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Abstract. We calculate an analytic value for the correlation coefficient be-

ween a geometric, or exponential, Brownian motion and its time-average,

a novelty being our use of divided differences to elucidate formulae. This

provides a simple approximation for the value of certain Asian options regard-

ing them as exchange options. We also illustrate that the higher moments of

the time-average can be expressed neatly as divided differences of the expo-

nential function via the Hermite–Genocchi integral relation, as well as demon-

strating that these expressions agree with those obtained by Oshanin and Yor

when the drift term vanishes.

1. introduction

We begin with geometric, or exponential, Brownian motion, defined by

(1.1) S(t) = e(r−σ2

2
)t+σBt , t ≥ 0,

where B : [0,∞) → R is Brownian motion. In other words, it is a stochastic
process, or random function, for which B0 = 1, its increments are independent,
and, for 0 ≤ s < t, the increment Bt − Bs is normally distributed with mean
zero and variance t − s. The basic properties of Brownian motion are explained in
Section 37 of [1], while Karatzas and Shreve have provided a comprehensive treatise
[7]. We have decided to use the probabilists’ notation Bt rather than the analyst’s
B(t), and hope that this does not provoke confusion in half our audience.

We shall study the time average

(1.2) A(T ) :=
1

T

∫ T

0

S(t) dt

using the calculus of divided differences, a standard tool in approximation theory.
We have provided fairly full explanations of even elementary points in the hope
that this will enhance the paper’s use to both the mathematical finance and ap-
proximation theoretic communities; in particular, almost of the required divided
difference theory is derived in Section 4.

We first observe the familiar result

(1.3) ES(T ) = e(r−σ2/2)T
EeσT 1/2Z = e(r−σ2/2)T eσ2T/2 = erT .

Here Z denotes a generic N(0, 1) Gaussian random variable and we have used the
standard fact that

(1.4) EeλZ = (2π)−1/2

∫

R

eλτe−τ2/2 dτ = (2π)−1/2

∫

R

e−
1
2
{(τ−λ)2−λ2} dτ = eλ2/2.

Similarly,

EA(T ) = T−1

∫ T

0

ES(t) dt

=
erT − 1

rT
.(1.5)
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In divided difference notation, we have shown that

(1.6) EA(T ) = exp[0, rT ].

Divided differences are important tools in polynomial interpolation theory and
spline theory and are treated in many books. In particular, most of the mater-
ial used here can be found in Davis [2] and Powell [9]. We remind the reader
that f [a0, a1, . . . , an] is the highest coefficient of the unique polynomial of degree n
interpolating f at distinct points a0, . . . , an ∈ R. Hence f [a0] = f(a0) and

f [a0, a1] =
f(a1) − f(a0)

a1 − a0
.

Further, it is evident that a divided difference does not depend on the order in
which the points a0, a1, . . . , an are chosen. Divided differences also satisfy a certain
integral relation, namely the Hermite–Genocchi formula, which we shall use to
express the iterated integrals arising when we compute moments of the time-average
A(T ). Section 4 contains further divided difference theory required by this paper.

2. The Correlation Coefficient between the time-average and the

asset

We shall compute the correlation coefficient between S(T ) and A(T ). Specific-
ally, we calculate

(2.1) R :=
E (S(T )A(T )) − E (S(T )) E (A(T ))

√

var S(T ) var A(T )
.

We find a succinct divided difference expression for R.

Theorem 2.1. The correlation coefficient (2.1) is given by

(2.2) R ≡ R(rT, σ2T ) =
exp[rT, 2rT, (2r + σ2)T ]

√

2 exp[2rT, (2r + σ2)T ] exp[0, rT, 2rT, (2r + σ2)T ]
.

Let us begin our derivation.

Lemma 2.2. If 0 ≤ a ≤ b, then

(2.3) ES(a)S(b) = exp
(

a(r + σ2) + br
)

.

Proof. We have

ES(a)S(b) = ES(a)2e(b−a)(r−σ2/2)+σ
√

b−aZb−a

= ES(a)2Ee(b−a)(r−σ2/2)+σ
√

b−aZb−a

= e(2r+σ2)ae(b−a)r

= ea(r+σ2))ebr.(2.4)

¤

Proposition 2.3. We have

(2.5) ES(T )A(T ) = exp[rT, (2r + σ2)T ].
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Proof. Applying Lemma 2.2, we obtain

ES(T )A(T ) = T−1

∫ T

0

ES(t)S(T ) dt

= T−1

∫ T

0

e(r+σ2)terT dt

= exp[rT, (2r + σ2)T ].

