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Numerical Analysis – Lecture 21

1.2 Divided differences: a definition

Given pairwise-distinct points x0, x1, . . . , xn ∈ [a, b], we let p ∈ Pn[x] interpolate f ∈ C[a, b] there.
The coefficient of xn in p is called the divided difference and denoted by f [x0, x1, . . . , xn]. We say
that this divided difference is of degree n.

We can derive f [x0, . . . , xn] from the Lagrange formula,

f [x0, x1, . . . , xn] =

n
∑

k=0

f(xk)

n
∏

ℓ=0
ℓ 6=k

1

xk − xℓ

. (1.2)

Theorem Let [ā, b̄] be the shortest interval that contains x0, x1, . . . , xn and let f ∈ Cn[ā, b̄]. Then
there exists ξ ∈ [ā, b̄] such that

f [x0, x1, . . . , xn] = 1
n!f

(n)(ξ). (1.3)

Proof. Let p be the interpolating polynomial. The error function f −p has at least n+1 zeros in
[ā, b̄] and, applying Rolle’s theorem n times, it follows that f (n) − p(n) vanishes at some ξ ∈ [ā, b̄].
But p(x) = 1

n!p
(n)(ζ)xn + lower order terms (for any ζ ∈ R), therefore, letting ζ = ξ,

f [x0, x1, . . . , xn] = 1
n!p

(n)(ξ) = 1
n!f

(n)(ξ)

and we deduce (1.3). 2

Application It is a consequence of the theorem that divided differences can be used to approximate
derivatives.

1.3 Recurrence relations for divided differences

Our next topic is a useful way to calculate divided differences (and, ultimately, to derive yet
another means to construct an interpolating polynomial). We commence with the remark that
f [xi] is the coefficient of x0 in the polynomial of degree 0 (i.e., a constant) that interpolates f(xi),
hence f [xi] = f(xi).

Theorem Suppose that x0, x1, . . . , xk+1 are pairwise distinct, where k ≥ 0. Then

f [x0, x1, . . . , xk+1] =
f [x1, x2, . . . , xk+1] − f [x0, x1, . . . , xk]

xk+1 − x0
. (1.4)

Proof. Let p, q ∈ Pk[x] be the polynomials that interpolate f at

{x0, x1, . . . , xk} and {x1, x2, . . . , xk+1}

respectively and define

r(x) :=
(x − x0)q(x) + (xk+1 − x)p(x)

xk+1 − x0
∈ Pk+1[x].

1Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are

available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/.
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We readily verify that r(xi) = f(xi), i = 0, 1, . . . , k +1. Hence r is the (k +1)-degree interpolating
polynomial and f [x0, . . . , xk+1] is the coefficient of xk+1 therein. The recurrence (1.4) follows from
the definition of divided differences. 2

1.4 The Newton interpolation formula

Recalling that f [xi] = f(xi), the recursive formula allows for rapid evaluation of the divided

difference table, in the following manner:

f [x0]

f [x1]

f [x2]

...

f [xn]

P
Pq

�
�1

P
Pq

�
�1

P
Pq

�
�1

f [x0, x1]

f [x1, x2]

f [xn−1, xn]

P
Pq

�
�1

P
Pq

�
�1

f [x0, x1, x2]

f [xn−2, xn−1, xn]

P
Pq

�
�1

· · ·

· · ·

f [x0, x1, . . . , xn]

This can be done in O
(

n2
)

operations and the outcome are the numbers {f [x0, x1, . . . , xl]}
k

l=0.
We now provide an alternative representation of the interpolating polynomial. Again, f(xi), i =
0, 1, . . . , k, are given and we seek p ∈ Pk[x] such that p(xi) = f(xi), i = 0, . . . , k.

Theorem Suppose that x0, x1, . . . , xk are pairwise distinct. The polynomial

pk(x) := f [x0] + f [x0, x1](x − x0) + · · · + f [x0, x1, . . . , xk]

k−1
∏

i=0

(x − xi) ∈ Pk[x]

obeys pk(xi) = f(xi), i = 0, 1, . . . , k.
Proof. By induction on k. The statement is obvious for k = 0 and we suppose that it is

true for k. We now prove that pk+1(x) − pk(x) = f [x0, x1, . . . , xk+1]
∏k

i=0(x − xi). Clearly,
pk+1 −pk ∈ Pk+1[x] and the coefficient of xk+1 therein is, by definition, f [x0, . . . , xk+1]. Moreover,

pk+1(xi) − pk(xi) = 0, i = 0, 1, . . . , k, hence it is a multiple of
∏k

i=0(x − xi), and this proves the
asserted form of pk+1 − pk. The explicit form of pk+1 follows by adding pk+1 − pk to pk. 2

We have derived the Newton interpolation formula, which requires only the top row of the divided
difference table. It has several advantages over Lagrange’s. In particular, its evaluation at a given
point x (provided that divided differences are known) requires just O(k) operations, as long as we
do it by the Horner scheme

pk(x) = {{{f [x0, . . . , xk](x − xk−1) + f [x0, . . . , xk−1]} × (x − xk−2) + f [x0, . . . , xk−2]}

× (x − x3) + · · ·} + f [x0].

On the other hand, the Lagrange formula is often better when we wish to manipulate the interpo-
lation polynomial as part of a larger mathematical expression. We’ll see an example in the section
on Gaussian quadrature.
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