechanics, optics, number theory, PDEs, mathematics of
information,...

Mathematicians and physicists contributing to computational spectral
theory form a vast set including:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz),
W. Dahmen (South Carolina), E. B. Davies (King’s College London), P.
Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton), G. Golub
(Stanford), A. Iserles (Cambridge), W. Schlag (Yale), E. Schrödinger
(DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan
(UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski
(Berkeley),...

However, computing spectra is notoriously hard...



London Millennium Bridge:
 When computing spectra goes badly wrong!

• Opened on 10 June 2000.
• Spectra correspond to vibrations or “resonances” of bridge.
• Unexpected resonances caused bridge closure on 12 June.
• Closed for two years and cost several million pounds to fix.



Can we do this for general classes of operators?



Can we do this for general classes of operators?

“Most operators that arise in practice are not presented in a representation
in which they are diagonalized, and it is often very hard to locate even a
single point in the spectrum... Thus, one often has to settle for numerical
approximations [to the spectrum], and this raises the question of how to
implement the methods of finite dimensional numerical linear algebra to
compute the spectra of infinite dimensional operators. Unfortunately, there
is a dearth of literature on this basic problem and, so far as we have been
able to tell, there are no proven techniques.”

— W. Arveson, UC Berkeley (1994)
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Partial answer: can compute spectra of general bounded operators on
`2(N) (in Hausdorff metric) using three successive limits1

lim
n3→∞

lim
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lim
n1→∞

Γn3,n2,n1(A) = Sp(A).

Turns out this is sharp! Hence impossible from numerical point of view.

1Hansen. JAMS (2011)
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Partial answer: can compute spectra of general bounded operators on
`2(N) (in Hausdorff metric) using three successive limits1

lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn3,n2,n1(A) = Sp(A).

Turns out this is sharp! Hence impossible from numerical point of view.
Q: What assumptions do we need to make it easier?

1Hansen. JAMS (2011)



Example: Bounded Diagonal Operators (Very Easy)

A =


a1

a2

a3

. . .


If Γn(A) = {a1, ..., an} then Γn(A)→ Sp(A) in Hausdorff metric.

Also have Γn(A) ⊂ Sp(A).

This is optimal from a foundations point of view.



Example: Compact Operators (Still Easy)

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .

 , compact

If Γn(A) = Sp(PnAPn), then Γn(A)→ Sp(A) in Hausdorff metric.

Known for decades.

Q: Can we gain error control as before?

No! No algorithm can gain error control on the whole class, even for
self-adjoint compact operators.
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What about Jacobi operators?

A =


a1 b1

b1 a2 b2

b2 a3
. . .

. . .
. . .


This problem has been open for decades.

What about sparse normal operators? Surely this is much harder?!

New result: Large class Ω (covering arguably most applications and
including sparse normal) such that we can compute Γn(A)→ Sp(A) and
En(A) ↓ 0 for A ∈ Ω with

dist(z ,Sp(A)) ≤ En(A), ∀z ∈ Γn(A).

Paradox: Easier problem than compact operators!
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New algorithm (discrete case)

Assume A is bounded and acts on `2(N)

Definition (Known off-diagonal decay)

Dispersion of A bounded by function f : N→ N and null sequence {cn} if

max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} ≤ cn.

 



Definition (Well-conditioned)

Continuous increasing function g : [0,∞)→ [0,∞) with g(x) ≤ x.
Controlled growth of the resolvent by g if

g(dist(z ,Sp(A))) ≤ ‖(A− z)−1‖−1 ∀z ∈ C.
Measures conditioning of the problem through

{z ∈ C : ‖(A− z)−1‖−1 ≤ ε} =: Spε(A) =
⋃
‖B‖≤ε

Sp(A + B).

Normal operators (A commutes with A∗) well-conditioned with∥∥(A− z)−1
∥∥−1

= dist(z ,Sp(A)), g(x) = x .
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⋃
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Sp(A + B).

Normal operators (A commutes with A∗) well-conditioned with∥∥(A− z)−1
∥∥−1

= dist(z ,Sp(A)), g(x) = x .

Theorem (C., Roman, Hansen. PRL (2019))

Know f , g ⇒ can compute Sp(A) with error control!!



Idea: Locally compute distance function and minimisers

Step 1: Smallest singular value of rectangular truncations:

γn(z) := min{σ1(Pf (n)(A− z)Pn), σ1(Pf (n)(A∗ − z)Pn)}+ cn.

This converges locally uniformly down to γ(z) = ‖(A− z)−1‖−1.