¤

Proposition 2.4.

(2.6) E(A(T )2) = 2 exp[0, rT, (2r + σ2)T ].

Proof. We find

E(A(T )2) = T−2

∫ T

0

(

∫ T

0

ES(t1)S(t2) dt2

)

dt1

= 2T−2

∫ T

0

(

∫ t1

0

ES(t1)S(t2) dt2

)

dt1.(2.7)

Thus

E(A(T )2) = 2T−2

∫ T

0

(

∫ t1

0

er(t1+t2)eσ2t2 dt2

)

dt1

= 2T−2

∫ T

0

ert1
(e(r+σ2)t1 − 1

r + σ2

)

dt1

=
2

(r + σ2)T

[

exp[0, (2r + σ2)T ] − exp[0, rT ]
]

= 2 exp[0, rT, (2r + σ2)T ],(2.8)

using the divided difference recurrence (4.1) to obtain the final line. ¤

Any reader still doubtful of the simplification provided by divided difference nota-
tion might consider the alternative expression

E
(

A(T )2
)

=
2e(2r+σ2)T

(r + σ2)(2r + σ2)T 2
+

2

rT 2

(

1

2r + σ2
− erT

r + σ2

)

.

There is a similar divided difference relation for E (A(T )m), described in the next
section, but we now complete our derivation of Theorem 2.1.

Proof of Theorem 2.1. Applying (1.4, 1.5, 2.5) and (4.1), we obtain

ES(T )A(T ) − ES(T )EA(T ) = exp[rT, (2r + σ2)T ] − erT (erT − 1)/(rT )

= exp[rT, (2r + σ2)T ] − exp[rT, 2rT ]

= σ2T exp[rT, 2rT, (2r + σ2)T ].(2.9)

Further,
(2.10)

var S(T ) = E(S(T )2) − (ES(T ))2 = e(2r+σ2)T − e2rT = σ2T exp[2rT, (2r + σ2)T ],

and, by (1.5, 2.6),

var A(T ) = 2 exp[0, rT, (2r + σ2)T ] −
(

erT − 1

rT

)2

= 2 exp[0, rT, (2r + σ2)T ] − 2 exp[0, rT, 2rT ]

= 2σ2T exp[0, rT, 2rT, (2r + σ2)T ],(2.11)
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using the divided difference recurrence (4.1) once more. Hence

(2.12) R =
exp[rT, 2rT, (2r + σ2)T ]

√

2 exp[2rT, (2r + σ2)T ] exp[0, rT, 2rT, (2r + σ2)T ]
.

¤

It is remarkable that the divided differences appearing in (2.12) are coefficients of
the cubic polynomial interpolating the exponential function at 0, rT, 2rT, (2r+σ2)T .
We make two further observations:

(1) Armed with an analytic expression for the correlation coefficient, we can
apply Margrabe’s exchange option valuation [8] to derive the values of Asian
options, if we are willing to accept that the time–average is suitably approx-
imated by geometric Brownian motion. We are investigating the numerics
of this rather simple approximation at present and preliminary results are
surprisingly promising.

(2) The correlation coefficient R(rT, σ2T ) seems to be rather close to unity.
Typical values of r, σ and T produce values of R in the 0.8−0.9 range. We
cannot, at present, fully explain this high correlation.

3. Computing higher moments of A(T )

We now demonstrate that the neat divided difference formulae obtained for the
first and second moments of A(T ) are not coincidences, but part of a greater pattern
from which arise new formulae generalizing the moment calculations of Oshanin [4]
and Yor [11].

We begin with the iterated integral

(3.1) EA(T )m = T−m

∫ T

0

dτm

∫ T

0

dτm−1 · · ·
∫ T

0

dτ1 ES(τ1) · · ·S(τm).

Now, given any point (τ1, . . . , τm) ∈ [0, T ]m, let us sort its components into increas-
ing order, obtaining (t1, . . . , tn) (say). Then

ES(τ1) · · ·S(τm) = ES(t1) · · ·S(tm)

and

(3.2) EA(T )m = m!T−m

∫ T

0

dtm

∫ tm

0

dtm−1 · · ·
∫ t2

0

dt1ES(t1) · · ·S(tm).

