Optimization in very large graphs

LÁSZLÓ LOVÁSZ

Eötvös Loránd University, Budapest

(joint results with Balázs Szegedy)

Very large graphs

- -Internet
- -Social networks
- -Ecological systems
- -VLSI
- -Statistical physics
- -Brain

What properties to study?

-Does it have an even number of nodes?

-How dense is it (average degree)?

-Is it connected?

-Find connected components.

How is the graph given?

- Graph is HUGE.
- Not known explicitly (not even number of nodes).

How is it given?

 We can sample a uniform random node a bounded number of times, and see edges between sampled nodes.

Works in the dense case only ($\sim cn^2$ edges)

How is it given?

- We can sample a uniform random node a bounded number of times, and explore its neighborhood to a bounded depth.

• Works in the sparse case: Bounded degree $(\leq d)$.

Different types of algorithmic questions

- Estimate a parameter (triangle density, density of max cut, rank of the adjacency matrix,...)
- Test a property (planar, bipartite, trianglefree,...)
- Find the structure (connected components, max cut, max matching,...)

(b) |V(G)| = |V(G')|

 $\delta_{\Box}^{*}(G,G') = \min_{G \leftrightarrow G'} d_{\Box}(G,G')$

(c)
$$|V(G)| = n$$
, $|V(G')| = n'$

Blow up nodes:

 $\delta_{\Box}(G,G') = \lim_{k \to \infty} \delta_{\Box}^{*}(G(kn'),G'(kn))$

Examples: $\delta_{\Box}(K_{n,n}, \mathbb{G}(2n, \frac{1}{2})) \approx \frac{1}{8}$ $\delta_{\Box}(\mathbb{G}_{1}(n, \frac{1}{2}), \mathbb{G}_{2}(n, \frac{1}{2})) = O(1)$

> Two graphs are "close" in the δ distance \Leftrightarrow their subgraph distributions are "close". Borgs-Chayes-L-Sós-Vesztergombi

Parameter estimation (dense case)

Triangle density: easy

Maximum cut: nontrivial

The maximum cut problem

Applications: optimization, statistical mechanics...

Density of maximum cut

Parameter estimation (dense case)

A graph parameter *f* can be estimated from samples if and only if

(i) $\forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } V(G) = V(G') \text{ and } d(G,G') < \delta$ $\Rightarrow |f(G) - f(G')| < \varepsilon.$

(ii) $|f(G)-f(G-v)| \rightarrow 0$ $(|V(G)| \rightarrow \infty)$

(iii) $\forall G$: f(G(m)) is convergent as $m \to \infty$.

Borgs, Chayes, L, Sós, Vesztergombi

Property testing (dense case)

"Property testing": Arora-Karger-Karpinski Goldreich-Goldwasser-Ron Rubinfeld-Sudan **Fischer** Frieze-Kannan Alon-Shapira

Regularity Lemma

The key to algorithmic results in the dense case

Original Regularity Lemma Szemerédi 1976

"Weak" Regularity Lemma Frieze-Kannan 1999

"Strong" Regularity Lemma Alon – Fisher – Krivelevich - M. Szegedy

Regularity Lemma

G: graph

 $P = \{V_1, \dots, V_k\}$: partition of V(G)

 G_P : edge-weighted complete graph on V(G), where the weight of edge $uv (u \in V_i, v \in V_j)$ is $p_{ij} = e_G(V_i, V_j)/|V_j||V_j|$

Regularity Lemma

"Weak" Regularity Lemma (Frieze-Kannan):

 $\forall k \ge 1, \forall \text{ graph } G \exists \text{partition } P = \{V_1, \dots, V_k\}$ such that

Similarity distance of nodes

Two nodes are "similar", if they are connected.

Does not measure what we need...

They are similar, if their neighborhoods are (almost) the same.

See: random graph

Similarity distance of nodes

Fact 1: This is a metric.

Fact 2: Can be computed by sampling.

