Quadrature Problems for Stochastic Differential Equations

Klaus Ritter Computational Stochastics

TU Kaiserslautern

OUTLINE

- I. Computational Problems for SDEs
- II. Deterministic Quadrature on the Lipschitz Class
- III. Randomized Quadrature on the Lipschitz Class
- IV. Quadrature on the Sequence Space

Joint work with

- J. Creutzig (Darmstadt), S. Dereich (Marburg),
- F. Hickernell (IIT Chicago), S. Mayer (Darmstadt),
- T. Müller-Gronbach (Passau), Ben Niu (IIT Chicago),
- S. Toussaint (Darmstadt), L. Yaroslavtseva (Passau).

Supported by the DFG within SPP 1324.

SDE

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T],$$
$$X_0 = x_0$$

with a Brownian motion W. Solution $X = (X_t)_{t \in [0,T]}$ is a stochastic process with continuous paths,

$$X: \Omega \to C([0,T]) =: \mathfrak{X}$$

SDE

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T],$$
$$X_0 = x_0$$

with a Brownian motion W. Solution $X = (X_t)_{t \in [0,T]}$ is a stochastic process with continuous paths,

$$X: \Omega \to C([0,T]) =: \mathfrak{X}$$

Computational problems

- 1. Strong approximation: approximate the solution X.
- 2. Weak approximation: approximate the distribution P_X of X on \mathfrak{X} .
- 3. Quadrature: approximate integrals $E(f(X)) = \int_{\mathfrak{X}} f \, dP_X$.

. . .

SDE

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T],$$
$$X_0 = x_0$$

with a Brownian motion W. Solution $X = (X_t)_{t \in [0,T]}$ is a stochastic process with continuous paths,

$$X: \Omega \to C([0,T]) =: \mathfrak{X}$$

Computational problems

- 1. Strong approximation: approximate the solution X.
- 2. Weak approximation: approximate the distribution P_X of X on \mathfrak{X} .
- 3. Quadrature: approximate integrals $E(f(X)) = \int_{\mathfrak{X}} f \, dP_X$.

Analogously, for the solution X_T at time T.

SDE

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T],$$
$$X_0 = x_0$$

with a Brownian motion W. Solution $X = (X_t)_{t \in [0,T]}$ is a stochastic process with continuous paths,

$$X: \Omega \to C([0,T]) =: \mathfrak{X}$$

Computational problems

- 1. Strong approximation: approximate the solution X.
- 2. Weak approximation: approximate the distribution P_X of X on \mathfrak{X} .
- 3. Quadrature: approximate integrals $E(f(X)) = \int_{\mathfrak{X}} f \, dP_X$.

Reasonable, but not mandatory, $1. \rightsquigarrow 2. \rightsquigarrow 3$.

$$I(f) = \int_{\mathfrak{X}} f \, dP_X.$$

Deterministic quadrature formulas

$$Q_n(f) = \sum_{i=1}^n a_i \cdot f(x_i)$$

with $a_i \in \mathbb{R}$ and $x_i \in \mathfrak{X}$.

$$I(f) = \int_{\mathfrak{X}} f \, dP_X.$$

Deterministic quadrature formulas

$$Q_n(f) = \sum_{i=1}^n a_i \cdot f(x_i)$$

with $a_i \in \mathbb{R}$ and $x_i \in \mathfrak{X}$.

Maximal error of Q_n on a class F of integrands f

$$e(Q_n, F) = \sup_{f \in F} |I(f) - Q_n(f)|.$$

$$I(f) = \int_{\mathfrak{X}} f \, dP_X.$$

Deterministic quadrature formulas

$$Q_n(f) = \sum_{i=1}^n a_i \cdot f(x_i)$$

with $a_i \in \mathbb{R}$ and $x_i \in \mathfrak{X}$.

