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Key idea

Most of the behaviour of a quantum liquid
can be understood in the framework of
’extended’ classical hydrodynamics.

Book chapter by Salman, NGB, Roberts ”Extended hydrodynamics in the
description of finite-temperature systems” in ”Finite-temperature
nonequilibrium systems” ed. by Proukakis et al 2011.
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Introduction: ”Giant matter wave”

Classical fluid mechanics
macroscopic

continuum approximation d � L

Quantum mechanics
microscopic
λdB ∼ T−1/2

Quantum fluid mechanics – macroscopic dynamics & quantum effects
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BEC and order parameter

Bose-Einstein Condensation (BEC) - macroscopic occupation of the single
quantum state.
Superfluidity - the ability to flow through narrow channels without friction;
the existence of quantised vortices with the quantum of circulation h/m.

Relationship between BEC and superfluidity
Existence of the classical field ψ (order parameter, wave function)
associated with the macroscopic component of the field operator

ψ =
√

n exp[iS ], vs = ~
m∇S ,

ψ = 0 represents quantised vortex line.
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Superfluid helium 4

Discovered by Kapitza in 1938.
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Early experiments in HeII

(a) Able to empty a beaker by
flowing out of it via an absorbent
film only about 100 atoms thick.

(b) Period and damping of torsional
oscillations of a stack of closely
spaced disks. Period is T-dependent.

Landau two-fluid model: ρ = ρs + ρn.

() Quantum liguids 7 / 75



Milestones of superfluid discoveries

1908 Liquefaction of helium by Onnes

[Image courtesy Jonathan Keeling]

Nobel Prizes in Physics related to Superfluidity: 1962 Landau;
1978 Kapitza; 1996 Lee, Osheroff, Richardson; 1997 Chu,
Cohen-Tannoudji, Phillips; 2001 Cornell, Ketterle, Wieman; 2003 Leggett;
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Applications

Probing fundamental physics (eg. electrons in solid-state crystals),
but also:

”Atom lasers” – intense beams of coherent atoms
(high precision atom-interferometric metrology)

Spin gradient thermometry with resolution 50pK
(Ketterle group, December 2009)

Superfluid gyroscope (Packard)
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Superfluidity as frictionless flow

Frictionless flow – property of the excitation spectrum ε(p).
Consider a heavy obtacle moving at a constant velocity v in a uniform
fluid in its ground state.
Question:At what velocity does it become possible for excitations to be
created?

Original frame Frame moving with obstacle

Ground state E0, p = 0 E (v) = E0 + 1
2Nmv2

GS + Single excitation E = E0 + ε(p), p E (v) = E0 + ε(p)− p · v + 1
2Nmv2

No excitation can spontaneously grow in the fluid if

v < min
p

ε(p)

p
, Landau criterion
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Mathematical description of superfluidity

Phenomenological Landau two-fluid model: mixture of superfluid and
normal fluid; Superfluid – ideal inviscid Euler fluid at T = 0K; Normal
fluid – Navier-Stokes fluid; Validity: No vortices !!!

Phenomenological Hall-Vinen-Bekharevich-Khalatnikov (HVBK)
model: Landau + vortices. Extra forces: tension and friction with
normal fluid. Validity: mean spacing between the vortex lines �
length scales of interest.

Classical inviscid model of vortex motion
Validity: Length scales � vortex core, ad hoc vortex reconnections,
no vortex formation

Gross-Pitaevskii semi-classical model
Validity: weakly interacting Bose gas

i~ψt(r, t) = − ~2

2m
∇2ψ + U|ψ|2ψ

U is the effective interaction potential, ψ is a classical complex
valued matter field.
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Applicability of GP equation

Heisenberg representation of the field operator Ψ̂(r, t):

i~
∂

∂t
Ψ̂(r, t) =

[
−~2∇2

2m
+

∫
Ψ̂†(r, t)V (r′ − r)Ψ̂(r′, t) dr′

]
Ψ̂(r, t).