Our first task is to calculate the integrand, which we complete after a simple lemma.

Lemma 3.1. For any positive integer k, we have

(3.3) E
[

S(t)k
]

= exp
(

krt +
σ2t

2
k(k − 1)

)

.

Proof. This is almost immediate from (1.4):

ES(t)k = Eek(r−σ2)t+σk
√

tZ = ek(r−σ2/2)t+σ2k2t/2 = ekrt+σ2tk(k−1)/2,

where Z ∼ N(0, 1). ¤

Proposition 3.2. If 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm, then

(3.4) ES(t1)S(t2) · · ·S(tm) = exp
(

m
∑

k=1

(

r + (m − k)σ2
)

tk

)

.
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Proof. Lemma 2.2 comprises the case m = 2. We complete the proof by induction
on the number of terms m, first observing that, by a standard property of geometric
Brownian motion,

(3.5) ES(t1)S(t2) · · ·S(tm) = ES(t1)
m

ES(t2 − t1) · · ·S(tm − t1).

Applying Lemma 3.1 and our induction hypothesis, we obtain
(3.6)

ES(t1)S(t2) · · ·S(tm) = exp
(

mrt1+σ2t1m(m−1)/2+

m
∑

`=2

(

r + (m − `)σ2
)

(t` − t1)
)

.

The t1 coefficient in the exponent is given by

mr − (m − 1)r + σ2t1

(

1

2
m(m − 1) −

m−2
∑

`=1

`

)

= r + σ2t1(m − 1),

using the elementary fact that m(m − 1)/2 = 1 + 2 + · · · + m − 1. The coefficients
of t2, . . . , tm are as already stated in (3.4). ¤

Thus the desired integral (3.2) becomes

EA(T )m = m!T−m

∫ T

0

dtm

∫ tm

0

dtm−1 · · ·
∫ t2

0

dt1ES(t1) · · ·S(tm)

= m!

∫ 1

0

dtm

∫ tm−1

0

· · ·
∫ t2

0

dt1 exp(α1t1 + · · ·αmtm),(3.7)

where

(3.8) αk =
(

r + (m − k)σ2
)

T, k = 1, . . . ,m.

The integral displayed in (3.7) can now be identified as a divided difference using
a variant form of the Hermite–Genocchi integral relation.

Theorem 3.3. Let

(3.9) bk := kr + σ2k(k − 1)/2, k = 0, 1, . . . .

Then

(3.10) E(A(T ))m = m! exp[b0T, b1T, . . . , bmT ], m ≥ 0.

Proof. Apply Corollary 4.5 to (3.7) and (3.8), using the elementary relation
∑j

k=1 k =
j(j + 1)/2. ¤

The statement of Theorem 3.3 simplifies when r = σ2, for then the drift term
in (1.1) vanishes, that is, we consider S(t) = exp(σ

√
tZt) alone; this is the special

case studied by Oshanin [4] and Yor [11].

Theorem 3.4. If we set r = σ2/2 in Theorem 3.3, then we obtain

E [A(T )m] = m! exp[0, rT, 22rT, 32rT, . . . ,m2rT ]

= m!H√
rT [−m, . . . ,−1, 0, 1, . . . ,m],(3.11)

where Hc(x) := exp(c2x2), x ∈ R, for any positive c.

Proof. We simply set r = σ2 in Theorem 3.3 and apply (4.13). ¤

We can now apply Corollary 4.10 to derive the formula given in equation (14) of
[4].
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Theorem 3.5. If we set r = σ2/2, then
(3.12)

E [A(T )m] =

(

Γ(m)

Γ(2m)

)

r−m

(

−1

2
(−1)m

(

2m

m

)

+
m
∑

`=0

(

2m

`

)

(−1)`erT (m−`)2

)

.

Proof. Applying Corollary 4.10 to Theorem 3.4, we obtain

E [A(T )m] =

(

m!

(2m)!
(rT )−m

2m
∑

k=0

(

2m

k

)

(−1)kerT (k−m)2

)

=

(

Γ(m)

Γ(2m)

)

(rT )−m

(

−1

2
(−1)m

(

2m

m

)

+

m
∑

`=0

(

2m

`

)

(−1)`erT (m−`)2

)

,(3.13)

after some straightforward algebraic manipulation. ¤

If we now replace rT by α and m by j in (3.12), then we obtain equation (14)
of Oshanin [4].

