# Distributing many points in the two-dimensional sphere

Carlos Beltrán

Universidad de Cantabria, Santander, Spain

Foundations of Computational Mathematics, Budapest 2011

1/76 C. Beltrán Points in the sphere

(ロ) (回) (三) (三) (三) (三) (○)

#### A good way to distribute points in a sphere? An easier question: a bad way to distribute points in the sphere?

[Kuijlaars–Saff] [Bendito et al.] [The web]

2/76 C. Beltrán Points in the sphere

イロン イロン イヨン イヨン 三日

- the volume of the convex envelope of  $x_1, \ldots, x_N$  is maximized.
- the separation distance

$$d_{sep}(x_1,\ldots,x_N) = \min_{i < j} ||x_i - x_j||$$
 is maximized,

Tammes Problem or "hard spheres problem".

• the function

$$E_u(x_1,\ldots,x_N) = \sum_{i < j} ||x_i - x_j||$$
 is maximized,

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

a classical open problem in discrete geometry.

### Maximize volume of convex envelope (N = 30)



4/76 C. Beltrán Points in the sphere

# Maximize the separation distance (N = 30)



5/76 C. Beltrán Points in the sphere

(ロ) (同) (E) (E) (E)

# Maximize sum of $||x_i - x_j||$ (N = 30)



6/76 C. Beltrán Points in the sphere

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

#### Ipomoea purpurea pollen, flu virus, dessert March,october, february

7/76 C. Beltrán Points in the sphere

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• the *s*-energy (some fixed  $s \ge 0$ )

$$\sum_{i < j} \|x_i - x_j\|^{-s} \text{ is minimized},$$

a classical problem in physics for s = 1, that is Thomson's problem.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• the *s*-energy (some fixed  $s \ge 0$ )

$$\sum_{i < j} \|x_i - x_j\|^{-s} \text{ is minimized},$$

a classical problem in physics for s = 1, that is Thomson's problem.

• the logarithmic energy (aka logarithmic potential)

$$\mathcal{E}(x_1, \dots, x_N) = \log \prod_{i < j} \|x_i - x_j\|^{-1} = -\sum_{i < j} \log \|x_i - x_j\|$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

is minimized.

• the *s*-energy (some fixed  $s \ge 0$ )

$$\sum_{i < j} \|x_i - x_j\|^{-s} \text{ is minimized},$$

a classical problem in physics for s = 1, that is Thomson's problem.

• the logarithmic energy (aka logarithmic potential)

$$\mathcal{E}(x_1, \dots, x_N) = \log \prod_{i < j} \|x_i - x_j\|^{-1} = -\sum_{i < j} \log \|x_i - x_j\|$$

is minimized.

A set of N points in S minimizing  $\mathcal{E}$  (i.e. maximizing the product of their mutual distances) is called a set of **Elliptic Fekete Points**.

#### Elliptic Fekete points

Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For  $X = (x_1, \ldots, x_N) \in \mathbb{S}^N$  where  $x_i \in \mathbb{S}$ ,  $1 \le i \le N$ , ellipic Fekete points minimize the logarithmic energy

$$\mathcal{E}(X) = \mathcal{E}(x_1, \dots, x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||$$

Let  $\Sigma \subseteq \mathbb{S}^N$  be the set of points such that  $\mathcal{E} = +\infty$ . Let

$$m_N = \min\{\mathcal{E}(X) : X \in \mathbb{S}^N\}.$$

Smale's 7th problem: can one find  $X \in \mathbb{S}^N$  such that

$$\mathcal{E}(X) - m_N \leq c \log N?$$

(ロ) (回) (三) (三) (三) (三) (○)

#### Elliptic Fekete points

Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For  $X = (x_1, \ldots, x_N) \in \mathbb{S}^N$  where  $x_i \in \mathbb{S}$ ,  $1 \le i \le N$ , ellipic Fekete points minimize the logarithmic energy

$$\mathcal{E}(X) = \mathcal{E}(x_1, \dots, x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||$$

Let  $\Sigma\subseteq \mathbb{S}^N$  be the set of points such that  $\mathcal{E}=+\infty.$  Let

$$m_N = \min\{\mathcal{E}(X) : X \in \mathbb{S}^N\}.$$

Smale's 7th problem: can one find  $X \in \mathbb{S}^N$  such that

$$\mathcal{E}(X) - m_N \leq c \log N?$$

"Can one find" means...

#### Elliptic Fekete points

Early works by Fekete, Szegö, Whyte, Hille, Tsuji, etc.

