Mathematical Tripos Part IB: Lent 2010

Numerical Analysis — Lecture 2!

1.2 Divided differences: a definition

Given pairwise-distinct points xg, z1, ..., 2, € [a,b], we let p € P, [z] interpolate f € C|a, b] there.
The coefficient of 2™ in p is called the divided difference and denoted by f|xo,21,...,x,]. We say
that this divided difference is of degree n.

We can derive f|xg,...,x,] from the Lagrange formula,
n n 1
flzo, 1, ..., zp) :Zf(a:k)ka_xe. (1.2)
k=0 =0
04k
Theorem Let [a, Blbe the shortest interval that contains g, x1, ..., x, and let f € C™[a,b]. Then
there exists & € [a, b] such that

Proof. Let p be the interpolating polynomial. The error function f—p has at least n+1 zeros in
[@,b] and, applying Rolle’s theorem n times, it follows that f(™ — p(™) vanishes at some ¢ € [a, b].
But p(z) = %p(”)(ox" + lower order terms (for any ¢ € R), therefore, letting ¢ = &,

Flwoswrs oo wal = 3p™(€) = 731/
and we deduce (1.3). .

Application It is a consequence of the theorem that divided differences can be used to approximate
derivatives.

1.3 Recurrence relations for divided differences

Our next topic is a useful way to calculate divided differences (and, ultimately, to derive yet
another means to construct an interpolating polynomial). We commence with the remark that
flx;] is the coefficient of 2° in the polynomial of degree 0 (i.e., a constant) that interpolates f(x;),

hence flz,] = f(x;).

Theorem Suppose that zg,x1, ..., 241 are pairwise distinct, where k£ > 0. Then
f.l?l,l‘g,...,l‘k+1 — fxo,xl,...,mk
flzo, 1y s Thy1] = [ ] [ } (1.4)
Trk+1 — Zo

Proof. Let p,q € Pi[z] be the polynomials that interpolate f at
{zo,1,..., 2k} and {x1,22,.. ., Tp41}

respectively and define

() o= &7 20)a@) F (@iis — 2)p(a)
Tk+1 — To

€ Pk—i—l[l']-
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We readily verify that r(x;) = f(z;),7=0,1,...,k+ 1. Hence r is the (k+ 1)-degree interpolating
polynomial and f[zg, ..., zx 1] is the coefficient of 2**1 therein. The recurrence (1.4) follows from
the definition of divided differences. a

1.4 The Newton interpolation formula

Recalling that flxz;] = f(x;), the recursive formula allows for rapid evaluation of the divided
difference table, in the following manner:

flwol —
flzo, z1] ~
/
fla] flzo, 1, 2] ~
o flov,es)
flad = T
\
f[x()vxl,'" y LT
f[xnf% Tn—1, xn]
f[xnfla xn]
This can be done in O(n?) operations and the outcome are the numbers { f[zo, 1, ..., 2]} ,.

We now provide an alternative representation of the interpolating polynomial. Again, f(z;), i =
0,1,...,k, are given and we seek p € Py[x] such that p(z;) = f(z;),i=0,...,k.

Theorem Suppose that zg, x1, ...,z are pairwise distinct. The polynomial
k—1
(@) := flao] + flzo, w1)(@ — xo) + -+ + flwo, @1, ., wx] [ [ (& — 2:) € Pyfa]
i=0

Obeys pk('rl) = f('rl)a i = 07 17 ceey k.
Proof. By induction on k. The statement is obvious for & = 0 and Zve suppose that it is
true for k. We now prove that pyi1(x) — pp(x) = flzo, 21, .., 2pq1] [[,_o(x — x;). Clearly,

Pie1— Dk € Pry1[z] and the coefficient of 25! therein is, by definition, f[zg,...,zx.1]. Moreover,
pr+1(x;) — pe(x;) = 0,4 =0,1,...,k, hence it is a multiple of Hfzo(:c — x;), and this proves the
asserted form of pxi1 — pr. The explicit form of pg1 follows by adding px11 — px to p. O

We have derived the Newton interpolation formula, which requires only the top row of the divided
difference table. It has several advantages over Lagrange’s. In particular, its evaluation at a given
point = (provided that divided differences are known) requires just O(k) operations, as long as we
do it by the Horner scheme

pi() = {{flzo; -, zpl(@ —zp—1) + flzo, .. p—1]} X (¥ — Tp—2) + flzo, ..., Th—2]}
X (z—x3)+ -} + flzo].
On the other hand, the Lagrange formula is often better when we wish to manipulate the interpo-

lation polynomial as part of a larger mathematical expression. We’ll see an example in the section
on Gaussian quadrature.
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