Representative set of nodes

(i) $u, v \in R \Rightarrow d_2(u, v) > \varepsilon$

(ii) $u \in V(G) \Rightarrow d_2(u,R) \leq \varepsilon$

Representative set of nodes

```
(i) u, v \in R \Rightarrow d_2(u, v) > \varepsilon
```

```
(ii) u \in V(G) \Rightarrow d_2(u,R) \leq \varepsilon
```

Every graph contains an approximate representative set with at most $2^{2/\epsilon^2}$ elements.

Representative set – Voronoi diagram

Representative set – Voronoi diagram

$$S \subseteq V(G)$$
: $\overline{d}(S) = E_x d_2(x, S)$

average ε-net

 \mathcal{P} partition: $r(\mathcal{P}) = \delta_{\Box}(G, G_{\mathcal{P}})$

Voronoi cells of *S* form a partition with

$$r(\mathcal{P}) < 8\sqrt{\overline{d}(S)}$$

 \forall partition $\mathcal{P}=\{V_1,...,V_k\}$ of [0,1] $\exists v_i \in V_i$ with
 $\overline{d}(\{v_1,...,v_k\}) < 8r(\mathcal{P})$

Representative set – algorithm

- Begin with $U=\emptyset$.
- Select random nodes $v_1, v_2, ...$
- Add v_i to U iff $d_2(v_i, u) > \varepsilon$ for all $u \in U$.
- Stop if for more than $1/\epsilon^2$ trials, U did not grow.

size bounded by $2^{2/\epsilon^2}$

In which class does node v belong?

Let $U = \{u_1, ..., u_k\}$.

Put node v in V_i iff i is the first index with $d_2(u_i, v) \le \varepsilon$. Constructing representation of cut:

- Construct representative set U
- Compute p_{ij} = density between classes V_i and V_j (use sampling)
- Compute max cut (U_1, U_2) in complete graph on U with edge-weights p_{ij}

Max cut – algorithm

On which side of the cut does v belong?

Put node v of left side of cut iff

 $d_2(U_1,v) \leq d_2(U_2,v).$

(Different algorithm implicit by Frieze-Kannan.)

Representative set of nodes

Every graph contains a representative set with at most $2^{2/\epsilon^2}$ elements.

July 2011

Convergence and limit objects

t(F,G): Probability that random map V(F)→V(G) preserves edges

 $(G_1, G_2, ...)$ convergent: $\forall F \ t(F, G_n)$ is convergent

distribution of *k*-samples is convergent for all *k*

Parameter estimation (dense case)

A graph parameter *f* can be estimated from samples if and only if

 (G_n) convergent $\Rightarrow f(G_n)$ convergent

Borgs, Chayes, L, Sós, Vesztergombi

Convergence and limit objects

$$\mathcal{W}_0 = \{W: [0,1]^2 \rightarrow [0,1], \text{ symmetric,} \\ \text{measurable} \}$$
(graphons)

$$t(F,W) = \int_{[0,1]^{V(F)}} \prod_{ij \in E(F)} W(x_i, x_j) dx$$

$$\mathbf{G}_{n} \rightarrow \mathbf{W}: \forall F: t(F, G_{n}) \rightarrow t(F, \mathbf{W})$$

For every convergent graph sequence (G_n) there is a $W \in \mathcal{W}_0$ such that $G_n \to W$. Conversely, $\forall W \exists (G_n)$ such that $G_n \to W$. L - B. Szegedy

W is essentially unique (up to measure-preserving transform). Borgs – Chayes - L The distance δ between graphons, the distance d_2 between points, representative sets, regularity partitions,.... can be defined for graphons (W_0, δ) is a compact metric space. The completion of $([0,1],d_2)$ is a compact metric space for every graphon.

The distance δ between graphons, the distance d_2 between points, representative sets, regularity partitions,.... can be defined for graphons (W_0, δ) is a compact metric space. The completion of ([0, Equivalent to all versions of the compact metric spa **Regularity lemma** 36 July 2011

If $([0,1], d_2)$ has finite dimension for some graphon W, then $\forall \varepsilon$ it has a representative set/ weak regularity partition with $(1/\varepsilon)^{\text{const}}$ elements.

If *G* is a graph that does not contain *F* as a bipartite-induced subgraph (*F* bipartite), then $\forall \varepsilon$ it has a representative set/ weak regularity partition with $(1/\varepsilon)^{10|F|}$ elements.