For  $X = (x_1, \ldots, x_N) \in \mathbb{S}^N$  where  $x_i \in \mathbb{S}$ ,  $1 \le i \le N$ , ellipic Fekete points minimize the logarithmic energy

$$\mathcal{E}(X) = \mathcal{E}(x_1, ..., x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||$$

Let  $\Sigma\subseteq \mathbb{S}^N$  be the set of points such that  $\mathcal{E}=+\infty.$  Let

$$m_N = \min\{\mathcal{E}(X) : X \in \mathbb{S}^N\}.$$

Smale's 7th problem: can one find  $X \in \mathbb{S}^N$  such that

$$\mathcal{E}(X) - m_N \leq c \log N?$$

"Can one find" means...can one describe a polynomial time algorithm (BSS model)?

#### A beginner's problems with Smale's 7th problem. Probably also fair to say "An expert's problems..."

1 Problem 1: the value of  $m_N$  is not known, even to O(N). Theorem (Wagner,Rakhmanov–Saff–Zhou)

$$m_N = -\frac{N^2}{4} \ln \frac{4}{e} - \frac{N \ln(N)}{4} - R_N,$$

where

 $-0.112768770... \le \liminf_{N \to \infty} R_{N,0} \le \limsup_{N \to \infty} R_N \le -0.0234973...$ 

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

#### A beginner's problems with Smale's 7th problem. Probably also fair to say "An expert's problems..."

2 Problem 2: We need to solve a global minimization problem, not just a local minimization problem. Moreover, usual minimization algorithms will likely fall into "traps": experiments find many local minima of *E*.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

#### A beginner's problems with Smale's 7th problem. Probably also fair to say "An expert's problems..."

2 Problem 2: We need to solve a global minimization problem, not just a local minimization problem. Moreover, usual minimization algorithms will likely fall into "traps": experiments find many local minima of *E*.



・ロト ・回ト ・ヨト ・ヨト

Regular Polyhedra seem to be an answer for N = 4, 6, 8, 12, 20. Are they really? Wikipedia picture

13/76 C. Beltrán Points in the sphere

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Regular Polyhedra seem to be an answer for N = 4, 6, 8, 12, 20. Are they really? Ashmolean Museum de Oxford.  $\approx 2500$  B.C.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Regular Polyhedra seem to be an answer for N = 4, 6, 8, 12, 20. Are they really? Not all of them! Föppl, Feies, Rutishauser.

#### For N = 5 solved by [Dragnev–Legg-Townsend]

15/76 C. Beltrán Points in the sphere

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

# Euler's characteristic

The Dirichlet cell of  $x_i$  is the set of points  $x \in \mathbb{S}$  such that

$$||x - x_i|| = \min_{1 \le j \le N} ||x - x_j||.$$

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

#### Euler's characteristic Dirichlet cells

The Dirichlet cell of  $x_i$  is the set of points  $x \in \mathbb{S}$  such that

$$||x - x_i|| = \min_{1 \le j \le N} ||x - x_j||.$$

What should they look like when  $x_1, \ldots, x_N$  is a set of elliptic Fekete points? Intuitively, pretty regular hexagons and pentagons.

(ロ) (回) (三) (三) (三) (三) (○)

#### Euler's characteristic Dirichlet cells

The Dirichlet cell of  $x_i$  is the set of points  $x \in \mathbb{S}$  such that

$$||x - x_i|| = \min_{1 \le j \le N} ||x - x_j||.$$

What should they look like when  $x_1, \ldots, x_N$  is a set of elliptic Fekete points? Intuitively, pretty regular hexagons and pentagons. Say *P* pentagons and *H* hexagons, each vertex having three edges touching it.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

#### Euler's characteristic Dirichlet cells

The Dirichlet cell of  $x_i$  is the set of points  $x \in \mathbb{S}$  such that

$$||x - x_i|| = \min_{1 \le j \le N} ||x - x_j||.$$

What should they look like when  $x_1, \ldots, x_N$  is a set of elliptic Fekete points? Intuitively, pretty regular hexagons and pentagons. Say *P* pentagons and *H* hexagons, each vertex having three edges touching it. Then,

$$2 = \chi(\mathbb{S}) = \frac{6H + 5P}{3} + H + P - \frac{6H + 5P}{2} = \frac{P}{6}$$

Thus, such a tessalation must have P = 12 pentagons.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

#### The soccer ball and the buckminsterfullerene

20 hexagons and 12 pentagons. C60 discovered by Curl, Kroto, Smalley 1985

17/76 C. Beltrán Points in the sphere

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### The soccer ball and the buckminsterfullerene

Diego Forlan and Harry Kroto with their respective belowed objects

18/76 C. Beltrán Points in the sphere

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Euler's characteristic

For greater N other figures appear in the (numerical) minima. [Hardin–Saff]

(Minimization of s-Energy, s = 1, 4, N = 1600.)