4. Divided Difference Theory

Most of the properties of divided differences required here can be found in [2]
and Chapter 5 of [9]. However, proofs of the Hermite–Genocchi integral relation are
less easily available in the Anglophone mathematical literature, as is our particular
variant of it, although the specialist can find much useful material in the treatise of
DeVore and Lorentz [3]. We have therefore provided a derivation for the convenience
of the reader. The Hermite–Genocchi formula and its consequences are still very
much topics of current research; see, for example, [10]. Furthermore, the result
is better served in other European languages; see, for instance, [5] for a French
translation of a Russian classic, or indeed the original [6].

We recall the divided difference recurrence relation

Theorem 4.1.

(4.1) f [a0, a1, . . . , an] =
f [a1, . . . , an] − f [a0, . . . , an−1]

an − a0
,

for any distinct complex numbers a0, . . . , an.

Proof. See, for instance, [9], Theorem 5.3. ¤

If f is sufficiently differentiable, then we can define divided differences for coin-
cident points. We see that

lim
a1→a0

f [a0, a1] = f ′(a0).

Further, the elementary relation

(4.2) f [a0, a1] =
f(a1) − f(a0)

a1 − a0
=

∫ 1

0

f ′((1− t)a0 + ta1) dt, when a0, a1 ∈ R,

can be generalized to obtain the Hermite–Genocchi formula.

Theorem 4.2 (Hermite–Genocchi). Let f ∈ C(n)(R) and let a0, a1, . . . , an be (not
necessarily distinct) real numbers Then, for n ≥ 1,

f [a0, a1, . . . , an]

=

∫

Sn

f (n)(t0a0 + t1a1 + · · · + tnan) dt1 · · · dtn,

=

∫ 1

0

dt1

∫ 1−t1

0

dt2 · · ·
∫ 1−Pn−1

k=1
tk

0

dtnf (n)(t0a0 + t1a1 + · · · + tnan)(4.3)
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where the domain of integration is the simplex

(4.4) Sn = {t = (t1, t2, . . . , tn) ∈ R
n
+ :

n
∑

k=1

tk ≤ 1}

and

t0 = 1 −
n
∑

k=1

tk.

Proof. We shall prove (4.3) by induction on n, observing that
∫

S1

f ′(t0a0 + t1a1) dt1 =

∫ 1

0

f ′(a0 + t1(a1 − a0)) dt1 =
f(a1) − f(a0)

a1 − a0
= f [a0, a1].

To extend the formula to higher order divided differences, we note that
(4.5)

f [a0, a1, . . . , an, an+1] =
f [a1, a2, . . . , an+1] − f [a0, a1, . . . , an]

an+1 − a0
= g[a0, an+1],

where

(4.6) g(x) = f [a1, . . . , an, x], x ∈ R.

Now

g(x) =

∫

Sn

f (n)(xt0 + a1t1 + · · · + antn) dt1 · · · dtn

so that

g′(x) =

∫

Sn

t0f
(n+1)(xt0 + a1t1 + · · · + antn) dt1 · · · dtn.

Therefore

f [a0, a1, . . . , an, an+1]

=

∫ 1

0

dτ g′((1 − τ)a0 + τan+1)

=

∫ 1

0

dτ

∫

Sn

dt1 · · · dtn t0f
(n+1)([(1 − τ)a0 + τan+1]t0 + a1t1 + · · · antn)

=

∫

Sn

dt1 · · · dtn

∫ 1

0

dτ t0f
(n+1)([(1 − τ)t0a0 +

n
∑

`=1

a`t` + τt0an+1)

=

∫ 1

0

dt1

∫ 1−t1

0

dt2 · · ·
∫ 1−Pn+1

k=1
tk

0

dtn+1f
(n+1)

(

T0a0 +

n+1
∑

k=1

tkak

)

=

∫

Sn+1

f (n+1) (T0a0 + t1a1 + · · · + tn+1an+1) dt1 · · · dtn+1,

where we have used the substitution tn+1 = t0τ and the notation T0 = 1−∑n+1
k=1 tk.

¤

We shall need a variant form of the Hermite–Genocchi integral relation for which
the following notation is useful. Given any real n × n nonsingular matrix V , with
columns v1, . . . , vn, we let K(V ) denote the closed convex hull of 0, v1, . . . , vn, i.e.

