Part III - Lent Term 2005
Approximation Theory — Lecture 4

4 Existence and uniqueness of best approximation

4.1 Existence

Lemma 4.1 Let U be a compact set in a metric space X. Then, for every f in X, there exists an element of
best approximation.

Proof. Let d, := inf {d(f,u) : u € U}, and let (u;) be a minimizing sequence, i.e., d(f,u;) — d.. By
the compactness of U, this sequence has at least one limit point u, € U, and we may assume that
d(u;, us) — 0. By the triangle inequality,

d(fyus) <d(f,us) + d(ug, us) — de. O

Theorem 4.2 Let U be a finite—dimensional subspace of a normed linear space X. Then, for every f in X,
there exists an element of best approximation.

Proof. Let uy be any element of U/, e.g., up = 0. The best approximant we seek lies in the set
Uy :={u:uel, ||f—ul <|f—uol}

This set is compact because it is a closed and bounded subset of a finite-dimensional space. There-
fore, by the previous theorem, there is an element u, of best approximation from U to f. O

4.2 Example of nonexistence

The finite-dimensionality hypothesis cannot be dropped as the following example shows.
Let ¢y be the Banach space of infinite sequences f such that

f:(£17£27"~)7 gk_>07 ||f||=max |£k‘7
and letUy := {u € o : Y pe, 27 Fay = 0}
Lemma 4.3 Forany f € co \ Uo, the element of best approximation from Uy to f does not exist.

Proof. Let f € ¢ \ Up and let X := > 77 27K¢g, £ 0.
1) On the one hand, the following elements belong to U:

up = f—2X(1,0,0,...), wuz=f—3x(1,1,0,0,...), wuz=f—3%A(1,1,1,0,0,...), etc,
and || f — un|| = (1 = 55)7HAl \ |A|. Hence, d(f,Up) < |Al.

2) On the other hand, for any u € Uy, we have || f — u| > || because

A =1d 27 ] =) 27 (& —an)l < D276 —anl < If —ull Y 27" = | f —ull,
k=1 k=1 k=1 k=1

the last inequality being strict since &, ar — 0 implies [, — | < || f — u]| for k > k.
3) Thus, for any f € ¢y \ Uy, one has d(f,Uy) = |\(f)]|, but the element of best approximation
does not exist. O



4.3 Uniqueness

Definition 4.4 A normed linear space X is called strictly convex if the unit sphere contains no line
segments on its surface, i.e.,

Izl =llyl =1, z#y = |3+l <szllzll+3lyl=1 Va,y.

Lemma 4.5 Let U be a subspace of a strictly convex normed linear space X. Then, for each element f € X,
there is at most one element of best approximation.

Proof. Suppose that u; and us are two different best approximations from ¢/ to f and || f —u;|| = A.
Then

1f = 3(ur +u2) || = 15(f —wa) + 5(f —w) | < 3f —wall + 51 f — w2l =X,
a contradiction to the definition of best approximation. O

Theorem 4.6 Let U,, be a finite-dimensional subspace of a strictly convex normed linear space X. Then,
foreach f € X, there exists a unique element of best approximation.

Example 4.7 Any Hilbert space with a scalar product (£, g) and the norm || f|| := (£, f)'/? is strictly convex.
This follows from the identity

I3(F + DI +15(f = DI* = 3117 + 3lgl>.
Example 4.8 The spaces Ly[a, b] with the norm || f||, := {ff | f(t)[Pdt}/P are strictly convex if 1 < p < oo.

Example 4.9 The spaces Li[a,b] and Lo [a,b] := Cla, b] are not strictly convex and examples of some sub-
spaces which provide several b.a.’s to some functions can be easily given.

a)Let X = Ly1[—1,1], f(z) =sgnz, Uy = {a}. Thenany a € [-1,1]isab.a. to f.

b) Let X = C[0,1], g = 1, U1 = {az}. Then any axz with « € [0,2] isab.a. to g.
However, the nonuniqueness is not guranteed. If in (a) one takes f(z) = sgn (x — zo) with any zo # 0, then
ab.a. from U, is unique.