19/76 C. Beltrán Points in the sphere

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

#### Euler's characteristic

Approximation to 1000 elliptic Fekete points by Bendito, Carmona, Encinas, Gesto, Gómez, Mouriño, Sánchez

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

# We do know some things

Separation distance

• Theorem (Toth, Habicht- van der Waerden) For the Tammes problem (maximize separation distance)

$$\sqrt{\frac{8\pi}{\sqrt{3}N}} - CN^{-2/3} \le d_{\rm sep}(X_{Tammes}) \le \sqrt{\frac{8\pi}{\sqrt{3}N}} \approx \frac{3.8093}{\sqrt{N}}.$$

 Theorem (Rakhmanov–Saff–Zhou,Dubickas,Dragnev) For the elliptic Fekete points,

$$rac{2}{\sqrt{\mathsf{N}-1}} \leq d_{ ext{sep}}(X_{ extsf{Fekete}}) \leq rac{3.8093}{\sqrt{\mathsf{N}}}$$

.

#### We do know some things

Baricenter [Bergersen-Boal-Palffy Muhoray], [Dragnev-Legg-Townsend]. True for any critical point of  ${\mathcal E}$ 

Let  $x_1, \ldots, x_N$  be a set of elliptic Fekete points.

- The baricenter of  $x_1, \ldots, x_N$  is the center of the sphere.
- For each *i*,

$$\sum_{j\neq i} \frac{x_i - x_j}{\|x_i - x_j\|^2} = \frac{N-1}{2} x_i,$$

and

$$\sum_{j\neq i}\|x_i-x_j\|^2=2N.$$

(ロ) (回) (三) (三) (三) (三) (○)

22/76 C. Beltrán Points in the sphere

#### Back to the Problems about Smale's 7th Problem

Minimum value vs. Expected value

Recall we have said

$$m_N = -\frac{N^2}{4} \ln \frac{4}{e} - \frac{N \ln(N)}{4} + O(N)$$

 Expectation if we choose x<sub>1</sub>,..., x<sub>N</sub> just randomly and uniformly in S:

$$\mathbb{E}_{uniform} = -\frac{N^2}{4} \ln \frac{4}{e} + \frac{N}{4} \ln \frac{4}{e}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

#### Back to the Problems about Smale's 7th Problem

Minimum value vs. Expected value

Recall we have said

$$m_N = -\frac{N^2}{4}\ln\frac{4}{e} - \frac{N\ln(N)}{4} + O(N)$$

 Expectation if we choose x<sub>1</sub>,..., x<sub>N</sub> just randomly and uniformly in S:

$$\mathbb{E}_{uniform} = -\frac{N^2}{4} \ln \frac{4}{e} + \frac{N}{4} \ln \frac{4}{e}.$$

#### Theorem (Armentano-B.-Shub)

Expectation for points comming from the zeros of random polynomials (Bombieri–Weyl distribution):

$$\mathbb{E}_{B-W} = -\frac{N^2}{4} \ln \frac{4}{e} - \frac{N \ln(N)}{4} + \frac{N}{4} \ln \frac{4}{e}.$$
23/76 C. Beltrán Points in the sphere

#### Back to the Problems about Smale's 7th Problem

Minimum value vs. Expected value



(ロ) (同) (E) (E) (E)

# Roots of a randomly chosen (B–W) polynomial Just one try



25/76 C. Beltrán

Points in the sphere

#### Roots of a random polynomial vs. random points Maybe 4 or 5 tries



26/76 C. Beltrán Points in the sphere

(ロ) (同) (E) (E) (E)

# Comparison of the end-game starting at...

Random eigenvalues, random zeros of B-W polynomials, uniform points in  $\ensuremath{\mathbb{S}}$ 



The distribution of the values of  $\mathcal{E}$  at the end-points of the gradient flow seem not to depend on the distribution of the initial data.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

# Comparison of the end-game starting at...

Random eigenvalues, random zeros of B-W polynomials, uniform points in  $\ensuremath{\mathbb{S}}$ 



The distribution of the values of  $\mathcal{E}$  at the end-points of the gradient flow seem not to depend on the distribution of the initial data. Which is clearly imposible.

