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(joint results with Balázs Szegedy)



-Internet

-VLSI

-Social networks

-Statistical physics

-Ecological systems

-Brain
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Very large graphs



-Does it have an even 

number of nodes?

-How dense is it 

(average degree)?

-Is it connected?

-Find connected

components. 
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What properties to study?
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• Graph is HUGE.

• Not known explicitly (not even number

of nodes).

How is the graph given?
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- We can sample a uniform random node a 

bounded number of times, and see edges

between sampled nodes. 

Works in the dense case only (cn2 edges)

How is it given?
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• - We can sample a uniform random node a 

bounded number of times, and explore its     

neighborhood to a bounded depth.

• Works in the sparse case: Bounded degree 
(d).

How is it given?
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- Estimate a parameter (triangle density, 

density of max cut, rank of the adjacency

matrix,…)

- Test a property (planar, bipartite, triangle-

free,…)

- Find the structure (connected components, 

max cut, max matching,…) 

Different types of algorithmic questions
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The distance of two graphs
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(c) |V(G)| = n,  |V(G')| = n'

Blow up nodes:
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Two graphs are "close" in the  distance


their subgraph distributions are "close". 

Borgs-Chayes-L-Sós-Vesztergombi

The distance of two graphs
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Triangle density: easy

Parameter estimation (dense case)

Maximum cut: nontrivial
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maximize

Applications: optimization, statistical mechanics…

NP-hard, even with 6% error

Hastad

Polynomial-time computable
with 13% error

Goemans-Williamson

The maximum cut problem



cut with many edges
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cut with many edges

Density of maximum cut
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A graph parameter f can be estimated from

samples if and only if

(i) >0 >0 s.t. V(G)=V(G') and d (G,G')<


|f(G)-f(G')|<.

(ii) |f(G)-f(G-v)|0    (|V(G)| )

(iii) G:  f(G(m)) is convergent as m .

Borgs, Chayes, L, Sós, Vesztergombi

Parameter estimation (dense case)
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„Property testing”: Arora-Karger-Karpinski

Goldreich-Goldwasser-Ron

Rubinfeld-Sudan

Fischer

Frieze-Kannan

Alon-Shapira

Property testing (dense case)
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Original Regularity Lemma Szemerédi 1976

“Weak” Regularity Lemma Frieze-Kannan 1999

“Strong” Regularity Lemma

Alon – Fisher – Krivelevich - M. Szegedy

The key to algorithmic results in the dense case

Regularity Lemma
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G: graph

P={V1,…,Vk}: partition of V(G)

GP : edge-weighted complete graph on V(G), 

where the weight of edge uv (uVi, vVj) is 

pij = eG(Vi,Vj)/|Vi||Vj|

Regularity Lemma



July 2011 19

“Weak" Regularity Lemma (Frieze-Kannan):

k ≥ 1,  graph G partition P={V1,…,Vk}

such that
4

( , )
log

Pd G G
k

Regularity Lemma
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Two nodes are "similar", if they are connected.

Does not measure

what we need…

They are similar, if their neighborhoods are

(almost) the same.
Too strong…

See: random graph

Similarity distance of nodes
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Similarity distance of nodes

Fact 1: This is a metric.

Fact 2: Can be computed by sampling.
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Representative set of nodes

(i) u,vR d2(u,v) > 

(ii) uV(G) d2(u,R) 

Any maximal set with (i) will do.
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Every graph contains an approximate

representative set with at most         elements. 
22 /2

Representative set of nodes

(i) u,vR d2(u,v) > 

(ii) uV(G) d2(u,R) 
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Representative set – Voronoi diagram

Voronoi diagram

= weak regularity partition
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regular partition

Representative set – Voronoi diagram

(partition: ( , ))r G G

Voronoi cells of S form a partition with 

 partition P={V1,...,Vk} of [0,1]   vi Vi with

1({ ,..., }) 8 ( )kd v v r P

( ) 8 ( )r d SP
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- Select random nodes v1, v2, ...

- Add vi to U iff d2(vi,u)>ε for all uU.

- Begin with U=.

- Stop if for more than 1/ε2 trials, U did not grow.

Representative set – algorithm

size bounded by
22 /2
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Let U={u1,...,uk}. 

Put node v in Vi iff i is the first index 

with d2(ui,v)ε.

In which class does node v belong?

Representative set – algorithm
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- Construct representative set U

- Compute pij = density between classes Vi and Vj 

(use sampling)

- Compute max cut (U1,U2) in complete graph 

on U with edge-weights pij

Constructing representation of cut:

Max cut – algorithm
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Put node v of left side of cut iff

d2(U1,v)  d2(U2,v).

On which side of the cut does v belong?

Max cut – algorithm

(Different algorithm implicit by Frieze-Kannan.)
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Every graph contains a representative set

with at most           elements. 
22 /2

Representative set of nodes

(i) u,vR d2(u,v) > 

(ii) uV(G) d2(u,R) 

Looks like

dimension.

Typically there is

a much smaller one.
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distribution of k-samples

is convergent for all k

t(F,G): Probability that random map V(F)V(G) 

preserves edges

(G1,G2,…) convergent: F t(F,Gn) is convergent

Convergence and limit objects



July 2011 32

A graph parameter f can be estimated from samples

if and only if

(Gn) convergent f(Gn) convergent

Borgs, Chayes, L, Sós, Vesztergombi

Parameter estimation (dense case)
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W0 = {W: [0,1]2 [0,1], symmetric,   

measurable}

( ) ( )[0,1]

( ,( , ) )
V F

i j

ij E F

W x x dxt F W

GnW : F: t(F,Gn)  t(F,W)

(graphons)

Convergence and limit objects
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L – B. Szegedy

For every convergent graph sequence (Gn)

there is a WW0 such that GnW .

Conversely, W (Gn)  such that GnW .

W is essentially unique 

(up to measure-preserving transform).

Borgs – Chayes - L

Convergence and limit objects
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Limit objects

The distance between graphons,

the distance d2 between points,

representative sets, regularity partitions,….

can be defined for graphons

(W0, ) is a compact metric space. 

The completion of ([0,1],d2) is a 

compact metric space for every graphon. 
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Limit objects

The distance between graphons,

the distance d2 between points,

representative sets, regularity partitions,….

can be defined for graphons

(W0, ) is a compact metric space. 

The completion of ([0,1],d2) is a 

compact metric space for every graphon. 

Equivalent to all

versions of the

Regularity lemma 
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Dimension of limit objects

If ([0,1],d2) has finite dimension for some

graphon W, then it has a representative set/

weak regularity partition with (1/ )const elements.

If G is a graph that does not contain F

as a bipartite-induced subgraph (F bipartite), 

then it has a representative set/

weak regularity partition with (1/ )10|F| elements.