Maximal error of Q_n on a class F of integrands f

$$e(Q_n, F) = \sup_{f \in F} |I(f) - Q_n(f)|.$$

n-th minimal error

$$e^{\det}(n,F) = \inf_{Q_n} e(Q_n,F).$$

$$I(f) = \int_{\mathfrak{X}} f \, dP_X.$$

Randomized quadrature formulas

$$Q_n(f) = \sum_{i=1}^n a_i \cdot f(X_i)$$

with $a_i \in \mathbb{R}$ and \mathfrak{X} -valued random variables X_i .

$$I(f) = \int_{\mathfrak{X}} f \, dP_X.$$

Randomized quadrature formulas

$$Q_n(f) = \sum_{i=1}^n a_i \cdot f(X_i)$$

with $a_i \in \mathbb{R}$ and \mathfrak{X} -valued random variables X_i . Maximal error of Q_n on a class F of integrands f

$$e(Q_n, F) = \sup_{f \in F} (E |I(f) - Q_n(f)|^2)^{1/2}$$

$$I(f) = \int_{\mathfrak{X}} f \, dP_X.$$

Randomized quadrature formulas

$$Q_n(f) = \sum_{i=1}^n a_i \cdot f(X_i)$$

with $a_i \in \mathbb{R}$ and \mathfrak{X} -valued random variables X_i . Maximal error of Q_n on a class F of integrands f

$$e(Q_n, F) = \sup_{f \in F} (E |I(f) - Q_n(f)|^2)^{1/2}$$

 $n\text{-th} \min al \ error$

$$e^{\operatorname{ran}}(n,F) = \inf_{Q_n} e(Q_n,F).$$

For quadrature and weak approximation of SDEs

- 1. distribution P_X on \mathfrak{X} given only implicitly,
- 2. $(\mu, \sigma, x_0) \mapsto \int_{\mathfrak{X}} f \, dP_X$ nonlinear,

3. dim $\mathfrak{X} = \infty$.

For quadrature and weak approximation of SDEs

- 1. distribution P_X on \mathfrak{X} given only implicitly,
- 2. $(\mu, \sigma, x_0) \mapsto \int_{\mathfrak{X}} f \, dP_X$ nonlinear,
- 3. dim $\mathfrak{X} = \infty$.

Particular issues

- cost for computation of $Q_n(f)$,
- cost for construction of Q_n .

For quadrature and weak approximation of SDEs

- 1. distribution P_X on \mathfrak{X} given only implicitly,
- 2. $(\mu, \sigma, x_0) \mapsto \int_{\mathfrak{X}} f \, dP_X$ nonlinear,
- 3. dim $\mathfrak{X} = \infty$.

Particular issues

- cost for computation of $Q_n(f)$,
- cost for construction of Q_n .

Assumptions

- scalar SDE (for simplicity),
- $\mu, \sigma \in C^2_{\mathrm{b}}(\mathbb{R})$ (smoothness crucial),
- $\sigma(x_0) \neq 0$ (to exclude deterministic equations).

II. Deterministic Quadrature on the Lipschitz Class

Here $F = \operatorname{Lip}(1)$, i.e., for $\mathfrak{X} = C([0,T])$ and $f \in F$

 $|f(x) - f(y)| \le ||x - y||_{\infty}, \qquad x, y \in \mathfrak{X}.$

II. Deterministic Quadrature on the Lipschitz Class

Here
$$F = \operatorname{Lip}(1)$$
, i.e., for $\mathfrak{X} = C([0, T])$ and $f \in F$
 $|f(x) - f(y)| \le ||x - y||_{\infty}, \qquad x, y \in \mathfrak{X}.$

Example: f payoff of an asian or lookback option,

$$f(x) = \max\left(\frac{1}{T}\int_0^T x(t) dt - K, 0\right),$$
$$f(x) = \max\left(\sup_{t \in [0,T]} x(t) - K, 0\right).$$

Equivalence of quadrature on $\operatorname{Lip}(1)$ and quantization of P_X

$$e^{\det}(n,\operatorname{Lip}(1)) = \inf_{x_1,\dots,x_n \in \mathfrak{X}} \operatorname{E}(g(X;x_1,\dots,x_n))$$

for every separable Banach space \mathfrak{X} , where

$$g(x; x_1, \dots, x_n) = \min_{i=1,\dots,n} ||x - x_i||.$$

Equivalence of quadrature on Lip(1) and quantization of P_X

$$e^{\det}(n,\operatorname{Lip}(1)) = \inf_{x_1,\dots,x_n \in \mathfrak{X}} \operatorname{E}(g(X;x_1,\dots,x_n))$$

for every separable Banach space $\mathfrak X,$ where

$$g(x; x_1, \dots, x_n) = \min_{i=1,\dots,n} ||x - x_i||.$$

Proof of '\geq'

$$g(\cdot; x_1, \ldots, x_n) \in \operatorname{Lip}(1).$$

Equivalence of quadrature on Lip(1) and quantization of P_X

$$e^{\det}(n,\operatorname{Lip}(1)) = \inf_{x_1,\dots,x_n \in \mathfrak{X}} \operatorname{E}(g(X;x_1,\dots,x_n))$$

for every separable Banach space $\mathfrak X,$ where

Proof of ' \leq '

$$g(x; x_1, \dots, x_n) = \min_{i=1,\dots,n} ||x - x_i||$$

.