Ψ̂(r, t) ∼ ψ(r, t)

BEC (macroscopic occupation, large N)
dilute gas at low temperature
(range of interatomic forces � average interparticle distance)

V → Veff , V0 =

∫
Veff(r) dr, V0 =

4π~2a

m

interested in phenomena taking place over distances � a

Trapped BEC : i~ψt(r, t) = − ~2
2m∇

2ψ + V0|ψ|2ψ + Vext(r)ψ

i~ψt(r, t) = δE/δψ∗, Energy E =

∫
~2

2m
|ψ|2+Vext(r)|ψ|2+

V0

2
|ψ|4 dr.

() Quantum liguids 12 / 75



GPE as a phenomenological model

Gross-Pitaevskii equation as a non-relativistic limit of the Klein-Gordon
equation–the simplest equation consistent with special relativity.

∂2Ψ

∂t2
= c2∇2Ψ− λ2Ψ

Represent Ψ = ψ exp[∓iλt] for matter and anti-matter solutions.

−λ2ψ − 2iλ
∂ψ

∂t
+
∂2ψ

∂t2
= c2∇2ψ − λ2ψ

Non-relativistic limit

∣∣∣∣∂2ψ∂t2 ∣∣∣∣� λ

∣∣∣∣∂ψ∂t ∣∣∣∣
Gross-Pitaevskii equation

i
∂ψ

∂t
= − c2

2λ
∇2ψ

+ A|ψ|2ψ.

() Quantum liguids 13 / 75



GPE as a phenomenological model

Gross-Pitaevskii equation as a non-relativistic limit of the Klein-Gordon
equation–the simplest equation consistent with special relativity.

∂2Ψ

∂t2
= c2∇2Ψ− λ2Ψ

Represent Ψ = ψ exp[∓iλt] for matter and anti-matter solutions.

−λ2ψ − 2iλ
∂ψ

∂t
+
∂2ψ

∂t2
= c2∇2ψ − λ2ψ

Non-relativistic limit

∣∣∣∣∂2ψ∂t2 ∣∣∣∣� λ

∣∣∣∣∂ψ∂t ∣∣∣∣
Gross-Pitaevskii equation

i
∂ψ

∂t
= − c2

2λ
∇2ψ

+ A|ψ|2ψ.

() Quantum liguids 13 / 75



GPE as a phenomenological model

Gross-Pitaevskii equation as a non-relativistic limit of the Klein-Gordon
equation–the simplest equation consistent with special relativity.

∂2Ψ

∂t2
= c2∇2Ψ− λ2Ψ

Represent Ψ = ψ exp[∓iλt] for matter and anti-matter solutions.

−λ2ψ − 2iλ
∂ψ

∂t
+
∂2ψ

∂t2
= c2∇2ψ − λ2ψ

Non-relativistic limit

∣∣∣∣∂2ψ∂t2 ∣∣∣∣� λ

∣∣∣∣∂ψ∂t ∣∣∣∣
Gross-Pitaevskii equation

i
∂ψ

∂t
= − c2

2λ
∇2ψ + A|ψ|2ψ.

() Quantum liguids 13 / 75



Gross-Pitaevskii Equation of BEC [1961]

Weakly–interacting dilute Bose gas

i~ψt(r, t) = − ~2

2m
∇2ψ + U|ψ|2ψ

Number density n(r, t) = |ψ(r, t)|2; Velocity v(r, t) = ~
m∇S(r, t).

Madelung transformation:

ψ(r, t) =
√

n(r, t) exp[iS(r, t)]

Continuity equation:
∂n

∂t
+∇ · (nv) = 0,

Integrated momentum equation

~
∂S

∂t
+

(
1

2
mv2 + Un − ~2

2m
√

n
∇2√n

)
= 0
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Landau two-fluid model vs GP theory

[Putterman & Roberts, Physica A (1983)]

Landau two-fluid theory can be obtained from the equations of
conservation of mass and momentum for a one-component barotropic fluid

∂ρ

∂t
+∇ · (ρv) = 0,

∂v

∂t
+ (v · ∇)v = −∇µ0(ρ),

where dµ0(ρ) = (1/ρ)dP0(ρ), P0(ρ) is the pressure, µ0(ρ) is the chemical
potential.
GP equation is of this form with ψ = ρ1/2 exp(iS), so that v = (~/m)∇S
and

µ0 = − ~2

2m2

∇2ρ1/2

ρ1/2
+

V0

m
ρ.