(ロ) (四) (三) (三) (三) (○) (○)
#### The logarithm function in the sphere The graphic corresponds to the function $x \mapsto -\log ||x - (0, 0, 1)||$

Notational abuse: from now on,  $\mathbb{S}$  is the Riemann sphere, that is the sphere of diameter 1. Let

$$egin{array}{rcl} {\mathcal F}_q: & \mathbb{S}\setminus\{q\} & o & \mathbb{R} \ & p & \mapsto & \log\|p-q\|^{-1} \end{array}$$



## The logarithm function in the sphere

Harmonic properties of the logaritmic energy

Notational abuse: from now on,  $\mathbb{S}$  is the Riemann sphere, that is the sphere of diameter 1. Let

$$egin{array}{rcl} {\mathcal F}_q : & {\mathbb S} \setminus \{q\} & o & {\mathbb R} \ & p & \mapsto & \log \|p-q\|^{-1} \end{array}$$

The (Riemannian) Laplacian of this function is constant:

$$\Delta F_q(p) = 2 \ \forall p \in \mathbb{S} \setminus \{q\}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

#### A brief survey on harmonic analysis on manifolds Hessian, Laplacian

Let  $\mathcal{M}$  be a Riemannian manifold and let  $f : \mathcal{M} \to \mathbb{R}$ . The Hessian of f at  $p \in \mathcal{M}$  is a bilinear form

$$\begin{array}{rcl} \operatorname{Hess}(f)(p): & T_p\mathcal{M} \times T_p\mathcal{M} & \to & \mathbb{R} \\ & (v,w) & \mapsto & \operatorname{Hess}(f)(p)(v,w) & = w^t(h_{ij}(x))v, \end{array}$$

where

$$h_{ij}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j} - \sum_{k=1}^n \frac{\partial f}{\partial x_k} \Gamma_{ij}^k$$

and  $\Gamma_{ij}^k$  are the Christoffel symbols.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

#### A brief survey on harmonic analysis on manifolds Hessian, Laplacian

Let  $\mathcal{M}$  be a Riemannian manifold and let  $f : \mathcal{M} \to \mathbb{R}$ . The Hessian of f at  $p \in \mathcal{M}$  is a bilinear form such that

$$\operatorname{Hess}(f)(p)(v,v) = \frac{d^2}{dt^2} \mid_{t=0} f(\gamma_{p,v}(t)),$$

where  $\gamma_{p,v}(t)$  is the geodesic in  $\mathcal M$  such that

$$\gamma_{\boldsymbol{p},\boldsymbol{v}}(0) = \boldsymbol{p}, \qquad \dot{\gamma}_{\boldsymbol{p},\boldsymbol{v}}(0) = \boldsymbol{v}.$$

#### Thus, if you know geodesics then you can compute the Hessian

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

#### A brief survey on harmonic analysis on manifolds Hessian, Laplacian

Let  $\mathcal{M}$  be a Riemannian manifold and let  $f : \mathcal{M} \to \mathbb{R}$ . The Hessian of f at  $p \in \mathcal{M}$  is a bilinear form such that

$$\operatorname{Hess}(f)(p)(v,v) = \frac{d^2}{dt^2} \mid_{t=0} f(\gamma_{p,v}(t)).$$

Then, the Laplacian of f at p is

$$\Delta f(p) = \sum_{i=1}^{k} \operatorname{Hess}(f)(p)(v_i, v_i),$$

where the  $v_i$  are a orthonormal basis of  $T_p\mathcal{M}$ . Thus, if you know geodesics then you can compute the Laplacian

A function  $f : \mathcal{M} \to \mathbb{R}$  is harmonic if  $\Delta f(p) = 0$  for  $p \in \mathcal{M}$ . A manifold  $\mathcal{M}$  is harmonic if for every  $p \in \mathcal{M}$  and small enough  $\varepsilon > 0$  all the Riemannian spheres

$$S(x,\varepsilon) = \{q \in \mathcal{M} : d_R(p,q) = \varepsilon\}$$

have constant mean curvature.

#### Theorem (Willmore)

If  $\mathcal{M}$  is harmonic and  $f : \mathcal{M} \to \mathbb{R}$  is harmonic then the mean value equality holds:

$$\oint_{S(x,\varepsilon)} f = f(p),$$
 for small enough  $\varepsilon > 0.$ 

A function  $f : \mathcal{M} \to \mathbb{R}$  is harmonic if  $\Delta f(p) = 0$  for  $p \in \mathcal{M}$ . A manifold  $\mathcal{M}$  is harmonic if for every  $p \in \mathcal{M}$  and small enough  $\varepsilon > 0$  all the Riemannian spheres

$$S(x,\varepsilon) = \{q \in \mathcal{M} : d_R(p,q) = \varepsilon\}$$

have constant mean curvature.

If  $\mathcal{M}$  is harmonic and  $f : \mathcal{M} \to \mathbb{R}$  satisfies  $\Delta f \equiv C$  then the mean value equality holds:

$$\int_{S(x,\varepsilon)} f = f(p) + C \int_0^\varepsilon \frac{Vol(B(p,s))}{Vol(S(p,s))} \, ds, \qquad B_p(s) \text{ the Riemannian ball.}$$

イロト (部) (日) (日) (日) (日)

A function  $f : \mathcal{M} \to \mathbb{R}$  is harmonic if  $\Delta f(p) = 0$  for  $p \in \mathcal{M}$ . A manifold  $\mathcal{M}$  is harmonic if for every  $p \in \mathcal{M}$  and small enough  $\varepsilon > 0$  all the Riemannian spheres

$$S(x,\varepsilon) = \{q \in \mathcal{M} : d_R(p,q) = \varepsilon\}$$

have constant mean curvature.