Equivalence of quadrature on Lip(1) and quantization of P_X

$$e^{\det}(n,\operatorname{Lip}(1)) = \inf_{x_1,\dots,x_n \in \mathfrak{X}} \operatorname{E}(g(X;x_1,\dots,x_n))$$

for every separable Banach space $\mathfrak{X},$ where

$$g(x; x_1, \dots, x_n) = \min_{i=1,\dots,n} ||x - x_i||.$$

Quantization for stochastic processes studied since 2000,

Aurzada, Creutzig, Dereich, Fehringer, Graf, Luschgy, Müller-Gronbach, Matoussi, Pagès, Printems, R, Scheutzow, Wilberts, . . .

In particular, Gaussian processes, Lévy processes, SDEs.

For applications in finance see Pagès, Printems (2008) as well as http://www.quantise.maths-fi.com/

Theorem Dereich (2008)

 $\exists c > 0 \ \forall \mu, \sigma, x_0$

$$e^{\det}(n,\operatorname{Lip}(1)) \approx c \cdot \operatorname{E}\left(\int_0^T \sigma^2(X_t) \, dt\right)^{1/2} \cdot (\ln n)^{-1/2}.$$

Theorem Dereich (2008) $\exists c > 0 \ \forall \mu, \sigma, x_0$

$$e^{\det}(n,\operatorname{Lip}(1)) \approx c \cdot \operatorname{E}\left(\int_0^T \sigma^2(X_t) \, dt\right)^{1/2} \cdot (\ln n)^{-1/2}.$$

Question: construction of good quadrature formulas at reasonable cost?

Theorem Dereich (2008) $\exists c > 0 \ \forall \mu, \sigma, x_0$ $e^{\det}(n, \operatorname{Lip}(1)) \approx c \cdot \operatorname{E}\left(\int_0^T \sigma^2(X_t) \, dt\right)^{1/2} \cdot (\ln n)^{-1/2}.$

Question: construction of good quadrature formulas at reasonable cost? Formally,

- input: (μ, σ, x_0) as well as $n \in \mathbb{N}$,
- real number model with oracle for function/derivative values of μ and σ ,
- output: coefficients $a_i \in \mathbb{R}$ and nodes $x_i \in \mathfrak{X}$ (suitably coded).

Theorem Dereich (2008) $\exists c > 0 \forall \mu, \sigma, x_0$

$$e^{\det}(n, \operatorname{Lip}(1)) \approx c \cdot \operatorname{E}\left(\int_0^T \sigma^2(X_t) \, dt\right)^{1/2} \cdot (\ln n)^{-1/2}.$$

Theorem *Müller-Gronbach, R* (2011) $\forall \mu, \sigma, x_0$ construction of Q_n at cost O(n) such that

 $e(Q_n, \operatorname{Lip}(1)) \approx e^{\operatorname{det}}(n, \operatorname{Lip}(1)).$

Theorem Dereich (2008) $\exists c > 0 \ \forall \mu, \sigma, x_0$ $(f^T) \qquad \sum^{1/2}$

$$e^{\det}(n, \operatorname{Lip}(1)) \approx c \cdot \operatorname{E}\left(\int_0^T \sigma^2(X_t) \, dt\right)^{1/2} \cdot (\ln n)^{-1/2}.$$

Theorem *Müller-Gronbach, R* (2011) $\forall \mu, \sigma, x_0$ construction of Q_n at cost O(n) such that

$$e(Q_n, \operatorname{Lip}(1)) \approx e^{\operatorname{det}}(n, \operatorname{Lip}(1)).$$

Remark

- Analogous results for $\mathfrak{X} = L_p([0,T])$ instead of C([0,T]).
- Systems of SDEs require quantization of Lévy areas.
- Distance on the space of probability measures: Wasserstein metric.