Exact solution (ρ, v) contains a long wavelength (background)
contributions and short wavelength contributions determined by
excitations. Nonlinearities couple these motions.
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Key ideas:

Key nonlinear effects:

Scattering of sound waves producing sum and difference frequencies
and wave numbers;

Refraction of short wavelengths sound waves by long wavelength
background variations;

Reaction of background so that total energy and momentum are
conserved during the refraction.

Main idea: expand ρ (and v) in terms of slowly varying background
ρ0(r, t) and high frequency waves with amplitudes ρn:

ρ = ρ0 +
∞∑
n=1

∫
ρn(k, r, t) exp[iS(k, r, t)]dk + c .c ,

where ρn ∼ εn, but the derivatives are of order εn+2, dS = k · dr − ωdt.
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Boltzmann kinetic equation

At ε4 Boltzmann equation on occupation numbers(
∂

∂t
+
∂ω

∂k i

∂

∂x i
− ∂ω

∂x i

∂

∂k i

)
n(k, t) = Icoll(n),

where ω = ω0(k) + v0 · k with ω0 = c0k .
Local equilibrium Icoll(n) = 0 yields n = neq(β(ω0 − k ·w)). Use general
conservation laws for Icoll(n) and identify ρ0 → ρs , v0 → vs and
w→ vn − vs .
Use Chapman– Engskog expansion to provide viscosities and thermal
conductivity.
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Hills-Roberts theory

[Hill & Roberts (1977-1980)]

Theory that incorporates healing and relaxation – generalization of Landau
theory with superfluid component described in a way similar to the GPE.
Hills-Roberts theory rests on accepted macroscopic balance laws for mass,
momentum and energy together with a postulate for entropy growth.
Superfluid density is regarded as an independent thermodynamic variable.
Boundary conditions on ρs need to be specified.
Successes:

Predicted that the static healing length would increase with pressure
– confirmed experimentally by Tam and Ahlers (1982)

Dependence of the vortex core parameter on P and T agreed with
experiments

Can Hills–Roberts theory be applied to superfluid turbulence?
Evaluation of coefficients in HVBK theory?
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Vortices in the GP equation

i~ψt(r, t) = − ~2

2m
∇2ψ + U|ψ|2ψ

Stationary state: chemical potential µ via i~ψt = µψ ⇒ µ = U|ψ∞|2.
Wave function of a straight-line vortex in (r , θ, z) takes form

ψ = |ψ(r)| exp[iθ]

Fluid rotating around the z-axis with tangential velocity

v =
~
m
∇θ =

~
m

1

r
θ̂

[Pitaevskii, JETP, 1961]
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Rotating superfluid

Fo a sufficiently large angular velocity Ω, the state with superfluid at rest
becomes energetically unfavourable.
In frame rotating with Ω ,
the energy to minimize is Er = E −Ω ·L, where L is angular momentum⇒
vortices are created
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Trapped BECs

i~ψt(r, t) = − ~2

2m
∇2ψ + V0|ψ|2ψ + Vext(r)ψ − µψ

(1) Standard “magnetic” traps Vext(r) = Vtr = 1
2m(ω2

1x2 + ω2
2y2 + ω2

3z2),
where ωi are trap frequencies.
(2) Other experimental potentials: quartic, periodic optical lattices,
disordered potentials...
Strong interactions, large number of particles, shallow trap: kinetic energy
neglible compared to trap energy and interaction energy – Thomas-Fermi
(TF) limit.
Ground state in Thomas-Fermi limit

V0n(r) + Vext(r) = µ

For example, if Vext = Vtr

n(r) ≈ |ψTF (r)|2 =
µ

V0

(
1−

∑
j=x ,y ,z

x2
j

R2
j

)
where R2

j = 2µ/mω2
j are the three condensate radii.() Quantum liguids 21 / 75



Vortex motion on uniform backgrounds

Assumptions: N vortices in (x , y)-plane, no external potential, vortices
separated by distances far exceeding the healing length ξ.
Euler equation:

∂n

∂t
+∇ · (nv) = 0

Derived from an assumption that the fluid can not be created or destroyed.
Vortex motion is according to classical irrotational (v = ∇S)
incompressible (n =const) flow dynamics

∇2S = 0.