The sphere is clearly a harmonic manifold and hence

$$\oint_{S(x,\varepsilon)} F_q = F_q(p) + 2 \int_0^\varepsilon \frac{\pi \sin^2 s}{\pi \sin(2s)} \, ds$$

A function  $f : \mathcal{M} \to \mathbb{R}$  is harmonic if  $\Delta f(p) = 0$  for  $p \in \mathcal{M}$ . A manifold  $\mathcal{M}$  is harmonic if for every  $p \in \mathcal{M}$  and small enough  $\varepsilon > 0$  all the Riemannian spheres

$$S(x,\varepsilon) = \{q \in \mathcal{M} : d_R(p,q) = \varepsilon\}$$

have constant mean curvature.

The sphere is clearly a harmonic manifold and hence

$$\oint_{S(x,\varepsilon)} F_q = F_q(p) + \int_0^\varepsilon \tan s \ ds$$

A function  $f : \mathcal{M} \to \mathbb{R}$  is harmonic if  $\Delta f(p) = 0$  for  $p \in \mathcal{M}$ . A manifold  $\mathcal{M}$  is harmonic if for every  $p \in \mathcal{M}$  and small enough  $\varepsilon > 0$  all the Riemannian spheres

$$S(x,\varepsilon) = \{q \in \mathcal{M} : d_R(p,q) = \varepsilon\}$$

have constant mean curvature.

The sphere is clearly a harmonic manifold and hence

$$\int_{S(x,\varepsilon)} F_q = F_q(p) - \log \cos \varepsilon$$

A function  $f : \mathcal{M} \to \mathbb{R}$  is harmonic if  $\Delta f(p) = 0$  for  $p \in \mathcal{M}$ . A manifold  $\mathcal{M}$  is harmonic if for every  $p \in \mathcal{M}$  and small enough  $\varepsilon > 0$  all the Riemannian spheres

$$S(x,\varepsilon) = \{q \in \mathcal{M} : d_R(p,q) = \varepsilon\}$$

have constant mean curvature. We can also write

$$\int_{B(x,\varepsilon)} F_q = F_q(p) + \frac{1}{2} + \frac{\log \cos \varepsilon}{\tan^2 \varepsilon}$$

#### Harmonic properties of the logarithmic energy in the sphere Laplacian and a Mean Value Theorem

Recall: for  $X = (x_1, ..., x_N) \in \mathbb{S}^N$ , where  $\mathbb{S}^N$  has the product Riemannian structure,

$$\mathcal{E}(x_1,...,x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||.$$

Then:

•  $\Delta \mathcal{E} = 2N(N-1)$ .

(ロ) (回) (三) (三) (三) (三) (○)

## Harmonic properties of the logarithmic energy in the sphere Laplacian and a Mean Value Theorem

Recall: for  $X = (x_1, ..., x_N) \in \mathbb{S}^N$ , where  $\mathbb{S}^N$  has the product Riemannian structure,

$$\mathcal{E}(x_1,...,x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||.$$

Then:

- $\Delta \mathcal{E} = 2N(N-1).$
- Thus, there exist no local maxima of  $\mathcal{E}$ .



40/76 C. Beltrán Points in the sphere

#### Harmonic properties of the logarithmic energy in the sphere Laplacian and a Mean Value Theorem

Recall: for  $X = (x_1, ..., x_N) \in \mathbb{S}^N$ , where  $\mathbb{S}^N$  has the product Riemannian structure,

$$\mathcal{E}(x_1,...,x_N) = \log \prod_{i < j} ||x_i - x_j||^{-1} = -\sum_{i < j} \log ||x_i - x_j||.$$

Then:



The average value of the logarithmic energy on the yellow area is equal to the logarithmic energy at the centers of the circles, plus a constant. This constant depends only on the values of the radios.

(for non-overlapping circles!)

