## Mathematical Tripos Part IB: Lent 2010 Numerical Analysis - Lecture $2^{1}$

### 1.2 Divided differences: a definition

Given pairwise-distinct points $x_{0}, x_{1}, \ldots, x_{n} \in[a, b]$, we let $p \in \mathbb{P}_{n}[x]$ interpolate $f \in C[a, b]$ there. The coefficient of $x^{n}$ in $p$ is called the divided difference and denoted by $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. We say that this divided difference is of degree $n$.
We can derive $f\left[x_{0}, \ldots, x_{n}\right]$ from the Lagrange formula,

$$
\begin{equation*}
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\sum_{k=0}^{n} f\left(x_{k}\right) \prod_{\substack{\ell=0 \\ \ell \neq k}}^{n} \frac{1}{x_{k}-x_{\ell}} \tag{1.2}
\end{equation*}
$$

Theorem Let $[\bar{a}, \bar{b}]$ be the shortest interval that contains $x_{0}, x_{1}, \ldots, x_{n}$ and let $f \in C^{n}[\bar{a}, \bar{b}]$. Then there exists $\xi \in[\bar{a}, \bar{b}]$ such that

$$
\begin{equation*}
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{1}{n!} f^{(n)}(\xi) \tag{1.3}
\end{equation*}
$$

Proof. Let $p$ be the interpolating polynomial. The error function $f-p$ has at least $n+1$ zeros in $[\bar{a}, \bar{b}]$ and, applying Rolle's theorem $n$ times, it follows that $f^{(n)}-p^{(n)}$ vanishes at some $\xi \in[\bar{a}, \bar{b}]$. But $p(x)=\frac{1}{n!} p^{(n)}(\zeta) x^{n}+$ lower order terms (for any $\zeta \in \mathbb{R}$ ), therefore, letting $\zeta=\xi$,

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{1}{n!} p^{(n)}(\xi)=\frac{1}{n!} f^{(n)}(\xi)
$$

and we deduce (1.3).
Application It is a consequence of the theorem that divided differences can be used to approximate derivatives.

### 1.3 Recurrence relations for divided differences

Our next topic is a useful way to calculate divided differences (and, ultimately, to derive yet another means to construct an interpolating polynomial). We commence with the remark that $f\left[x_{i}\right]$ is the coefficient of $x^{0}$ in the polynomial of degree 0 (i.e., a constant) that interpolates $f\left(x_{i}\right)$, hence $f\left[x_{i}\right]=f\left(x_{i}\right)$.
Theorem Suppose that $x_{0}, x_{1}, \ldots, x_{k+1}$ are pairwise distinct, where $k \geq 0$. Then

$$
\begin{equation*}
f\left[x_{0}, x_{1}, \ldots, x_{k+1}\right]=\frac{f\left[x_{1}, x_{2}, \ldots, x_{k+1}\right]-f\left[x_{0}, x_{1}, \ldots, x_{k}\right]}{x_{k+1}-x_{0}} \tag{1.4}
\end{equation*}
$$

Proof. Let $p, q \in \mathbb{P}_{k}[x]$ be the polynomials that interpolate $f$ at

$$
\left\{x_{0}, x_{1}, \ldots, x_{k}\right\} \quad \text { and } \quad\left\{x_{1}, x_{2}, \ldots, x_{k+1}\right\}
$$

respectively and define

$$
r(x):=\frac{\left(x-x_{0}\right) q(x)+\left(x_{k+1}-x\right) p(x)}{x_{k+1}-x_{0}} \in \mathbb{P}_{k+1}[x] .
$$

[^0]We readily verify that $r\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \ldots, k+1$. Hence $r$ is the ( $k+1$ )-degree interpolating polynomial and $f\left[x_{0}, \ldots, x_{k+1}\right]$ is the coefficient of $x^{k+1}$ therein. The recurrence (1.4) follows from the definition of divided differences.

### 1.4 The Newton interpolation formula

Recalling that $f\left[x_{i}\right]=f\left(x_{i}\right)$, the recursive formula allows for rapid evaluation of the divided difference table, in the following manner:


This can be done in $\mathcal{O}\left(n^{2}\right)$ operations and the outcome are the numbers $\left\{f\left[x_{0}, x_{1}, \ldots, x_{l}\right]\right\}_{l=0}^{k}$. We now provide an alternative representation of the interpolating polynomial. Again, $f\left(x_{i}\right), i=$ $0,1, \ldots, k$, are given and we seek $p \in \mathbb{P}_{k}[x]$ such that $p\left(x_{i}\right)=f\left(x_{i}\right), i=0, \ldots, k$.
Theorem Suppose that $x_{0}, x_{1}, \ldots, x_{k}$ are pairwise distinct. The polynomial

$$
p_{k}(x):=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+\cdots+f\left[x_{0}, x_{1}, \ldots, x_{k}\right] \prod_{i=0}^{k-1}\left(x-x_{i}\right) \in \mathbb{P}_{k}[x]
$$

obeys $p_{k}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \ldots, k$.
Proof. By induction on $k$. The statement is obvious for $k=0$ and we suppose that it is true for $k$. We now prove that $p_{k+1}(x)-p_{k}(x)=f\left[x_{0}, x_{1}, \ldots, x_{k+1}\right] \prod_{i=0}^{k}\left(x-x_{i}\right)$. Clearly, $p_{k+1}-p_{k} \in \mathbb{P}_{k+1}[x]$ and the coefficient of $x^{k+1}$ therein is, by definition, $f\left[x_{0}, \ldots, x_{k+1}\right]$. Moreover, $p_{k+1}\left(x_{i}\right)-p_{k}\left(x_{i}\right)=0, i=0,1, \ldots, k$, hence it is a multiple of $\prod_{i=0}^{k}\left(x-x_{i}\right)$, and this proves the asserted form of $p_{k+1}-p_{k}$. The explicit form of $p_{k+1}$ follows by adding $p_{k+1}-p_{k}$ to $p_{k}$.
We have derived the Newton interpolation formula, which requires only the top row of the divided difference table. It has several advantages over Lagrange's. In particular, its evaluation at a given point $x$ (provided that divided differences are known) requires just $\mathcal{O}(k)$ operations, as long as we do it by the Horner scheme

$$
\begin{aligned}
p_{k}(x)=\{\{ & \left.\left\{f\left[x_{0}, \ldots, x_{k}\right]\left(x-x_{k-1}\right)+f\left[x_{0}, \ldots, x_{k-1}\right]\right\} \times\left(x-x_{k-2}\right)+f\left[x_{0}, \ldots, x_{k-2}\right]\right\} \\
& \left.\times\left(x-x_{3}\right)+\cdots\right\}+f\left[x_{0}\right] .
\end{aligned}
$$

On the other hand, the Lagrange formula is often better when we wish to manipulate the interpolation polynomial as part of a larger mathematical expression. We'll see an example in the section on Gaussian quadrature.
b


[^0]:    ${ }^{1}$ Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/.