For a point vortex at origin S = sθ, so

v = s∇θ = s
ez × x

|x|2
= sJ x

|x|2
,

where J denotes rotation through π/2.
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Vortex motion on uniform backgrounds

Assumptions: N vortices in (x , y)-plane, no external potential, vortices
separated by distances far exceeding the healing length ξ.
Euler equation:
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Vortex motion

Laplace’s equation is linear, so we can linearly superpose a finite number
N of point vortices with different strengths and positions
xi (i = 1, ...N), thus

v =
∑
i

si
ez × (x− xi )

|x− xi |2
.

Each vortex is moved by the velocity field due to all the other vortices.
The dynamical system of vortex motion

ẋi (t) =
∑
j 6=i

sj
ez × (xi − xj)

|xi − xj |2
(i = 1, ...N) .

si ẋi (t) = J ∂H

∂xi
; H =

1

2

∑
j

∑
j 6=i

si sj ln |xi − xj |.

Two more invariants of motion: the dipole momentum P and the angular
momentum Q

P =
∑
i

sixi , Q =
∑
i

sixi · xi .
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Classical vortices

An unlike-charged pair with the same winding numbers separated by a
distance d propagates normally to their common axis with speed
|s|/d .

Method of “images” to deal with boundaries. No mass flux across the
boundary implies v · n = 0, where n is the normal to the boundary.
This condition is satisfied by placing vortices and removing the
boundary.

Chaotic dynamics with the minimum of four vortices in the infinite
plane; three in a half-plane or circle, and two in an arbitrary closed
region.

Challenge to understand vortex motion in condensates: nonuniform
background, interactions with sound, boundaries etc.
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Methods

boundary-layer theory: vortex problem solved exactly in the inner
region (close to the core) and in the outer region (far away from the
core); the asymptotics of two solutions are matched in the
intermediate region.

variational approach: trial function that depends on some parameters
is used to evaluate the Lagrangian of the GP equation; the
Euler-Lagrange equations are used to determine the dynamical
evolution of parameters.

Hamiltonian approach: approximation of a vortex solution is used to
evaluate U = ∂H

∂p .

numerical simulations.
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Vortex motion in condensates

i~ψt(r, t) = − ~2

2m
∇2ψ + V0|ψ|2ψ + Vext(r)ψ

Harmonic trapping potential Vext = 1
2m(ω2

xx2 + ω2
yy2 + ω2

z z2)

Eric Cornell group (JILA) 2000

Question: how does a vortex move in trapped condensates?
Partial answer: [Rubinstein & Pismen (1994)]
Drift across the density gradient: v = vs − J f ln α

|f| , f = ∇ ln ρ0.
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Vortex motion in condensates

Depleted surface layer induces an effective shift in the position of the
image proportional to the integral of the displaced density
[Mason, Berloff and Fetter PRA (2006)];

Global shape of the condensate has an effect on the vortex motion.
Vortex velocity locally satisfies U = ∂H/∂p.
[Mason and Berloff, PRA (2007)]

non-equilibrium condensates: vortex motion is subject of many
additional effects.
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Turbulence

Classical Turbulence
In 50th Batchelor wrote to his friend and close colleague, Alan Townsend,
who remained in Australia:

You will come to Cambridge, study turbulence, and work with G. I. Taylor.

The answer came immediately: I agree, but I have two questions:
who is G. I. Taylor and ... what is turbulence?
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Turbulence

Classical turbulence – cascading vorticity;
Superfluid turbulence – quantisation of velocity circulation – differences
with classical turbulence;
Strong turbulence– unstructured vortices (distance between vortices of the
order of their core);
Weak turbulence regime – almost independent motion of weakly
interacting dispersive waves.

Stages in condensate formation from a nonequilibrium state:
[Berloff & Svistunov Phys Rev A (2002)]
weak turbulence → strong turbulence → superfluid turbulence →
condensate
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Superfluid turbulence

Superfluid turbulence (tangle of quantised vortices in a superfluid) can be
created in a number of ways:

in the counterflow of normal and superfluid components
[Vinen PRSL (1957), Schwarz PRB (1985,1986), Chagovets et al,
PRE (2007)];
by vibrating objects
[Davis et al, Physica B (2000), Bradley et al PRL (2006), Hanninen
et al PRB (2007), Blaukova et al, PRB (2009)];
as a result of macroscopic motion of superfluid (quasi-classical
turbulence)
[Nore et al, PRL (1997), Walmsley et al PRL (2007, 2008), Stalp et
al (1999, 2002)];
by the recently developed technique of ion injection
[Walmsley et al, PRL (2008)] ;
in the process of strongly non-equilibrium Bose-Einstein condensation
(Kibble-Zurek effect) [Berloff and Svistunov, PRB (2002), Weiler et
al, Nature (2008)];
by an external perturbation of the trap in atomic Bose-Einstein
condensates
[Henn et al PRL (2009)].

