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The infinite-dimensional spectral problem

A =




a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .


 ,


A




x1

x2

x3
...






j

=
∞∑

k=1

ajkxk , x ∈ l2(N)

Finite Case (B ∈ Cn×n) ⇒ Infinite Case (operator A)
Eigenvalues ⇒ Spectrum, Sp(A)

{z ∈ C : det(B − z) = 0} ⇒ {z ∈ C : A− z not invertible}

GOAL: compute properties of Sp(A) from matrix elements

Many applications: quantum mechanics, engineering, chemistry, matter physics, statistical
mechanics, optics, number theory, PDEs, data science,...



The infinite-dimensional spectral problem

1920: G. Szegő, "Beiträge zur Theorie der Toeplitzschen Formen" - finite section, Toeplitz operators, OPs, ... 
1960: J. Schwinger, "Unitary operator bases" - finite-dim. approx to Schrödinger operators in infinite-dim. 
1983: A.cBöttcher & B. Silbermann, "The finite section method for Toeplitz operators on the quarter-plane 
with piecewise continuous symbols." - C*-algebra techniques (see also papers of W. Arveson and N. Brown).
1985: P. Deift, L. C. Li, & C. Tomei, "Toda flows with infinitely many variables" - infinite-dimensional QR. 
1994: T. Digernes, V. S. Varadarajan & S. R. S. Varadhan, "Finite approximations to quantum systems" - 
convergence of Schwinger's method for Schrödinger operators with compact resolvent.
1996: Fefferman & L. Seco, "Interval arithmetic in quantum mechanics" - computer-assisted proof of 
Dirac-Schwinger conjecture (ground state energy of atom).
2005: L. N. Trefethen & M. Embree, "Spectra and pseudospectra" - pseudospectra of non-normal operators.

Mathematicians and physicists contributing to inf. dim. spectral computations include:
D. Arnold (Minnesota), W. Arveson (Berkeley), A. Böttcher (Chemnitz), W. Dahmen (South Carolina),
E. B. Davies (King's College London), P. Deift (NYU), L. Demanet (MIT), C. Fefferman (Princeton),
H. Goldstine (IAS), G. Golub (Stanford), A. Iserles (Cambridge), D. Jerison (MIT), T. Kato (Berkeley),
A. Laptev (Imperial), E. Lieb (Princeton), S. Mayboroda (Minnesota), W. Schlag (Yale),
E. Schrödinger (DIAS), J. Schwinger (Harvard), N. Trefethen (Oxford), V. Varadarajan (UCLA),
S. Varadhan (NYU), J. von Neumann (IAS), M. Zworski (Berkeley), ...



Things that typically go wrong

Fundamental challenges:

Miss parts of the spectrum.
Approximate false z /∈ Sp(A) - “spectral pollution”.

Even if a method converges,

How do we know what part of the approximation to trust?

“In practice, one often has to settle for numerical approximations to compute the spectra of
infinite dimensional operators. Unfortunately, there is a dearth of literature on this basic
problem and, so far as we have been able to tell, there are no proven [general] techniques.”

W. Arveson, Berkeley (1994)

Method of this talk:

Converges without missing parts of spectrum. 3
Avoids spectral pollution. 3
Provides error control (guaranteed certificate of accuracy)

⇒ computations reliable and useful in applications. 3

Numerical linear algebra: Finite-dimensional ⇒ Infinite-dimensional

· Z. Zhang, “How many numerical eigenvalues can we trust?,” Journal of Scientific Computing, 2015.

· Z. Zhang, “How many numerical eigenvalues can we trust?,” Journal of Scientific Computing, 2015.
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Background programme: foundations of
infinite-dimensional spectral computations

Key Question: What is possible in infinite-dimensional spectral computations?

How: Deal with operators directly, instead of previous ‘truncate-then-solve’.

⇒ Compute many spectral properties for the first time.

Framework: Classify problems in a computational hierarchy measuring intrinsic difficulty.

⇒ Algorithms realise boundaries of what computers can achieve.

Common tool in this talk: Compute properties of (A− z)−1.

· M. Colbrook, “The Foundations of Infinite-Dimensional Spectral Computations,” PhD diss., 2020.
· M. Colbrook, V. Antun , A. Hansen “Can stable and accurate neural networks be computed? - On the barriers
of deep learning and Smale’s 18th problem,” Proc. Natl. Acad. Sci. USA, to appear.