Step 2: Bound the distance to the spectrum:

γ(z) ≤dist(z , Sp(A)) ≤ g−1(γ(z)) ≤ g−1(γn(z)).

Step 3: Find (almost) local minimisers and output Γn(A) with

Γn(A)→ Sp(A), dist(z , Sp(A)) ≤ g−1(γn(z)), sup
z∈Γn(A)

g−1(γn(z))→ 0



Example: quartic potential on L2(R) using a Hermite basis



New exemplar of spectral computation?

Method is:

Local and parallelisable.

Convergent for first time.
(e.g. no spectral pollution)

Explicitly bounds the error:

Error ≤ an ↓ 0.

Optimal from foundations point of view.

HYSICAL
EVIEW
ETTERS

P
R
L

American Physical Society

28 JUNE  2019

Volume 122, Number 25
Published by 

Articles published week ending

Made the frontcover of Physical Review Letters
- American Physical Society’s flagship publication



Example: Operators in condensed matter physics

Left: Dan Shechtman, Nobel Prize in Chemistry 2011 for discovery of
quasicrystal. Right: Diffraction pattern of a quasicrystal.

Magnetic properties of quasicrystal.

Hard problem - no previous method even converges to spectrum.



Example: Operators in condensed matter physics

Finite truncations
Edge states.

Unreliable
Does not converge

No error control

Infinite-dimensional techniques
First convergent computation.

Reliable
Converges

Error control



Example: Laplacian on Penrose tile



Example: Laplacian on Penrose tile
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Extension to partial differential operators

Closed operator L on Rd of form

Lu(x) =
∑

k∈Zd
≥0:|k|≤N

ak(x)∂ku(x)

Assume coefficient functions:

polynomially bounded

of bounded total variation on compact balls

(+ some standard technical assumptions)

⇒ Compute Sp(L) locally uniformly on compact subsets with error control

NB: Open problem since Schwinger’s work in the 1960s to do this for
general Schrödinger operators (even without error control)



Executive summary

Build matrix rep. w.r.t. basis of tensorised Hermite functions.

Use bound on total variation and quasi-Monte Carlo integration to
compute matrix entries of L, L∗L and LL∗ with error control.

Use these estimates to directly approximate γn(z).

Apply (roughly) the same algorithm as before.

Details can be found in:
M.J. Colbrook, A.C. Hansen, “The foundations of spectral computations
via the Solvability Complexity Index hierarchy: Part I.” arXiv:1908.09592

NB: Can extend technique to other discretisation methods such as FEM.



Example: Eigenvalues with guaranteed error bounds

L = −∆ + x2 + V (x) on L2(R)

V cos(x) tanh(x) exp(−x2) (1 + x2)−1

E0 1.7561051579 0.8703478514 1.6882809272 1.7468178026
E1 3.3447026910 2.9666370800 3.3395578680 3.4757613534
E2 5.0606547136 4.9825969775 5.2703748823 5.4115076464
E3 6.8649969390 6.9898951678 7.2225903394 7.3503220313
E4 8.7353069954 8.9931317537 9.1953373991 9.3168983920



Programme: Foundations of Infinite-Dimensional
Spectral Computations

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

⇒ Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy measuring
their intrinsic difficulty and the optimality of algorithms.2

⇒ Algorithms that realise the boundaries of what computers can achieve.

Also have foundations for: spectral type (pure point, absolutely
continuous, singularly continuous), Lebesgue measure and fractal
dimensions of spectra, discrete spectra, essential spectra, eigenvectors +
multiplicity, spectral radii, essential numerical ranges, geometric features
of spectra (e.g. capacity), spectral gap problem, spectral measures, ...

2Holds regardless of model of computation (Turing, analog,...).



Conclusion

Can compute spectra of a large class of operators with error control.

New algorithm is fast, local and parallelisable.

Methods extend to other problems (e.g. spectral measures) and
classify problems into a hierarchy telling us what is possible.

For further details and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249/home.html

Current work:

Foundations of computational PDEs (e.g. evolution equations)

Foundations of (stable) computations with neural networks in image
reconstruction (new paper on arXiv this month).
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Eigenvalue hunting without spectral pollution

Example: Dirac operator.

Describes the motion of a relativistic spin-1/2 particle.

Essential spectrum given by R\(−1, 1)⇒ spectral pollution!

Consider radially symmetric potential...



Eigenvalue hunting without spectral pollution
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NB: Previous state-of-the-art achieves a few digits for a few excited states.
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