() Quantum liguids 30 / 75



Scenarios of Superfluid turbulence

Counterflow set–up: Vinen’s equations, extensive experimental studies and
microscopic simulations of vortex line dynamics. Presence of the normal
component leads to a simple relaxation mechanism.
Example: Vortex ring. Without normal component radius R of the ring is
constant and velocity U = U(R). With the drag force Ṙ ∼ −αU(R),
where α is a friction coefficient.
Similarly, normal fluid causes the decay of Kelvin waves – precessing
distortions on the vortex filaments – and α−1 gives the number of
revolutions the distortion makes before its amplitude diminishes.

α ∼ 1 Vortex lines reconnect producing Kelvin waves that decay due
to drag force rendering the vortex tangle more and more dilute.

α� 1 (α ∼ T 5 as T → 0 [Iordanskii (1966)]) relaxation of
turbulence involves number of cascades [Kozik and Svistunov,
(2004-2009)]
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Superfluid turbulence: normal fluid

Problem: How to model the normal fluid component?
Nonlinear Schrödinger (NLS) equation describes evolution of all highly
occupied modes nk � 1! [Levich and Yakhot, JPA (1978); Kagan and
Svistunov, PRL (1997)]
Therefore, NLS equation gives an accurate microscopic description of

formation of a BEC from a strongly degenerate gas of weakly
interacting bosons;
interactions of vortex tangle with normal fluid (above-the-condensate
modes)

Two theoretical limits of mathematical analysis of NLS:

“weak turbulence” [Zakharov et al (1985), Svistunov (1991)]
NLS → Boltzmann kinetic equation → self-similar solution for motion
of quasi-particles from high energies to low energies
superfluid turbulence [Nore et al (1997); Kobayashi & Tsubota
(2005)]
start with ad hoc tangle of vortices → tangle decays → energy
spectrum

NLS can be used to unify these results!() Quantum liguids 32 / 75



Unification of the above theoretical limits

NLS can be used to unify these results! [Berloff & Svistunov PRA

(2002); Berloff and Youd PRL (2007)]

(1) NLS with initial state as random field: ψ(x, t = 0) =
∑

k ak exp(ik · x),
(2) Initial evolution according to self-similar solution of Boltzmann kinetic
equation on occupation numbers nk = |ak|2;
(3) Characteristic time and characteristic wave vector at the beginning of
the coherent regime;
(4) Criteria for the number of particles in quasi-condensate;
(5) Formation of vortex tangle;
(6) Decay of superfluid turbulence via interactions with normal fluid; Drag
coefficients.
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Experimental realisation in ultra-cold atoms

Vortex formed during nonequilibrium kinetics of BEC
[Weiler et al. Nature (2008)]

Reverse the process going from condensate to weak turbulent state?
[Henn at el PRL (2009)]: applied an external oscillatory perturbation to
produce vortices.
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Modelling of superfluid helium

Shortcomings of the GP equation (when applied to superfluid helium):

Interactions

GP: only two-body interactions;
superfluid 4He: many-body
interactions;

Compressibility
GP: c ∝ √ρ; superfluid 4He: c ∝ ρ2.8;

Dispersion curves; critical velocities

GP ω2 = c2k2 +
( ~
2m

)2
k4 superfluid 4He

scaling problem; strictly positive pressure in GP
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Roton as a ghost of a vanishing vortex ring

Recent experiments in Yale:
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Nonlocal model

Take

Wc =
1

m2

∫ [
1

2

∫
ρ(r′)V (r′ − r)ρ(r) dr′

]
We consider a potential of the form

V (|x− x′|) = V (r) = (α + βA2r2 + δA4r4) exp(−A2r2),

where A,B, α, β, and δ are parameters that can be chosen to give
excellent agreement with the experimentally determined dispersion curve.
The equation replacing the GP equation becomes
[Berloff JLTP (1999), Berloff & Roberts JPA (2000)]