Talk structure: three problems

Part 1: Computing spectra with error control.

Part 2: Computing spectral measures.

Part 3: Data driven computations and Koopman operators.



Part 1: Computing spectra with error control.

· M. Colbrook, B. Roman, A. Hansen “How to compute spectra with error control” Physical Review Letters, 2019.

· M. Colbrook, A. Hansen “The foundations of spectral computations via the solvability complexity index
hierarchy,” Journal of the European Mathematical Society, under revisions.



Example: quasicrystals

Left: D. Shechtman, Nobel Prize in Chem. 2011 for discovering quasicrystals.
Right: Penrose tile, canonical model in physics.

Aperiodicity ⇒ interesting physics

Aperiodicity ⇒ considerable challenge to approximate Sp



Example: quasicrystals

Model: Perpendicular magnetic field (of strength B).


A


x1

x2

x3
...

 Matrix equation 

 




j

= −∑

k connected to j

e iθjk (B)xk ,

Matrix sparsityMatrix equation



Example: quasicrystals



Previous approaches: square truncations



Idea: rectangular truncations

⇒ Computation of ‖(A− z)−1‖−1 = dist(z , Sp(A)) from above.
⇒ Computation of Sp(A) via adaptive local minimisers.

· [Pseudospectra of finite matrices using rectangular truncations, e.g., useful for Arnoldi:]
T. Wright, L. N. Trefethen, “Pseudospectra of rectangular matrices,” IMA Journal of Numerical Analysis, 2002



Example: quasicrystals

Square truncations
Spectral pollution.

Does not converge
No error control

New method
Convergent computation.

Converges
Error control





PDEs on unbounded domains

[Lu](x) =
∑

k∈Zd
≥0:|k|≤N

ak(x)∂ku(x) on L2(Rd).

Coefficients ak(x):

polynomially bounded

bounded total variation on compact balls

⇒ Compute Sp(L) with error control!

NB: Open problem in quantum mechanics since Schwinger’s work in the 1960s to do this for
general Schrödinger operators (even without error control).

· J. Schwinger, “The special canonical group,” Proc. Nat. Acad. Sci. U.S.A, 1960.
· J. Schwinger, “Unitary operator bases,” Proc. Nat. Acad. Sci. U.S.A, 1960.



Part 2: Computing spectral measures.

· M. Colbrook, “Computing spectral measures and spectral types” Communications in Mathematical Physics, 2021.
· M. Colbrook, A. Horning, A. Townsend “Computing spectral measures of self-adjoint operators” SIREV, 2021.



Spectral measures

Finite-dimensional: B ∈ Cn×n self-adjoint, o.n. basis of e-vectors {vj}nj=1

v =




n∑

j=1

vjv
∗
j


 v , v ∈ Cn Bv =




n∑

j=1

λjvjv
∗
j


 v , v ∈ Cn.

Infinite-dimensional: Self-adjoint operator L : D(L)→ H, (H = Hilbert space).

Bad news: Typically, no longer a basis of e-vectors.

Spectral Theorem: Projection-valued spectral measure E

g =

(∫

R
dE(λ)

)
g , g ∈ H Lg =

(∫

R
λ dE(λ)

)
g , g ∈ D(L).

Diagonalises infinite-dimensional operator L.



Spectral measures

Scalar-valued measures: νg (U) = 〈 E(U)︸ ︷︷ ︸
projection

g , g〉 (U ⊂ R).

QM example: νg describe likelihood of different outcomes when Hamiltonian L is measured.

Lebesgue decomposition theorem:

dνg (λ) =
∑

eigenvalues λj

〈Pλjg , g〉 δ(λ− λj)dλ

︸ ︷︷ ︸
discrete part

+ ρg (λ) dλ+ dν
(sc)
g (λ)︸ ︷︷ ︸

continuous part

.



Stone’s formula

νεg (x) =
−1

2πi

〈
[(L − (x − iε))−1 − (L − (x + iε))−1]g , g

〉
=

1

π

∫

R

ε

(x − λ)2 + ε2
dνg (λ).

Convolution with Poisson kernel: smoothed measure.