K(V ) := conv{0, v1, . . . , vn}.
In this notation, the Hermite–Gnocchi integral relation states that

(4.7) f [a0, a1, . . . , an] =

∫

K(In)

f (n)
(

a0 + (a − a0e)
T

y
)

dy,
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where

a =







a1

...
an






, e =







1
...
1






,

and In denotes the n × n identity matrix. Integrating the nth derivative over the
simplex K(V ) yields a useful variant form of Hermite–Genocchi.

Theorem 4.3. Let V ∈ R
n×n be any nonsingular matrix. Then

(4.8)
1

|det V |

∫

K(V )

f (n)
(

aT y
)

dy = f [0, (V T a)1, . . . , (V
T a)n],

where (V T a)k denotes the kth component of the vector V T a.

Proof. Substituting y = V z, Hermite–Genocchi implies the relation
∫

K(V )

f (n)
(

(V T a)T z
)

dz = f [0, (V T a)1, . . . , (V
T a)n].

¤

Corollary 4.4. For any function f ∈ C(n)(R), we have
∫ 1

0

dxn

∫ xn

0

dxn−1 · · ·
∫ x2

0

dx1f
(n)

(

n
∑

k=1

akxk

)

= f [0, an, an + an−1, . . . , an + an−1 + · · · + a1].(4.9)

Proof. Set

V =











1
1 1
...

. . .

1 1 · · · 1











in Theorem 4.3. ¤

The exponential function is a particularly important case for us, in which case
the Hermite–Genocchi formula becomes

(4.10) exp[a0, a1, . . . , an] =

∫

Sn

et0a0+t1a1+···+tnan dt1 · · · dtn

and Corollary 4.4 takes the following form.

Corollary 4.5. We have
∫ 1

0

dxn

∫ xn

0

dxn−1 · · ·
∫ x2

0

dx1 exp

(

n
∑

k=1

akxk

)

= exp[0, an, an + an−1, . . . , an + an−1 + · · · + a1].(4.11)

Proof. Let f be the exponential function in Corollary 4.4. ¤

We shall also need two simple preliminary results. Let us use Pn to denote the
vector space of polynomials of degree n.

Lemma 4.6. We have

(4.12) exp(µ) exp[λ0, . . . , λm] = exp[λ0 + µ, . . . , λm + µ],

where λ0, . . . , λm and µ can be any complex numbers.
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Proof. Immediate. ¤

Lemma 4.7. Let f : C → C and let a1, . . . , an be distinct nonzero complex numbers.
Then

(4.13) f [0, a2
1, . . . , a

2
n] = g[−an, . . . ,−a1, 0, a1, . . . , an],

where g(z) = f(z2), for z ∈ C.

Proof. Let p ∈ Pn interpolate f at 0, a2
1, . . . , a

2
n. Then q(z) := p(z2) is a polynomial

of degree 2n satisfying q(±aj) = p(a2
j ) = f(a2

j ) = g(±aj), for j = 0, . . . , n, setting
a0 = 0, for convenience. The result then follows from uniqueness of the interpolating
polynomial.

¤

It is well-known that a divided difference at equally spaced points can be ex-
pressed in a particularly simple form using the forward difference operator

∆hf(x) := f(x + h) − f(x),

which we shall need when demonstrating the equivalence between our moment
calculations and those of Oshanin [4] and Yor [11]. The next proposition is well-
known and can be found in [2], but we again include its short proof for the reader’s
convenience.

Proposition 4.8. Let f : R → R, let h be any positive constant and let n be a
non-negative integer. Then

(4.14) f [x, x + h, x + 2h, . . . , x + nh] =
∆n

hf(x)

n!hn
.

Proof. It is easily checked that f [x, x + h] = ∆hf(x)/h. Further, if we assume
(4.14) for n − 1, then the divided difference recurrence relation implies that

f [x, x + h, . . . , x + nh]

=
f [x + h, . . . , x + nh] − f [x, x + h, . . . , x + (n − 1)h]

nh

=
∆hf [x, . . . , x + (n − 1)h]

nh

=
1

nh
∆h

(

∆n−1
h f(x)

(n − 1)!hn−1

)

=
∆n

hf(x)

n!hn
.

Thus the result follows by induction. ¤

Corollary 4.9. Let f : R → R and let h be any positive constant. Then

(4.15) f [x, x + h, x + 2h, . . . , x + nh] =
1

n!hn

n
∑

k=0

(

n

k

)

(−1)n−kf(x + kh).