41/76 C. Beltrán

Points in the sphere

イロト イポト イヨト イヨト 二日

#### Harmonic properties of the logarithmic energy in the sphere Mean value theorem

Theorem (B.)  
Let 
$$\vec{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_N) \in [0, \pi/2)^N$$
 and let  
 $B_{\infty}(X, \vec{\varepsilon}) = B(x_1, \varepsilon_1) \times \dots \times B(x_N, \varepsilon_N).$   
Then, if  $B_{\infty}(X, \vec{\varepsilon}) \cap \Sigma = \emptyset$ ,  
 $\int_{B_{\infty}(X, \vec{\varepsilon})} \mathcal{E} = \mathcal{E}(X) + (N-1) \sum_{i=1}^{N} \underbrace{\left(\frac{1}{2} + \frac{\log \cos \varepsilon_i}{\tan^2 \varepsilon_i}\right)}_{i=1}$ 

42/76 C. Beltrán Points in the sphere

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●







(ロ) (同) (E) (E) (E)



(ロ) (同) (E) (E) (E)





(ロ) (同) (E) (E) (E)



(ロ) (同) (E) (E) (E)

## Harmonic properties of the logarithmic energy in the sphere A consequence of the mean value equality

Recall:  $m_N$  is the minimum of  $\mathcal{E}$  in  $\mathbb{S}^N \setminus \Sigma$ . Theorem (B.) Let  $X \in \mathbb{S}^N$  be such that

$$B_{\infty}(X,ec{arepsilon})\subseteq \mathbb{S}^{N}\setminus \Sigma, \,\, ext{where}\,\, ec{arepsilon}=(arepsilon,\ldots,arepsilon), arepsilon=\sqrt{rac{2(\mathcal{E}(X)-m_N)}{N-1}}.$$

Then,

$$\|D\mathcal{E}(X)\| \leq 2\sqrt{2N(N-1)(\mathcal{E}(X)-m_N)}.$$

(ロ) (同) (目) (日) (日) (の)

#### Harmonic properties of the logarithmic energy... ... combined with the separation distance results, yield:

Let  $X = (x_1, \ldots, x_N) \in \mathbb{S}^N$  be a *N*-tuple minimizing  $\mathcal{E}$ . Let  $Y = (y_1, \ldots, y_N) \in \mathbb{S}^N$  be such that

$$d_R(x_i, y_i) \leq \frac{1/6}{N\sqrt{N-1}}, \qquad 1 \leq i \leq N.$$

Then,

$$\mathcal{E}(Y) \leq m_N + rac{1}{18}$$

But, there exists  $Y = (y_1, \dots, y_N) \in \mathbb{S}^N$  such that

$$d_R(x_i, y_i) \leq \frac{1/3}{\sqrt{N(N-1)}}, \qquad 1 \leq i \leq N,$$

and

$$\mathcal{E}(Y) > m_N + \frac{1}{18}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

#### Admissible error function

This may have another name in a general context, I just made this one up.

The admissible error function  $e:(0,\infty){\rightarrow}(0,\infty)$  is the function defined as

 $\mathbf{e}(t) = \sup\{\varepsilon : Y \in B_{\infty}(X, \vec{\varepsilon}), \text{ implies } \mathcal{E}(Y) \leq m_N + t\},\$ 

We have just claimed:

$$\mathbf{e}\left(\frac{1}{18}\right) \in \left[\frac{1/6}{N\sqrt{N-1}}, \frac{1/3}{\sqrt{N(N-1)}}\right]$$

٠

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

#### Admissible error function

This may have another name in a general context, I just made this one up.

The admissible error function  $e:(0,\infty){\rightarrow}(0,\infty)$  is the function defined as

$$\mathbf{e}(t) = \sup\{arepsilon: Y \in B_{\infty}(X, ec{arepsilon}), ext{ implies } \mathcal{E}(Y) \leq m_N + t\},$$

One can also bound  $\mathbf{e}(t)$  for general *t*:

#### Corollary (B.)

Let  $N \ge 3$ . The admissible error function satisfies

$$\mathbf{e}(t) \in \left[\sqrt{rac{t}{2N^2(N-1)}}, \sqrt{rac{2t}{N(N-1)}}
ight], \qquad 0 \leq t \leq rac{N^2(N-1)d_N^2}{2(1+2N)^2}.$$

For any t > 0 a less precise estimate also follows.

#### Admissible error function

This may have another name in a general context, I just made this one up.

The admissible error function  $e:(0,\infty){\rightarrow}(0,\infty)$  is the function defined as

$$\mathbf{e}(t) = \sup\{arepsilon: Y \in B_{\infty}(X, ec{arepsilon}), ext{ implies } \mathcal{E}(Y) \leq m_N + t\},$$

One can also bound  $\mathbf{e}(t)$  for general *t*. For N = 50:



## Computability of elliptic Fekete points

Rational points are dense in  $\mathbb S$ 

The set of points in  $\mathbb S$  whose coordinates are rational numbers is dense in  $\mathbb S.$ 