$$dX_t = \alpha(\kappa - X_t) \, dt + \beta \sqrt{X_t} \, dW_t.$$

Implementation for $L_2([0,T])$ due to Toussaint (2008).

$$dX_t = \alpha(\kappa - X_t) \, dt + \beta \sqrt{X_t} \, dW_t.$$

1. For an equidistant time discretization, quantization of the marginal distribution

$$P_{(X_0, X_{T/m}, \dots, X_T)}$$

via quantized version of the Milstein scheme.

$$dX_t = \alpha(\kappa - X_t) \, dt + \beta \sqrt{X_t} \, dW_t.$$

 For an equidistant time discretization, quantization of the marginal distribution

$$P_{(X_0, X_{T/m}, \dots, X_T)}$$

2. Local refinement via quantization of Brownian bridges, taking into account the local smoothness of X.

Basis functions

$$e_k(t) = \sqrt{2T} \cdot \sin(k\pi \cdot t/T)$$

for $k \in \mathbb{N}$.

Cf. adaptive step-size control for strong approximation, see Hofmann, Müller-Gronbach, R (2002), Müller-Gronbach (2002).

$$dX_t = \alpha(\kappa - X_t) \, dt + \beta \sqrt{X_t \, dW_t}.$$

 For an equidistant time discretization, quantization of the marginal distribution

$$P_{(X_0, X_{T/m}, \dots, X_T)}$$

2. Local refinement via quantization of Brownian bridges, taking into account the local smoothness of X.

$$dX_t = \alpha(\kappa - X_t) \, dt + \beta \sqrt{X_t \, dW_t}.$$

 For an equidistant time discretization, quantization of the marginal distribution

$$P_{(X_0, X_{T/m}, \dots, X_T)}$$

2. Local refinement via quantization of Brownian bridges, taking into account the local smoothness of X.

Remark Alternative approaches to constructive quantization of SDEs

- ODE-based, using rough paths theory, see Luschgy, Pagès (2006), Pagès, Sellami (2010),
- using series expansions for X, see Luschgy, Pagès (2008).

Remark Alternative approaches to constructive quantization of SDEs

- ODE-based, using rough paths theory, see Luschgy, Pagès (2006), Pagès, Sellami (2010),
- using series expansions for X, see Luschgy, Pagès (2008).

Remark Different techniques and results in the marginal case P_{X_T} , where

$$Q_n(f) = \sum_{i=1}^n a_i \cdot f(x_i)$$

with $a_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^d$.

See Kusuoka (2001, 2004), Lyons, Victoir (2004), Crisan, Ghazali (2007), Litterer, Lyons (2010), Müller-Gronbach, R, Yaroslavtseva (2011), ... **Remark** Alternative approaches to constructive quantization of SDEs

- ODE-based, using rough paths theory, see Luschgy, Pagès (2006), Pagès, Sellami (2010),
- using series expansions for X, see Luschgy, Pagès (2008).

Remark Different techniques and results in the marginal case P_{X_T} , where

$$Q_n(f) = \sum_{i=1}^n a_i \cdot f(x_i)$$

with $a_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^d$.

In 'Stochastic Computation' (B7)

S. Dereich: Constructive Quantization: approximation by empirical measures

L. Yaroslavtseva: A derandomization of the Euler scheme

Question: How to overcome the slow convergence of $e^{\det}(n, \operatorname{Lip}(1))$?

Question: How to overcome the slow convergence of $e^{\det}(n, \operatorname{Lip}(1))$? Ways out:

- On $F = \operatorname{Lip}(1)$
 - better deterministic algorithms than just quadrature formulas?
 - randomized quadrature formulas/algorithms?

Question: How to overcome the slow convergence of $e^{\det}(n, \operatorname{Lip}(1))$? Ways out:

- On $F = \operatorname{Lip}(1)$
 - better deterministic algorithms than just quadrature formulas?
 - randomized quadrature formulas/algorithms?
- Substantially smaller classes $F \subsetneq \operatorname{Lip}(1)$.

Question: How to overcome the slow convergence of $e^{\det}(n, \operatorname{Lip}(1))$? Ways out:

- On $F = \operatorname{Lip}(1)$
 - better deterministic algorithms than just quadrature formulas?
 - randomized quadrature formulas/algorithms?
- Substantially smaller classes $F \subsetneq \operatorname{Lip}(1)$.