Proof. We define the forward shift operator

Ehf(x) := f(x + h), x ∈ R,

and observe that, by the binomial theorem,

∆n
hf(x) = (Eh − 1)

n
f(x) =

n
∑

k=0

(

n

k

)

(−1)n−kEk
hf(x) =

n
∑

k=0

(

n

k

)

(−1)n−kf(x+kh).

¤
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Corollary 4.10. Let f : R → R and let h be any positive number. Then
(4.16)

f [−nh,−(n − 1)h, . . . ,−h, 0, h, . . . , nh] =
1

(2n)!h2n

2n
∑

k=0

(

2n

k

)

(−1)kf((k − n)h).

Proof. This is an immediate consequence of Corollary 4.9. ¤

We shall also need the Leibnitz relation for divided differences of a product when
deriving the recurrence differential equation for moments.

Theorem 4.11 (Leibnitz). Let D be any subset of C containing the distinct points
z0, z1, . . . , zn and let v and w be complex-valued functions on D. If u = v · w, then

(4.17) u[z0, . . . , zn] =
n
∑

k=0

v[z0, . . . , zk]w[zk, . . . , zn].

Proof. Let p ∈ Pn be the unique polynomial interpolant for u written in standard
Newton form, that is

(4.18) p(z) = v[z0] + v[z0, z1](z − z0) + · · · v[z0, z1, . . . , zn](z − z0) · · · (z − zn−1).

We shall let q ∈ Pn be the unique polynomial interpolating w, but with the points
chosen in the order zn, zn−1, . . . , z0, that is,

(4.19) q(z) = w[zn] + w[zn, zn−1](z − zn) + · · ·+ w[zn, . . . , z0](z − zn) · · · (z − z1).

Now their product p · q is a polynomial of degree 2n. Dividing this polynomial by
(z − z0) · · · (z − zn), we obtain

p(z)q(z) = r(z) + s(z)(z − z0) · · · (z − zn),

where r ∈ Pn. We see that u(zj) = v(zj)w(zj) = p(zj)q(zj) = r(zj), for 0 ≤ j ≤ n.
Hence, by uniqueness of the polynomial interpolant for u in Pn, we obtain

(4.20) r(z) = u[z0] + · · · + u[z0, . . . , zn](z − z0) · · · (z − zn).

We obtain (4.17) by equating the coefficients of zn in (4.20) and the product of the
expressions in (4.18) and (4.19), modulo (z − z0) · · · (z − zn). ¤

5. A Recurrence Relation

The Feynman–Kac formula suggests that En(t) := E (A(t)n) should satisfy a
certain differential equation, which we shall obtain via Hermite–Genocchi.

Theorem 5.1. Let {cn}∞n=1 be any strictly increasing sequence of positive numbers
and define en : (0,∞) → R by the divided difference

(5.1) en(t) = exp[0, c1t, . . . , cnt], t > 0, n ≥ 0.

Then

(5.2) te′n(t) = en(t) (cnt − n) + en−1(t), for n ≥ 1.

Proof. Applying the Hermite–Genocchi formula, we obtain

(5.3) en(t) =

∫

K(In)

exp
(

tcT y
)

dy,

where b = (c1, . . . , cn)
T
, and differentiating (5.3) yields

(5.4) e′n(t) =

∫

K(In)

exp(tcT y)(cT y) dy.
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Now writing g(s) = s and applying Leibnitz’s formula for divided differences, we
find

(g · exp) [0, c1t, . . . , cnt] = g[0] exp[0, c1t, . . . , cnt] + g[0, c1t] exp[c1t, . . . , cnt]

= exp[c1t, . . . , cnt].(5.5)

Further, the relation (g · exp)(n) = g · exp +n exp and (5.5) imply

te′n(t) =

∫

K(In)

(g · exp)
(n)

(tcT y) dy − n

∫

K(In)

exp(tcT y) dy

= (g · exp) [0, c1t, . . . , cnt] − n exp[0, c1t, . . . , cnt]

= exp[c1t, . . . , cnt] − nen(t).(5.6)

However,

(5.7) en(t) =
exp[c1t, . . . , cnt] − en−1(t)

cnt
,

by the divided difference recurrence relation, so that

(5.8) exp[c1t, . . . , cnt] = cnten(t) + en−1(t).

Substituting (5.8) in (5.6) provides (5.2). ¤

The corresponding differential equation for En is now immediate.
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