Moreover, precise bounds are known on the size of spherical rational points [Schmutz]: Given  $z \in \mathbb{R}^3$ , ||z|| = 1, there exists  $\tilde{z}$  such that

$$ilde{z} = \left(rac{ ilde{p}^{(1)}}{ ilde{q}^{(1)}}, rac{ ilde{p}^{(2)}}{ ilde{q}^{(2)}}, rac{ ilde{p}^{(3)}}{ ilde{q}^{(3)}}
ight) \in \mathbb{Q}^3 \cap \mathbb{S},$$

such that

$$\left|\frac{\tilde{p}^{(j)}}{\tilde{q}^{(j)}} - \tilde{x}^{(j)}\right| \leq \varepsilon, \qquad 0 \leq |\tilde{p}^{(j)}| \leq \tilde{q}^{(j)} \leq \left(\frac{128}{\varepsilon^2}\right)^2.$$

## Computability of elliptic Fekete points

There are rational solutions (bounded bit length) to Smale's 7th problem

The set of points in  $\mathbb S$  whose coordinates are rational numbers is dense in  $\mathbb S.$ 

There is a universal constant  $c \ge 0$  (c = 11 suffices) with the following property: for every  $N \ge 2$  there exists  $Z = (z_1, \ldots, z_N) \in \mathbb{S}^N$  such that:

1. 
$$\mathcal{E}(Z) \le m_N + 1/18$$
.  
2. For  $1 \le i \le N$ ,

$$z_{i} = \left(\frac{p_{i}^{(1)}}{q_{i}^{(1)}}, \frac{p_{i}^{(2)}}{q_{i}^{(2)}}, \frac{p_{i}^{(3)}}{q_{i}^{(3)}}\right) \in \mathbb{S} \cap \mathbb{Q}^{3}, \qquad p_{i}^{(j)}, q_{i}^{(j)} \in \mathbb{Z}, \ 1 \leq j \leq 3,$$

where

$$0 \le |p_i^{(j)}| \le q_i^{(j)} \le (cN)^6, \qquad 1 \le i \le N, \ 1 \le j \le 3,$$

## Computability of elliptic Fekete points

There exists a simply exponential Turing machine for Smale's 7th Problem

The set of points in  $\mathbb S$  whose coordinates are rational numbers is dense in  $\mathbb S.$ 

Corollary (B.)

There exists a Turing machine which, on input  $N \in \{2, 3, ...\}$ , outputs  $X = (x_1, ..., x_N) \in \mathbb{S}^N \cap \mathbb{Q}^{3N}$  satisfying

$$\mathcal{E}(X) \leq m_N + rac{1}{18},$$

and such that the running time is simply exponential in N. More precisely:  $polynomial(N) \cdot (11N)^{36N}$ .

## The soccer ball and the buckminsterfullerene

20 hexagons and 12 pentagons. C60 discovered by Curl, Kroto, Smalley 1985

58/76 C. Beltrán Points in the sphere

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## But why BuckminsterFullerene

Richard Buckminster Fuller and his Spaceship Earth. First such a "geodesic dome" was designed by Walther Bauersfeld for his 1912 planetarium.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ◆ ●

## The ball beneath the lion paw. Again 12 pentagons

A chinesse temple in Beijing. Bronze lion-dogs flank the entrances to the halls. This lion has a ball under his paw symbolizing control of the empire. Math Intelligencer 17, n. 3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

## Origami spheres

Recommended movie: between the folds

61/76 C. Beltrán Points in the sphere

(ロ) (回) (目) (目) (日) (の)

# Equal area of Dirichelt cells, 122 electrons in nearly optimal configuration and dual.

The 400 pieces in the first picture [Rakhmanov–Saff–Zhou], [Kuijlaars–Saff] have area  $\frac{\pi}{100}$  diameter  $\leq \frac{7}{2\sqrt{10}}$ 



## Other aspects of the problem

Locating good points in the sphere is studied in other contexts

- Packing and covering radius.
- Location problems.
- Quadrature formulas (spherical *N*-designs).
- Spherical harmonics and interpolation.

and many others.
Shub and Smale's condition number

Let  $f : \mathbb{C} \to \mathbb{C}$  be a polynomial of degree N and let  $\zeta \in \mathbb{C}$  be a zero of f. Let

$$\mu(f,\zeta) = \frac{N^{1/2}(1+\|\zeta\|^2)^{\frac{N-2}{2}}}{|f'(\zeta)|} \|f\|_{B-W}.$$

64/76 C. Beltrán Points in the sphere

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Shub and Smale's condition number

Let  $f : \mathbb{C} \to \mathbb{C}$  be a polynomial of degree N and let  $\zeta \in \mathbb{C}$  be a zero of f. Let

$$\mu(f,\zeta) = \frac{N^{1/2}(1+\|\zeta\|^2)^{\frac{N-2}{2}}}{|f'(\zeta)|} \|f\|_{B-W}.$$

This is the *condition number*, which actually controls the sensibility of the zero  $\zeta$  to perturbations of f. Let

$$\mu(f) = \max(\mu(f,\zeta) : f(\zeta) = 0).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Shub and Smale's condition number

