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The infinite-dimensional problem

In discrete setting, operator acting on ¢2(N):

a1l d12 a3

A do1 4dp2 a3z ... A
- a3y a3z asz ... ’ ( X)j - Z Ak Xk -
. . . keN

In cts setting, deal with differential operators, integral operators etc.

Finite Case Infinite Case

Eigenvalues = Spectrum
Sp(A) = {z € C: A— z not bounded invertible}

Eigenvectors = Spectral Measure (normal case)

Goal: compute spectral properties of the operator from matrix elements,
PDE coefficients, or other suitable information.

MUCH harder and more subtle than finite dimensions!



Computational spectral problem

Many applications: quantum mechanics, chemistry, matter physics,
statistical mechanics, optics, number theory, PDEs, mathematics of
information, ...

Mathematicians and physicists contributing to computational spectral
theory form a vast set including:

D. Arnold (Minnesota), W. Arveson (Berkeley), A. Bottcher (Chemnitz),
W. Dahmen (South Carolina), E. B. Davies (King's College London), P.
Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton), G. Golub
(Stanford), A. Iserles (Cambridge), W. Schlag (Yale), E. Schrodinger
(DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan
(UCLA), S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski
(Berkeley),...

However, computing spectra is notoriously hard...
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Can we do this for general classes of operators?



Can we do this for general classes of operators?

“Most operators that arise in practice are not presented in a representation
in which they are diagonalized, and it is often very hard to locate even a
single point in the spectrum... Thus, one often has to settle for numerical
approximations [to the spectrum], and this raises the question of how to
implement the methods of finite dimensional numerical linear algebra to
compute the spectra of infinite dimensional operators. Unfortunately, there
is a dearth of literature on this basic problem and, so far as we have been
able to tell, there are no proven techniques.”

— W. Arveson, UC Berkeley (1994)
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Partial answer: can compute spectra of general bounded operators on
?2(N) (in Hausdorff metric) using three successive limits?

lim lim lim [, 5,0 (A) = Sp(A).
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Turns out this is sharp! Hence impossible from numerical point of view.

'Hansen. JAMS (2011)
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“Most operators that arise in practice are not presented in a representation
in which they are diagonalized, and it is often very hard to locate even a
single point in the spectrum... Thus, one often has to settle for numerical
approximations [to the spectrum], and this raises the question of how to
implement the methods of finite dimensional numerical linear algebra to
compute the spectra of infinite dimensional operators. Unfortunately, there
is a dearth of literature on this basic problem and, so far as we have been
able to tell, there are no proven techniques.”

— W. Arveson, UC Berkeley (1994)
Partial answer: can compute spectra of general bounded operators on
?2(N) (in Hausdorff metric) using three successive limits?

lim lim lim [, 5,0 (A) = Sp(A).

n3—00 Np—00 N1 —00

Turns out this is sharp! Hence impossible from numerical point of view.
Q: What assumptions do we need to make it easier?

'Hansen. JAMS (2011)



Example: Bounded Diagonal Operators (Very Easy)

a1
a
as

If T,(A) ={a1,...,an} then [',(A) — Sp(A) in Hausdorff metric.
Also have I',(A) C Sp(A).

This is optimal from a foundations point of view.



Example: Compact Operators (Still Easy)
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A= asl] a3 asz ... | compact
If Th(A) = Sp(P,AP,), then [',(A) — Sp(A) in Hausdorff metric.

Known for decades.
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Example: Compact Operators (Still Easy)

a11 412 413

A dp1 a2 a3 . :
= compac
d31 432 4a33 ... ’ P

If [,(A) = Sp(P,AP,), then I',(A) — Sp(A) in Hausdorff metric.
Known for decades.
Q: Can we gain error control as before?

No! No algorithm can gain error control on the whole class, even for
self-adjoint compact operators.



What about Jacobi operators?
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This problem has been open for decades.
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What about sparse normal operators? Surely this is much harder?!
New result: Large class Q (covering arguably most applications and
including sparse normal) such that we can compute I',(A) — Sp(A) and

En(A) J 0 for A € Q with

dist(z,Sp(A)) < E,(A), Vz eT,(A).



What about Jacobi operators?

ail b1
b1 an b2
A= by a3

This problem has been open for decades.

What about sparse normal operators? Surely this is much harder?!
New result: Large class Q (covering arguably most applications and
including sparse normal) such that we can compute I',(A) — Sp(A) and

En(A) J 0 for A € Q with

dist(z,Sp(A)) < E,(A), Vz eT,(A).

Paradox: Easier problem than compact operators!



New algorithm (discrete case)

Assume A is bounded and acts on /2(N)

Definition (Known off-diagonal decay)
Dispersion of A bounded by function f : N — N and null sequence {c,} if

max{|[(/ = Pr(n))APnll; [ PhA(N = Pr(m)II} < cn-

f(n)

n

Extra Info

Neglected Info



Definition (Well-conditioned)

Continuous increasing function g : [0,00) — [0, 00) with g(x) < x.
Controlled growth of the resolvent by g if

g(dist(z,5p(A))) < [I(A—z) 7Y vzeC.
@ Measures conditioning of the problem through

{zeC:|(A-2) M| <ed =Sp(A) = ] Sp(A+B).
I1Bll<e

e Normal operators (A commutes with A*) well-conditioned with

[(A=2)7Y| " = dist(z,Sp(A)), &(x) = x.