Question: Evaluation of integrands $f \in F$ anywhere in \mathfrak{X} at cost one?

III. Randomized Quadrature on the Lipschitz Class

Randomized quadrature formula $Q_n(f) = \sum_{i=1}^n a_i \cdot f(X_i)$.

Variable subspace sampling: for any scale of finite-dim. subspaces $\mathfrak{X}_0 \subset \mathfrak{X}_1 \subset \ldots \subset \mathfrak{X}$

$$X_1(\omega), \dots, X_n(\omega) \in \bigcup_{m=0}^{\infty} \mathfrak{X}_m,$$
$$\operatorname{cost}(Q_n) = \operatorname{E}\left(\sum_{i=1}^n \inf\{\dim \mathfrak{X}_m : X^{(i)} \in \mathfrak{X}_m\}\right).$$

III. Randomized Quadrature on the Lipschitz Class

Randomized quadrature formula $Q_n(f) = \sum_{i=1}^n a_i \cdot f(X_i)$.

Variable subspace sampling: for any scale of finite-dim. subspaces $\mathfrak{X}_0 \subset \mathfrak{X}_1 \subset \ldots \subset \mathfrak{X}$

$$X_1(\omega), \dots, X_n(\omega) \in \bigcup_{m=0}^{\infty} \mathfrak{X}_m,$$
$$\operatorname{cost}(Q_n) = \operatorname{E}\left(\sum_{i=1}^n \inf\{\dim \mathfrak{X}_m : X^{(i)} \in \mathfrak{X}_m\}\right).$$

Example

 $\mathfrak{X}_m = \{x \in \mathfrak{X} \mid x \text{ piecewise linear with breakpoints } \ell/2^m \cdot T\}.$

Classical Euler-MC algorithm vs. multi-level Euler-MC algorithm.

III. Randomized Quadrature on the Lipschitz Class

Randomized quadrature formula $Q_n(f) = \sum_{i=1}^n a_i \cdot f(X_i)$.

Variable subspace sampling: for any scale of finite-dim. subspaces $\mathfrak{X}_0 \subset \mathfrak{X}_1 \subset \ldots \subset \mathfrak{X}$

$$X_1(\omega), \dots, X_n(\omega) \in \bigcup_{m=0}^{\infty} \mathfrak{X}_m,$$
$$\operatorname{cost}(Q_n) = \operatorname{E}\left(\sum_{i=1}^n \inf\{\dim \mathfrak{X}_m : X^{(i)} \in \mathfrak{X}_m\}\right).$$

N-th minimal error, redefined,

$$e^{\operatorname{ran}}(N,F) = \inf_{\operatorname{cost}(Q) \le N} e(Q,F).$$

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

$$N^{-1/2} \preceq e^{\operatorname{ran}}(N, \operatorname{Lip}(1)) \preceq N^{-1/2} \cdot \ln N.$$

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

$$N^{-1/2} \preceq e^{\operatorname{ran}}(N, \operatorname{Lip}(1)) \preceq N^{-1/2} \cdot \ln N.$$

Remark

- Deterministic algorithms only yield $(\ln N)^{-1/2}$.
- Upper bound via multi-level Euler-MC algorithm.
- Fixed subspace sampling only yields $N^{-1/4}$, up to \ln 's.
- Lower bound valid for the class of randomized algorithms.

Theorem Creutzig, Dereich, Müller-Gronbach, R (2009)

$$N^{-1/2} \preceq e^{\operatorname{ran}}(N, \operatorname{Lip}(1)) \preceq N^{-1/2} \cdot \ln N.$$

Remark

- General result for
 - every probability measure P on any separable Banach space $\mathfrak X$ and

- F = Lip(1).

Upper and lower bounds for $e^{\operatorname{ran}}(N,F)$ in terms of

- quantization numbers of P,
- Kolmogorov widths of P, see *Mathé* (1990),

Motivation: As previously, $\mathfrak{X} = C([0,T])$,

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T],$$
$$X_0 = x_0,$$

and $f: \mathfrak{X} \to \mathbb{R}$. Approximate $I(f) = \int_{\mathfrak{X}} f \, dP_X$.