4.4 Example of nonuniqueness in L,

Lemma4.10 1) Let f € Ly(T). Then, for 0 < k < n, we have ["_ f(nx) coskT — ()
2) Ifalso f L 1, then f(n-) L T4

Proof. Since “°** are linear combination of ¢/™* with 0 < |m| < n, it will be enough to prove that

I:= [T f(nx)e™ dx = 0. Setting © = t + 2r/n, and using the equality [ g = [, g, we obtain

T ) T—27/n . 4 ‘ . 4 ‘

I = f(nx)ezmmdx — / f(nt+2ﬂ_)ezmt+21mﬂ'/ndt — e?zmﬂ'/n f(nt)ezmtdt _ 621m7r/n]—.
-7 —m—27/n x

Since 0 < |m| < n, we have e?™™/™ £ 1, hence I = 0. 0

Lemma 4.11 For F(x) = sgnsinnz, any s € T, with ||s| o < 11is a polynomial of b.a. to F in L, (T).
Proof. By previous lemma, F' L 7,,_;. Then, for any s € 7,,_1,

/\F — s(x |dx>‘/ ) — s(x)] sgnsinnx dx —’/ ) sgnsin nx dx| = 2.
If |s(x)| <1=|F(z)|, then sgn [F'(x)—s(x)] =sgn F'(z) =sgn sin nz, and the first inequality becomes
equality. O

This example has a remarkable generalization.

Theorem 4.12 (Hobby-Rice) For any n-dimensional subspace Uy, of L1[a, b] there exists a sign function h with n
breakpoints such that h L Up.

Theorem 4.13 (Krein'[1938]) No finite-dimensional subspace of Li([a,b] is a unicity space, i.e., for any Uy, in
Li[a, b] there exists a function f € L1]a, b] that has several b.a.

Mark Krein (1907-1989), Russian mathematician, one of the recipients of prestigious Wolf Prize in mathematics “for
his fundamental contributions to functional analysis and its applications”.



4.5 Exercises

4.1. Prove that the equality ||z|| = |ly|| = |32z + 3y|| = 1 implies that [|az + (1 — a)y|| = 1 for any
a € [0,1], i.e., that two conditions in Definition 4.4 are really equivalent.

4.2. Does the unicity Theorem 4.6 have a converse? That is, can we infer strict convexity from a
knowledge that for each f € X and for each finite-dimensional ¢/ C X there exists a unique
element of best approximation?

Hint. Let X = R? with a norm which is not strictly convex, i.e., the set ||z|| = 1 contains a
line segment. Find f and one-dimensional subspace U; with several b.a. to f.

4.3. Fill in the details of the following proof of Theorem 4.2. It is based on the Weierstrass theo-
rem: A continuous function on a closed bounded set in R™ attains its minimum.

a) Let f € X, anletU,, = span (gx)}_, where g;, are linearly indepdendent.

b) For z = (x1,...,2,), the function G(z) := || Y_;_; gkl is a continuous function of n
real variables zj, hence, on the unit ball Y z7 = 1, it takes some minimal value p > 0.

¢) The function F(z) := ||f — >_}_, zxgx|| is continuous as well, and it follows from (b)
that F'(z) — oo as ¢ — oo.

d) Thus, looking for the infimum of F'(z) over € R", we may restrict ourselves to some
ball B, := {x : Yz} < r}, thisis abounded closed set in R"™, hence, on B,, F(x) attains
its minimal value.

4.4. The essence of the example given in Lemma 4.3 is that the linear functional

Aieg =R, A(f) =302, 277, f=(&,&,...) €
does not take its norm
A= sup {IACH] = [1F]] = 13,
i.e., there is no function f € ¢y such that |A(f)| = [|All || f]l-
a) Prove that, for any X and any A in X* (the space of all linear bounded functionals on
X), we have the equality |A(f)| = ||A|| dist(f, ker A) for any f € X.

b) Using (a), even if you have not proved it, prove that if A : X — R does not take its
norm, then the subspace Uy := ker ) is a non-existence set.

¢) For ¢;, the Banach space of infinite sequences f such that

f=08,-) Xililél <oo, IIfll =2 &l

construct a functional A(f) = D", A\x&k which does not take its norm, thus find a
subspace of ¢; which is a non-existence set.
4.5. Derive Krein’s Theorem 4.13 from Hobby—Rice Theorem 4.12.

Hint. For any f € U,, consider the function F' = |f|-h, where h is a sign function from
Hobby-Rice theorem.