Definition (Well-conditioned)

Continuous increasing function g : [0,00) — [0, 00) with g(x) < x.
Controlled growth of the resolvent by g if

g(dist(z,5p(A))) < [I(A—z) 7Y vzeC.
@ Measures conditioning of the problem through

{zeC:|(A-2) M| <ed =Sp(A) = ] Sp(A+B).
I1Bll<e

e Normal operators (A commutes with A*) well-conditioned with

[(A=2)7Y| " = dist(z,Sp(A)), &(x) = x.

Theorem (C., Roman, Hansen. PRL (2019))

Know f,g = can compute Sp(A) with error control!!




Idea: Locally compute distance function and minimisers

Step 1: Smallest singular value of rectangular truncations:

Yn(2) 1= min{o1(Pr(n) (A — 2)Pn), 01(Pf(n) (A" — Z)Pn)} + cn.
This converges locally uniformly down to v(z) = ||(A— z)71|| L.

Step 2: Bound the distance to the spectrum:

~(z) <dist(z,Sp(A)) < g7 (1(2)) < g 1 (7(2))-

Step 3: Find (almost) local minimisers and output I',(A) with

Mn(A) = Sp(A),  dist(z,Sp(A)) < g~ (vn(2)), GSFUI()A)g_l(’Yn(Z)) —0



Example: quartic potential on L?(R) using a Hermite basis
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New exemplar of spectral computation?

Made the frontcover of Physical Review Letters
M et h 0] d iS N - American Physical Society’s flagship publication

@ Local and parallelisable.

o Convergent for first time.
(e.g. no spectral pollution)

......... 28 Juxe 2019

Explicitly bounds the error:

Error < a, | 0.

Optimal from foundations point of view.

.
American Pt Sty B, lame 172, N 35



Example: Operators in condensed matter physics

Left: Dan Shechtman, Nobel Prize in Chemistry 2011 for discovery of
quasicrystal. Right: Diffraction pattern of a quasicrystal.

Magnetic properties of quasicrystal.

Hard problem - no previous method even converges to spectrum.



Magnetic Field Strength

Example: Operators in condensed matter physics

Finite truncations
Edge states.

Energy (Spectrum)

Unreliable
Does not converge
No error control

Infinite-dimensional techniques
First convergent computation.
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Example: Laplacian on Penrose tile
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Example: Laplacian on Penrose tile
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Extension to partial differential operators

Closed operator L on R? of form

Lu(x) = Z ar(x)9%u(x)

kEZ‘éO:|k|§N

Assume coefficient functions:
@ polynomially bounded
@ of bounded total variation on compact balls

(4 some standard technical assumptions)
= Compute Sp(L) locally uniformly on compact subsets with error control

NB: Open problem since Schwinger's work in the 1960s to do this for
general Schrodinger operators (even without error control)



Executive summary

Build matrix rep. w.r.t. basis of tensorised Hermite functions.

Use bound on total variation and quasi-Monte Carlo integration to
compute matrix entries of L, L*L and LL* with error control.

Use these estimates to directly approximate ,(z).

Apply (roughly) the same algorithm as before.

Details can be found in:
M.J. Colbrook, A.C. Hansen, “The foundations of spectral computations
via the Solvability Complexity Index hierarchy: Part |." arXiv:1908.09592

NB: Can extend technique to other discretisation methods such as FEM.



Example: Eigenvalues with guaranteed error bounds

L=—A+x*+V(x)on [*(R)

cos(x)

|

tanh(x)

|

xp(—%)

‘ (1+X2)_1

|

1.7561051579
3.3447026910
5.0606547136
6.8649969390
8.7353069954

0.8703478514
2.9666370800
4.9825969775
6.9898951678
8.9931317537

1.6882809272
3.3395578680
5.2703748823
7.2225903394
9.1953373991

1.7468178026
3.4757613534
5.4115076464
7.3503220313
9.3168983920




Programme: Foundations of Infinite-Dimensional
Spectral Computations

How: Deal with operators directly, instead of previous ‘truncate-then-solve’

= Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy measuring
their intrinsic difficulty and the optimality of algorithms.?

= Algorithms that realise the boundaries of what computers can achieve.

Also have foundations for: spectral type (pure point, absolutely
continuous, singularly continuous), Lebesgue measure and fractal
dimensions of spectra, discrete spectra, essential spectra, eigenvectors +
multiplicity, spectral radii, essential numerical ranges, geometric features
of spectra (e.g. capacity), spectral gap problem, spectral measures, ...

2Holds regardless of model of computation (Turing, analog,...).



Conclusion

@ Can compute spectra of a large class of operators with error control.
@ New algorithm is fast, local and parallelisable.

@ Methods extend to other problems (e.g. spectral measures) and
classify problems into a hierarchy telling us what is possible.

For further details and numerical code:
http://www.damtp.cam.ac.uk/user/mjc249 /home.html
Current work:

e Foundations of computational PDEs (e.g. evolution equations)

e Foundations of (stable) computations with neural networks in image
reconstruction (new paper on arXiv this month).
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Eigenvalue hunting without spectral pollution

Example: Dirac operator.
@ Describes the motion of a relativistic spin-1/2 particle.
@ Essential spectrum given by R\(—1,1) = spectral pollution!

@ Consider radially symmetric potential...



Eigenvalue hunting without spectral pollution

Rescaled Measure Absolute Error
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NB: Previous state-of-the-art achieves a few digits for a few excited states.
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