Approximate via truncation of (L − z)−1 (N = truncation parameter).

· R. Haydock, H. Volker, M. Kelly, “Electronic structure based on the local atomic environment for tight-binding
bands” Journal of Physics C, 1972.
· L. Lin, Y. Saad, C. Yang, “Approximating spectral densities of large matrices” SIAM Review, 2016.
· M. Webb, S. Olver. “Spectra of Jacobi operators via connection coefficient matrices.” Communications in
Mathematical Physics, 2021.



Numerical balancing act with graphene

B



Numerical balancing act with graphene



Numerical balancing act with graphene



Numerical balancing act

Theorem (C. (2021))

Can compute measure if known rate of off-diagonal decay of infinite matrix. Extends to PDEs.

(L − z)−1g computed using rectangular truncations and least squares with adaptive N(ε).

Problem: As ε ↓ 0, N(ε)→∞ and νεg − νg = O(ε log(ε−1)) (slow convergence).



Idea: rational kernels

Idea: K (x) =          
1

2πi

m∑

j=1

αj

x − aj
− αj

x − aj 
(x) = ε−1K (xε−1)

{aj}mj=1 distinct points in upper half plane and
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Gen. Stone’s f.: [Kε ∗ νg ](x) =
−1

2πi

m∑

j=1

〈[
αj(L − (x − εaj))−1 − ᾱj(L − (x − εāj))−1

]
g , g

〉

Stone’s formula: −1
2πi

〈
[(L − (x − iε))−1 − (L − (x + iε))−1]g , g

〉

Theorem (C., Horning, Townsend (2021))

If νg “sufficiently regular” locally near x0, then |[Kε ∗ νg ](x0)− ρg (x0)| = O(εm log(ε−1))

Kε



Beautiful fractal structure!

 

H =  

M



[Lu](r) = −d2u

dr2
(r) +

(
`(`+ 1)

r2
+

1

r
(e−r − 1)

)
u(r), r > 0.

Demo: radial Schrödinger operator

c = sqrt(pi/8)*(2-igamma(1/2,8)/gamma(1/2));
g = @(r) exp(-(r-2).^2)/sqrt(c);
V={@(r) 0, @(r) exp(-r)-1, 1};
[xi, wi] = chebpts(20, [1/2 2]);
nu = rseMeas(V, g, xi, 0.1, ‘Order’, 4);
ion_prob = wi * nu;gghghhgh 

% Norm squared
% Measure wrt g(r)
% Potential, l=1
% Quadrature rule
% epsilon=0.1, m=4
% Ionization prob



Demo: radial Schrödinger operator
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Part 3: Data driven computations and Koopman operators.

New algorithm: ResDMD!

M. Colbrook, A. Townsend “Rigorous data-driven computation of Koopman spectral properties for dynamical
systems,” out this weekend on arXiv!



The setup: discrete dynamical system

Dynamical system: Statespace Ω ⊂ Rd , F : Ω→ Ω, xxxn+1 = F (xxxn).

Given snapshot data: {xxx (m),yyy (m)}Mm=1 with yyy (m) = F (xxx (m)).

Goal: Learn properties of the dynamical system.

Challenges:

F is unknown

F is typically nonlinear

system could be chaotic

snapshot data could be noisy



Koopman operators in one slide

Let g : Ω→ C, define
[Kg ](xxx) = g(F (xxx)), xxx ∈ Ω.

K is a linear, so system determined by spectral information of K : L2(Ω)→ L2(Ω)

⇒ infinite-dimensional spectral computation from snapshot data!



Extended Dynamic Mode Decomposition (EDMD)
as a Galerkin method

Subspace span{ψj}Nj=1 ⊂ L2(Ω), Ψ(xxx) =
[
ψ1(xxx) · · · ψN(xxx)

]
∈ C1×N .

ΨX =
[
Ψ(xxx (1))> · · · Ψ(xxx (M))>

]>
,ΨY =

[
Ψ(yyy (1))> · · · Ψ(yyy (M))>

]>

g =
N∑

j=1

ψjggg j = Ψggg , seek KDMD ∈ CN×N with Kg ≈ ΨKDMDggg

min
B∈CN×N

∫

Ω

max
‖ggg‖=1

|[Kg ](xxx)−Ψ(xxx)Bggg |2 dω(xxx) ≈
M∑

m=1

wm

∥∥∥Ψ(yyy (m))−Ψ(xxx (m))B
∥∥∥

2

2
.

