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Univ. Tübingen

joint work with Ernst Hairer
and David Cohen, Ludwig Gauckler, Daniel Weiss

Budapest, FoCM’11, 8 July 2011



Topic related to four workshops of this conference:

I Geometric integration and computational mechanics

I Asymptotic analysis and high oscillation

I Computational dynamics

I Foundations of numerical PDEs
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Time scales in a nonlinear oscillator chain
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Symmetric linear multistep methods over long times
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Hairer & L., Numer. Math. 2004



Metastable energy cascades in nonlinear wave eqs.
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mode energies in a nonlinear wave equation utt − uxx +
1
2u = u2

with periodic b.c., only first Fourier mode excited initially

Gauckler, Hairer, L. & Weiss, Preprint 2011



Splitting integrator for a nonlinear Schrödinger eq.
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actions |uj |2 in a full discretisation:
non-resonant step size ∆t = 2π/ω6 + 0.005
vs. resonant step size ∆t = 2π/ω6

Gauckler & L., JFoCM 2010
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Oscillatory ODEs

ẍ0 = −∇x0U(x0, x1)

ẍ1 +
1

ε2
x1 = −∇x1U(x0, x1), 0 < ε ≪ 1

Oscillatory energy E1 =
1
2 |ẋ1|

2 + 1
2ε2

|x1|2 is an almost-invariant:

If U is analytic and E1(0) ≤ M, then

|E1(t)− E1(0)| ≤ Cε for t ≤ ec/ε,

provided that x0 stays in a compact set.

Benettin, Galgani & Giorgilli, CMP 1989
Cohen, Hairer & L., JFoCM 2003



Time scales in a nonlinear oscillator chain
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Trigonometric integrator for oscillatory ODEs

same ODE

ẍ0 = −∇x0U(x0, x1)

ẍ1 +
1

ε2
x1 = −∇x1U(x0, x1), 0 < ε ≪ 1

trigonometric integrator with step size h ≥ cε:
exact for ẍ1 +

1
ε2
x1 = 0, Störmer-Verlet for ẍ0 = f (x0)

Under the non-resonance condition∣∣∣∣sin(kh

2ε

)∣∣∣∣ ≥ c
√
h for k = 1, . . . ,N,

long-time near-conservation of total and oscillatory energies:

Hn − H0 = O(h)
En
1 − E 0

1 = O(h)
for nh ≤ h−N+1.

Hairer & L., SINUM 2000



Time scales in a nonlinear oscillator chain

.04 .080

1

1 20

1

50 100 1500

1

2500 5000 75000

1



Symmetric linear multistep methods over long times

ÿ = f (y), f (y) = −∇U(y)

linear multistep method
∑k

j=0 αjyn+j = h2
∑k

j=0 βj fn+j

I symmetric: αj = αk−j , βj = βk−j

I all zeros of
∑

αjζ
j are simple, except double root at 1

I order p ≥ 2

long-time near-conservation of energy:

Hn − H0 = O(hp) for nh ≤ h−p−2

Hairer & L., Numer. Math. 2004



Symmetric linear multistep methods over long times
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Weakly nonlinear wave equations

1. Linear Klein–Gordon equation:

utt −∆u + ρu = 0 (x ∈ Rd , t ∈ R); with ρ ≥ 0

initial data a e ik·x + b e−ik·x for some wave vector k ∈ Rd

The solution is a linear combination of plane waves e i(±k·x±ωt).
(with frequency ω =

√
|k|2 + ρ)

2. Nonlinear perturbation: utt −∆u+ ρu = g(u), same initial data

The solution has a Fourier series u(x , t) =
∑

j∈Z uj(t) e
ijk·x .

Size of mode energies Ej(t) =
1
2 |ωjuj(t)|2 + 1

2 |u̇j(t)|
2 for large t?

(with frequencies ωj =
√

j2|k|2 + ρ)

Energy transfer to higher modes?

Are plane waves stable under nonlinear perturbations?



Weakly nonlinear wave equations (cont.)