Motivation: As previously, $\mathfrak{X} = C([0,T])$,

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T],$$
$$X_0 = x_0,$$

and $f: \mathfrak{X} \to \mathbb{R}$. Approximate $I(f) = \int_{\mathfrak{X}} f \, dP_X$. Note that

 $X = \Gamma(\xi_1, \xi_2, \dots) =$ Euler expansion of X with step-sizes $1/2^k$,

based on Lévy-Ciesielski decomposition of W,

with ξ_1, ξ_2, \ldots iid and $P_{\xi_1} = N(0, 1) =: \rho$.

Motivation: As previously, $\mathfrak{X} = C([0,T])$,

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T],$$
$$X_0 = x_0,$$

and $f: \mathfrak{X} \to \mathbb{R}$. Approximate $I(f) = \int_{\mathfrak{X}} f \, dP_X$. Note that

 $X = \Gamma(\xi_1, \xi_2, \dots) =$ Euler expansion of X with step-sizes $1/2^k$,

based on Lévy-Ciesielski decomposition of W,

with ξ_1, ξ_2, \ldots iid and $P_{\xi_1} = N(0, 1) =: \rho$. Hence $I(f) = \int_{\mathbb{R}^N} f \circ \Gamma(z_1, \ldots) \, d\rho^{\otimes \mathbb{N}}(z_1, \ldots).$

Motivation: As previously, $\mathfrak{X} = C([0,T])$,

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T],$$
$$X_0 = x_0,$$

and $f: \mathfrak{X} \to \mathbb{R}$. Approximate $I(f) = \int_{\mathfrak{X}} f \, dP_X$. Note that

 $X = \Gamma(\xi_1, \xi_2, \dots) =$ Euler expansion of X with step-sizes $1/2^k$,

based on Lévy-Ciesielski decomposition of W,

with $\xi_1, \xi_2, ...$ iid and $P_{\xi_1} = N(0, 1) =: \rho$. Hence

$$I(f) = \int_{\mathbb{R}^{\mathbb{N}}} f \circ \Gamma(z_1, \dots) \, d\rho^{\otimes \mathbb{N}}(z_1, \dots).$$

Truncation

$$\int_{\mathbb{R}^d} f \circ \Gamma(z_1, \ldots, z_d, 0, \ldots) \, d\rho^{\otimes d}(z_1, \ldots, z_d).$$

The general formulation: Given

- a probability measure ρ on $D\subseteq \mathbb{R}$ and
- a class G of functions $g : \mathfrak{Z} \to \mathbb{R}$ on $\mathfrak{Z} = D^{\mathbb{N}}$.

Compute

$$I(g) = \int_{\mathfrak{Z}} g \, d\rho^{\otimes \mathbb{N}}.$$

The general formulation: Given

- a probability measure ρ on $D\subseteq \mathbb{R}$ and
- a class G of functions $g : \mathfrak{Z} \to \mathbb{R}$ on $\mathfrak{Z} = D^{\mathbb{N}}$.

Compute

$$I(g) = \int_{\mathfrak{Z}} g \, d\rho^{\otimes \mathbb{N}}.$$

We study

• quadrature formulas

$$Q_n(g) = \sum_{i=1}^n a_i \cdot g(\mathbf{z}_i), \qquad a_i \in \mathbb{R}, \mathbf{z}_i \in \mathfrak{Z},$$

and variable subspace sampling,

• unit balls G in Hilbert spaces with a reproducing kernel.

Variable subspace sampling, based on

$$\mathfrak{Z}_{d,y} = \{ \mathbf{z} \in \mathfrak{Z} \mid z_{d+1} = z_{d+2} = \cdots = y \}$$

for any $y \in D$. Thus

$$\mathbf{z}_1,\ldots,\mathbf{z}_n\inigcup_{d=1}^\infty\mathfrak{Z}_{d,y}$$

and

$$\operatorname{cost}(Q_n) = \sum_{i=1}^n \inf\{d \mid \mathbf{z}_i \in \mathfrak{Z}_{d,y}\}.$$

Variable subspace sampling, based on

$$\mathfrak{Z}_{d,y} = \{ \mathbf{z} \in \mathfrak{Z} \mid z_{d+1} = z_{d+2} = \cdots = y \}$$

for any $y \in D$. Thus

$$\mathbf{z}_1,\ldots,\mathbf{z}_n\inigcup_{d=1}^\infty\mathfrak{Z}_{d,y}$$

and

$$\operatorname{cost}(Q_n) = \sum_{i=1}^n \inf\{d \mid \mathbf{z}_i \in \mathfrak{Z}_{d,y}\}.$$

