Mathematical Tripos Part IB: Lent 2010 Numerical Analysis – Lecture 2¹

1.2 Divided differences: a definition

Given pairwise-distinct points $x_0, x_1, \ldots, x_n \in [a, b]$, we let $p \in \mathbb{P}_n[x]$ interpolate $f \in C[a, b]$ there. The coefficient of x^n in p is called the *divided difference* and denoted by $f[x_0, x_1, \ldots, x_n]$. We say that this divided difference is of *degree n*.

We can derive $f[x_0, \ldots, x_n]$ from the Lagrange formula,

$$f[x_0, x_1, \dots, x_n] = \sum_{k=0}^n f(x_k) \prod_{\substack{\ell=0\\\ell \neq k}}^n \frac{1}{x_k - x_\ell}.$$
 (1.2)

Theorem Let $[\bar{a}, \bar{b}]$ be the shortest interval that contains x_0, x_1, \ldots, x_n and let $f \in C^n[\bar{a}, \bar{b}]$. Then there exists $\xi \in [\bar{a}, \bar{b}]$ such that

$$f[x_0, x_1, \dots, x_n] = \frac{1}{n!} f^{(n)}(\xi).$$
(1.3)

Proof. Let p be the interpolating polynomial. The error function f - p has at least n + 1 zeros in $[\bar{a}, \bar{b}]$ and, applying Rolle's theorem n times, it follows that $f^{(n)} - p^{(n)}$ vanishes at some $\xi \in [\bar{a}, \bar{b}]$. But $p(x) = \frac{1}{n!} p^{(n)}(\zeta) x^n$ + lower order terms (for any $\zeta \in \mathbb{R}$), therefore, letting $\zeta = \xi$,

$$f[x_0, x_1, \dots, x_n] = \frac{1}{n!} p^{(n)}(\xi) = \frac{1}{n!} f^{(n)}(\xi)$$

and we deduce (1.3).

Application It is a consequence of the theorem that divided differences can be used to approximate derivatives.

1.3 Recurrence relations for divided differences

Our next topic is a useful way to calculate divided differences (and, ultimately, to derive yet another means to construct an interpolating polynomial). We commence with the remark that $f[x_i]$ is the coefficient of x^0 in the polynomial of degree 0 (i.e., a constant) that interpolates $f(x_i)$, hence $f[x_i] = f(x_i)$.

Theorem Suppose that $x_0, x_1, \ldots, x_{k+1}$ are pairwise distinct, where $k \ge 0$. Then

$$f[x_0, x_1, \dots, x_{k+1}] = \frac{f[x_1, x_2, \dots, x_{k+1}] - f[x_0, x_1, \dots, x_k]}{x_{k+1} - x_0}.$$
(1.4)

Proof. Let $p, q \in \mathbb{P}_k[x]$ be the polynomials that interpolate f at

$$\{x_0, x_1, \dots, x_k\}$$
 and $\{x_1, x_2, \dots, x_{k+1}\}$

respectively and define

$$r(x) := \frac{(x - x_0)q(x) + (x_{k+1} - x)p(x)}{x_{k+1} - x_0} \in \mathbb{P}_{k+1}[x].$$

¹Corrections and suggestions to these notes should be emailed to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartIB/.

We readily verify that $r(x_i) = f(x_i)$, i = 0, 1, ..., k+1. Hence r is the (k+1)-degree interpolating polynomial and $f[x_0, ..., x_{k+1}]$ is the coefficient of x^{k+1} therein. The recurrence (1.4) follows from the definition of divided differences.

1.4 The Newton interpolation formula

Recalling that $f[x_i] = f(x_i)$, the recursive formula allows for rapid evaluation of the *divided* difference table, in the following manner:

This can be done in $\mathcal{O}(n^2)$ operations and the outcome are the numbers $\{f[x_0, x_1, \ldots, x_l]\}_{l=0}^k$. We now provide an alternative representation of the interpolating polynomial. Again, $f(x_i)$, $i = 0, 1, \ldots, k$, are given and we seek $p \in \mathbb{P}_k[x]$ such that $p(x_i) = f(x_i)$, $i = 0, \ldots, k$.

Theorem Suppose that x_0, x_1, \ldots, x_k are pairwise distinct. The polynomial

$$p_k(x) := f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_k] \prod_{i=0}^{k-1} (x - x_i) \in \mathbb{P}_k[x]$$

obeys $p_k(x_i) = f(x_i), i = 0, 1, ..., k$.

Proof. By induction on k. The statement is obvious for k = 0 and we suppose that it is true for k. We now prove that $p_{k+1}(x) - p_k(x) = f[x_0, x_1, \ldots, x_{k+1}] \prod_{i=0}^k (x - x_i)$. Clearly, $p_{k+1} - p_k \in \mathbb{P}_{k+1}[x]$ and the coefficient of x^{k+1} therein is, by definition, $f[x_0, \ldots, x_{k+1}]$. Moreover, $p_{k+1}(x_i) - p_k(x_i) = 0$, $i = 0, 1, \ldots, k$, hence it is a multiple of $\prod_{i=0}^k (x - x_i)$, and this proves the asserted form of $p_{k+1} - p_k$. The explicit form of p_{k+1} follows by adding $p_{k+1} - p_k$ to p_k .

We have derived the Newton interpolation formula, which requires only the top row of the divided difference table. It has several advantages over Lagrange's. In particular, its evaluation at a given point x (provided that divided differences are known) requires just $\mathcal{O}(k)$ operations, as long as we do it by the Horner scheme

$$p_k(x) = \{\{\{f[x_0, \dots, x_k](x - x_{k-1}) + f[x_0, \dots, x_{k-1}]\} \times (x - x_{k-2}) + f[x_0, \dots, x_{k-2}]\} \times (x - x_3) + \dots\} + f[x_0].$$

On the other hand, the Lagrange formula is often better when we wish to manipulate the interpolation polynomial as part of a larger mathematical expression. We'll see an example in the section on *Gaussian quadrature*.

 \mathbf{b}