I real initial data with E1(0) = ε, Ej(0) = 0 for j ̸= 1

I real-analytic nonlinearity g(u) at least quadratic at 0

Fix an integer K > 1. Then:
For almost all mass parameters ρ > 0 and wave vectors k , solutions
to the nonlinear Klein–Gordon equation satisfy, over long times

t ≤ c ε−K/4,

the bounds |E1(t)− E1(0)| ≤ Cε2, E0(t) ≤ Cε2,

Ej(t) ≤ Cεj , 0 < j < K ,
∞∑
j=K

ε−(j−K)/2Ej(t) ≤ CεK .

metastable energy cascade Gauckler, Hairer, L. & Weiss 2011



Metastable energy cascades in nonlinear wave eqs.
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only first mode excited initially



Further results on ...

I energy distribution in FPU chains, particle lattices

I long-time Sobolev regularity of nonlinear wave equations

I Sobolev stability of plane wave solutions to NLS

I long-time near-conservation of actions in NLW and NLS

I ... and their numerical counterparts

general theme: long-time behaviour of weakly nonlinear systems
and their numerical discretizations
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Modulated Fourier expansions

technique for analysing weakly nonlinear systems over long times

two ingredients:

I solution approximation over short time (MFE)

I almost-invariants of the modulation system

→ long-time results on the energy behaviour

Hairer & L. 2000 for long-time analysis of numerical integrators for highly oscillatory ODEs

Hairer & L. and Cohen, Gauckler 2003-2011, Sanz-Serna 2009
for analytical and numerical problems in Hamiltonian ODEs, PDEs, lattice systems over long times

Hairer, L. & Wanner 2002, Cohen 2003, Condon, Deaño & Iserles 2010
MFE as a numerical approximation method



Modulated Fourier expansion in time

Model problem:

ẍj + ω2
j xj =

∑
j1+j2=j mod N

xj1xj2 for j = 1, . . . ,N

for frequencies ωj = λj/ε, with λj ≥ 1.

Assume: Harmonic energies Ej =
1
2ω

2
j x

2
j + 1

2 ẋ
2
j are initially

bounded independently of ε.

Approximation ansatz:

xj(t) ≈
∑
k

zkj (t) e
i(k·ωωω)t

with slowly varying modulation functions zkj
finite sum over k = (k1, . . . , kN) ∈ ZN , and k ·ωωω =

∑
kjωj



Modulation system

(ω2
j − (k ·ωωω)2) zkj + 2i(k ·ωωω)żkj + z̈kj = − ∂ U

∂z−k
−j

(z)

with the modulation potential

U(z) = −1
3

∑
j1+j2+j3=0 mod N

∑
k1+k2+k3=0

zk
1

j1 z
k2
j2 z

k3
j3 .

The infinite system is truncated and solved approximately (up to a
defect εK ) for polynomial modulation functions zkj under a

non-resonance condition:
Small denominators ω2

j − (k ·ωωω)2 are not too small.



Formal invariants of the modulation system

The invariance property

U(Sℓ(θ)z) = U(z) for Sℓ(θ)z = (e ikℓθzkj )j ,k

leads to formal invariants (Noether’s theorem)

Eℓ
(
z,

dz

dτ

)
= 1

2

∑
j

∑
k

kℓωℓ

(
(k ·ωωω)|zkj |2 − iz−k

−j

dzkj
dτ

)
,

which are almost-invariants of the truncated modulation system
and turn out to be close to the harmonic energies Eℓ.

With these ingredients and many problem-specific technical details
and estimates we obtain results on the long-time behaviour of the
harmonic energies Eℓ.



“This report is intended to be the first one in a series dealing with
the behavior of certain nonlinear physical systems where the
non-linearity is introduced as a perturbation to a primarily linear
problem. The behavior of the systems is to be studied for times
which are long compared to the characteristic periods of the
corresponding linear problem.”

Fermi, Pasta & Ulam 1955

... which is just what modulated Fourier expansions are good for.


	Some phenomena
	Some theorems
	Modulated Fourier expansions