 $N\mbox{-th}\xspace$ minimal error

$$e^{\det}(N,G) = \inf_{\operatorname{cost}(Q) \le N} e(Q,G).$$

$$K_{\gamma}(\mathbf{y}, \mathbf{z}) = \prod_{j=1}^{\infty} (1 + \gamma_j \cdot \min(y_j, z_j)), \quad \mathbf{y}, \mathbf{z} \in \mathfrak{Z},$$

for weights $\gamma_1 \geq \gamma_2 \geq \cdots > 0$ such that

$$\sum_{j=1}^{\infty} \gamma_j < \infty.$$

See Hickernell, Wang (2002).

$$K_{\gamma}(\mathbf{y}, \mathbf{z}) = \prod_{j=1}^{\infty} (1 + \gamma_j \cdot \min(y_j, z_j)), \quad \mathbf{y}, \mathbf{z} \in \mathfrak{Z},$$

for weights $\gamma_1 \geq \gamma_2 \geq \cdots > 0$ such that

$$\sum_{j=1}^{\infty} \gamma_j < \infty.$$

Counterpart for functions $g: D^d \to \mathbb{R}$ of finitely many variables

- if $\gamma_1 = \cdots = \gamma_d = 1$ then $H(K_{\gamma}) = W_2^{(1,\dots,1)}([0,1]^d)$,
- for the weighted case see Sloan, Woźniakowski (1998), ..., Novak, Woźniakowski (2008, 2010, ...).

$$K_{\gamma}(\mathbf{y}, \mathbf{z}) = \prod_{j=1}^{\infty} (1 + \gamma_j \cdot \min(y_j, z_j)), \quad \mathbf{y}, \mathbf{z} \in \mathfrak{Z},$$

for weights $\gamma_1 \geq \gamma_2 \geq \cdots > 0$ such that

$$\sum_{j=1}^{\infty} \gamma_j < \infty.$$

Example For

$$g(\mathbf{z}) = \sum_{j=1}^{\infty} \eta_j \cdot z_j^2$$

we have

$$g \in H(K_{\gamma}) \quad \Leftrightarrow \quad \sum_{j=1}^{\infty} \frac{\eta_j^2}{\gamma_j} < \infty.$$

$$K_{\gamma}(\mathbf{y}, \mathbf{z}) = \prod_{j=1}^{\infty} (1 + \gamma_j \cdot \min(y_j, z_j)), \qquad \mathbf{y}, \mathbf{z} \in \mathfrak{Z},$$

for weights $\gamma_1 \geq \gamma_2 \geq \cdots > 0$ such that

$$\sum_{j=1}^{\infty} \gamma_j < \infty.$$

Class of integrands

$$G_{\gamma} = \{ g \in H(K_{\gamma}) \mid ||g||_{\gamma} \le 1 \}.$$

Theorem Kuo, Sloan, Wasilkowski, Woźniakowski (2010)

Hickernell, Müller-Gronbach, Niu, R (2011), Gnewuch (2011),

Plaskota, Wasilkowski (2011)

Assume that ρ is the uniform distribution on D=[0,1] and

$$\gamma_j \asymp j^{-(1+2q)}$$

with q > 0.

TheoremKuo, Sloan, Wasilkowski, Woźniakowski (2010)Hickernell, Müller-Gronbach, Niu, R (2011), Gnewuch (2011),Plaskota, Wasilkowski (2011)

Assume that ρ is the uniform distribution on D = [0, 1] and

$$\gamma_j \asymp j^{-(1+2q)}$$

with q>0. Then, for every $\varepsilon>0$,

$$N^{-\min(q,1)} \preceq e^{\det}(N, G_{\gamma}) \preceq N^{-\min(q,1)+\varepsilon}$$

 $\text{ if } |q-1| \geq 1/2 \text{ and }$

$$N^{-\min(q,1)} \preceq e^{\det}(N, G_{\gamma}) \preceq N^{-\frac{q+1/2}{2}+\varepsilon}$$

if |q-1| < 1/2.