KDMD = (Ψ∗XWΨX )†(Ψ∗XWΨY ) (W = diag(w1, ...,wM))

lim
M→∞

[Ψ∗XWΨX ]jk = 〈ψk , ψj〉 and lim
M→∞

[Ψ∗XWΨY ]jk = 〈Kψk , ψj〉

· P. Schmid “Dynamic mode decomposition for numerical and experimental data,” J. Fluid. Mech, 2010.
· M. Williams, I. Kevrekidis, C. Rowley “A data–driven approximation of the koopman operator: Extending
dynamic mode decomposition,” J. Nonlin. Sci., 2015.



Idea: matrix capturing the residual (ResDMD)

If g = Ψggg ∈ span{ψj}Nj=1 and λ are a candidate eigenvector-eigenvalue pair then

‖Kg − λg‖2
L2(Ω) =

N∑

j ,k=1

gggkggg j

[
〈Kψk ,Kψj〉 − λ〈ψk ,Kψj〉 − λ〈Kψk , ψj〉+ |λ|2〈ψk , ψj〉

]

≈
N∑

j ,k=1

gggkggg j


 Ψ∗YWΨY︸ ︷︷ ︸

additional matrix

−λΨ∗YWΨX−λΨ∗XWΨY +|λ|2Ψ∗XWΨX



jk

In large data limit (as M →∞), matrices Ψ∗YWΨY ,Ψ
∗
XWΨY ,Ψ

∗
XWΨX allow us to:

(1) Rigorously avoid spectral pollution.

(2) Compute spectra.



Spectral measures and Koopman mode decomposition

Measure-preserving dynamical system ⇒ spectral measures νg on [−π, π]per.

Koopman mode decomposition:

f ∈ L2(Ω), f (xxxn) = [Knf ](xxx0) =
∑

e-vals λj

cλjλ
n
j ϕλj (xxx0)
︸ ︷︷ ︸

e-functions

+

∫

[−π,π]per

e inθφθ,f (xxx0) dθ.

︸ ︷︷ ︸
ctsly param e-functions

νg can be computed using ResDMD:

High-order convergence.

Rigorous error control.

Practical and parallel O(N2) computation using QZ algorithm.



Kernelized version for large state space dimension

Curse of dimensionality: 16× 16 resol. of scalar, deg. 5 polys ⇒ N = 1010 basis functions!

Kernelized EDMD ⇒ learns implicit basis in O(d) operations.

New method:

1 Apply kernelized EDMD to subset of data, select N dominant eigenfunctions as basis.

2 Apply ResDMD with this basis and the remaining M data.

Rigorous and practical convergence as M →∞.
Can also check the basis a posteri!

· M. Williams, C. Rowley, and I. Kevrekidis “A kernel-based method for data-driven Koopman spectral
analysis,” J. Comput. Dyn., 2015.



Spectral measures in molecular dynamics, d = 20,046

LID NMP
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Turbulent flow past a cascade of aerofoils, d = 295,122

λ = e0.11i λ = e0.51i λ = e0.71i

D
M

D

acoustic source

��

res ≤ 0.0054 res ≤ 0.0128 res ≤ 0.0196

R
es

D
M

D

acoustic vibrations
��

turbulent
fluctuations



Concluding remarks

Algorithmic results in a programme on foundations of inf.-dim. spectral computations.

Part 1: Computing spectra with error control.

Idea: Rectangular truncations to compute dist(z ,Sp(A)).

Part 2: Computing spectral measures.

Idea: Convolution with rational kernels through the resolvent.

All you need: Solve linear systrems and compute inner products.

Part 3: Data driven computations and Koopman operators.

Idea: New matrix for residual ⇒ ResDMD.

Further examples not in talk: spectral type (pure point, absolutely continuous, singularly
continuous), Lebesgue measure and fractal dimensions of spectra, discrete & essential spectra,
geometric features of spectra (e.g. radii, capacity etc.), spectral gap problem, ...

Details & code: http://www.damtp.cam.ac.uk/user/mjc249/home.html

If you have additional comments, questions, problems for collaboration, please get in touch!
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