Let  $f : \mathbb{C} \to \mathbb{C}$  be a polynomial of degree N and let  $\zeta \in \mathbb{C}$  be a zero of f. Let

$$\mu(f,\zeta) = \frac{N^{1/2}(1+\|\zeta\|^2)^{\frac{N-2}{2}}}{|f'(\zeta)|} \|f\|_{B-W}.$$

This is the *condition number*, which actually controls the sensibility of the zero  $\zeta$  to perturbations of f. Let

$$\mu(f) = \max(\mu(f,\zeta) : f(\zeta) = 0).$$

Theorem (Shub–Smale)

For every polynomial f, we have  $\mu(f) \ge 1$ . For random f, with probability at least 1/2 we have  $\mu(f) \le N$ .

Best conditioned polynomials

So, for many polynomials,  $\mu(f) \leq N$ .



・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Best conditioned polynomials

So, for many polynomials,  $\mu(f) \leq N$ . Can we find one f with that property? **not easy!** even changing N to  $N^c$ , c a constant.

#### Theorem (Shub–Smale)

Let  $x_1, \ldots, x_N \in \mathbb{S}$  be a set of elliptic Fekete points. Let  $z_1, \ldots, z_N \in \mathbb{C}$  be the preimage of  $x_1, \ldots, x_N$  under the stereographic projection. Let f be the polynomial which has zeros  $z_1, \ldots, z_N$ . Then,

$$\mu(f) \leq \sqrt{N(N+1)}.$$

Best conditioned polynomials

So, for many polynomials,  $\mu(f) \leq N$ . Can we find one f with that property? **not easy!** even changing N to  $N^c$ , c a constant.

#### Theorem (Shub–Smale)

Let  $x_1, \ldots, x_N \in \mathbb{S}$  be a set of elliptic Fekete points. Let  $z_1, \ldots, z_N \in \mathbb{C}$  be the preimage of  $x_1, \ldots, x_N$  under the stereographic projection. Let f be the polynomial which has zeros  $z_1, \ldots, z_N$ . Then,

$$\mu(f) \leq \sqrt{N(N+1)}.$$

Experiments suggest  $\mu(f) \leq \sqrt{N}/2$ .

Best conditioned polynomials and homotopy methods

#### Theorem (Burgisser-Cucker)

Any polynomial whose zeros correspond to a set of elliptic Fekete points is a good starting point for homotopy methods that solve polynomials.













Condition number, logarithmic potential and Bombieri-Weyl norm

Let  $x_1, \ldots, x_N \in \mathbb{S}$  and associated  $z_1, \ldots, z_N \in \mathbb{C}$ . Let

$$f(Z)=(Z-z_1)\cdots(Z-z_N).$$

(ロ) (回) (三) (三) (三) (三) (○)

Condition number, logarithmic potential and Bombieri-Weyl norm

Let 
$$x_1, \ldots, x_N \in \mathbb{S}$$
 and associated  $z_1, \ldots, z_N \in \mathbb{C}$ . Let

$$f(Z)=(Z-z_1)\cdots(Z-z_N).$$

Then,

$$\mathcal{E}(x_1,\ldots,x_N) = \frac{1}{2} \sum_{i=1}^N \ln \mu(f,z_i) + \frac{N}{2} \ln \frac{\prod_{i=1}^N \sqrt{1+|z_i|^2}}{\|f\|} - \frac{N}{4} \ln N,$$

◆□> ◆□> ◆臣> ◆臣> 善臣 のへで

Condition number, logarithmic potential and Bombieri-Weyl norm

$$\mathcal{E}(x_{1},...,x_{N}) = \frac{1}{2} \sum_{i=1}^{N} \ln \mu(f,z_{i}) + \frac{N}{2} \ln \frac{\prod_{i=1}^{N} \sqrt{1+|z_{i}|^{2}}}{\|f\|} \frac{N}{4} \ln N,$$
  
$$f(\mathcal{E}) = \prod_{i=1}^{N} \left( \frac{1}{\mathcal{E}-\mathcal{E}} \right) \left( \prod_{i=1}^{N} \frac{1}{\mathcal{E}} \right) \left( \frac{1}{\mathcal{E}-\mathcal{E}} \right) \left($$

73/76 C. Beltrán

Points in the sphere

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Condition number, logarithmic potential and Bombieri-Weyl norm



イロト イヨト イヨト イヨト

Condition number, logarithmic potential and Bombieri-Weyl norm



イロン イヨン イヨン イヨン

э

#### Escher's sphere.

This is my last picture.

76/76 C. Beltrán Points in the sphere

◆□> ◆□> ◆臣> ◆臣> 臣 の�?