Theorem Kuo, Sloan, Wasilkowski, Woźniakowski (2010) Hickernell, Müller-Gronbach, Niu, R (2011), Gnewuch (2011), Plaskota, Wasilkowski (2011)

Assume that ρ is the uniform distribution on D = [0, 1] and

$$\gamma_j \asymp j^{-(1+2q)}$$

with q > 0. Then, for every $\varepsilon > 0$,

$$N^{-\min(q,1)} \preceq e^{\det}(N, G_{\gamma}) \preceq N^{-\min(q,1)+\varepsilon}$$

 $\text{ if } |q-1| \geq 1/2 \text{ and }$

$$N^{-\min(q,1)} \preceq e^{\det}(N, G_{\gamma}) \preceq N^{-\frac{q+1/2}{2}+\varepsilon}$$

if |q-1| < 1/2.

Remark General results for product measures and weighted tensor product spaces.

Order of convergence of minimal errors in terms of decay of weights

Order of convergence of minimal errors in terms of decay of weights

Remark

- Variable subspace sampling superior to fixed subspace sampling.
- $W_2^1([0,1]) \hookrightarrow H(K_{\gamma})$, and $e^{\det}(N) \asymp N^{-1}$ on $W_2^1([0,1])$.
- Similar results for randomized (Monte Carlo) algorithms.

Order of convergence of minimal errors in terms of decay of weights

Remark

• Much stronger results concerning the computational cost in *Plaskota, Wasilkowski* (2011). A proof of the upper bound for $e^{\det}(N,G)$

• Construction of a multi-level algorithm

Put $g_d(\mathbf{z}) = g(z_1, ..., z_d, 0, ...)$. Clearly

$$g_{d_L}(\mathbf{z}) = g_{d_1}(\mathbf{z}) + \sum_{\ell=2}^{L} (g_{d_\ell}(\mathbf{z}) - g_{d_{\ell-1}}(\mathbf{z})).$$

Use rank-1 lattice rules for integration of g_{d_1} and $g_{d_\ell} - g_{d_{\ell-1}}$.

A proof of the upper bound for $e^{\det}(N,G)$

• Construction of a multi-level algorithm

Put $g_d(\mathbf{z}) = g(z_1, ..., z_d, 0, ...)$. Clearly

$$g_{d_L}(\mathbf{z}) = g_{d_1}(\mathbf{z}) + \sum_{\ell=2}^{L} (g_{d_\ell}(\mathbf{z}) - g_{d_{\ell-1}}(\mathbf{z})).$$

Use rank-1 lattice rules for integration of g_{d_1} and $g_{d_\ell} - g_{d_{\ell-1}}$.

Analysis

Choose suitable weights $\widetilde{\gamma}_j \gg \gamma_j$, derive estimates for

$$\sup_{\|g\|_{\boldsymbol{\gamma}}\leq 1}\|g_{d_{\ell}}-g_{d_{\ell-1}}\|_{\boldsymbol{\widetilde{\gamma}}}.$$

Employ tractability result for rank-1 lattice rules, see *Hickernell, Sloan, Wasilkowski* (2004).

A Numerical Example

Black-Scholes Model

$$dX_t = \alpha \cdot X_t \, dt + \beta \cdot X_t \, dW_t,$$
$$X_0 = x_0$$

with $t \in [0, 1]$, $\alpha = 0.05$, $\beta = 0.5$, and $x_0 = 2.0$. Asian option

$$f(X) = \left(\int_0^1 X(t) \, dt - K\right)_+$$

with K = 2.0. See Giles, Waterhouse (2009).

A Numerical Example

Black-Scholes Model

$$dX_t = \alpha \cdot X_t \, dt + \beta \cdot X_t \, dW_t,$$
$$X_0 = x_0$$

with $t \in [0, 1]$, $\alpha = 0.05$, $\beta = 0.5$, and $x_0 = 2.0$. Asian option

$$f(X) = \left(\int_0^1 X(t) \, dt - K\right)_+$$

with K = 2.0. See Giles, Waterhouse (2009).

Estimation of the root mean square error based on 1000 replications, see Mayer (2011). Log-linear regression, assuming that

rms error =
$$c \cdot \frac{(\ln(\cot))^{\beta_1}}{\cot^{\beta_2}}$$
.

Root mean square error vs. cost

Root mean square error vs. cost

Asymptotic results

Root mean square error vs. cost

Lévy-Ciesielski, shifted rank-one ?

Lévy-Ciesielski, shifted rank-one, multi-level ?