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 +

∫
V (|r − r′|)|ψ(r′, t)|2 dr′

]
ψ

In dimensionless form

−2i
∂ψ

∂t
= ∇2ψ + ψ

[
1−

∫
|ψ(x′)|2V (|x− x′|) dx′

]
.
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Dispersion Diagram

Dispersion relation

ω2 =
1

4
k4 + 2πk

∫
sin krV (r)r dr .

The parameters α, β and δ of the nonlocal potential are chosen so that the
bulk normalization condition is satisfied and the dispersion relation has the
position of the roton minimum close to that experimentally observed.
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Successes:

Roton minimum is not a vanishing vortex ring.

Vortex rings dynamics.

Structure of vortex line in agreement with MC simulations.

Roton emission vs vortex nucleation.
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Superfluid helium and Electron bubbles

Electron bubbles — useful experimental probes.

Rayfield and Reif (1964): Above some critical velocity moving ions
produce vortex rings;

Packard and Sanders (1972): Vortex lines trap electrons;

Walmsley and Golov (2008): Turbulence by injecting ions;

Maris (2005): Explosion of electron bubbles at negative pressures;
Ultrasonic transducer generates sound which results in a large
pressure oscillation at the acoustic focus.
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Modelling of superfluid helium

[Berloff and Roberts, JPA (2001); Berloff, FDR (2009)]
Use correct equation of state H0/N = −1

2V0n − 1
3Q0n2 + 1

4W0n3.
Equations on wave function of the condensate, ψ, and the wave function
of the impurity, φ:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ+(U0|φ|2−V0|ψ|2−Q0|ψ|4+W0|ψ|6−E )ψ,

∫
|ψ|2dV = N

i~
∂φ

∂t
= − ~2

2µ
∇2φ+ (U0|ψ|2 − Ee)φ,

∫
|φ|2dV = 1.

m – mass of boson; E – single particle energy of boson; µ – mass of
electron; Ee – energy of electron; U0 = 2πl~2/µ – effective interaction
potentials between boson and electron; l – boson-impurity scattering
length.
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Results on electron bubbles:

Moving electron experiences no drag below critical velocity; vortex
nucleation above critical velocity;

Electron bubble gets trapped in the vortex core;

Bubble collapses below critical -2 bar (agrees with experiment);
Shrinking bubble leads to formation of vortex rings;
(compare with collapse of cavity NGB & Barenghi, PRL (2004))
Transfer of energy between vortex rings allows them to grow and slow
down; (compare with NGB, PRA (2004))
”Unidentified electron object” – is a bubble trapped by several
vortices!
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Proposal: generation of turbulence

Vortex lines ψ = f (r) exp[isθ]. Near the origin f (r) ∼ asr |s|.
Instability occurs when a1 = 0 and the negative pressure forces can no
longer be balanced by the centrifugal energy of the fluid flow.
Criticality corresponds to a critical pressure of −6 bar (agrees with
experiments).

Vortex rings and rarefaction pulses.
Energy vs impulse

() Quantum liguids 43 / 75



Proposal: generation of turbulence

Vortex lines ψ = f (r) exp[isθ]. Near the origin f (r) ∼ asr |s|.
Instability occurs when a1 = 0 and the negative pressure forces can no
longer be balanced by the centrifugal energy of the fluid flow.
Criticality corresponds to a critical pressure of −6 bar (agrees with
experiments).

Vortex rings and rarefaction pulses.
Energy vs impulse

() Quantum liguids 43 / 75



Proposal: generation of turbulence

Vortex lines ψ = f (r) exp[isθ]. Near the origin f (r) ∼ asr |s|.
Instability occurs when a1 = 0 and the negative pressure forces can no
longer be balanced by the centrifugal energy of the fluid flow.
Criticality corresponds to a critical pressure of −6 bar (agrees with
experiments).

Vortex rings and rarefaction pulses.
Energy vs impulse

() Quantum liguids 43 / 75



Increasing density of vortex lines

Periodically varying pressure may lead to multiplication of vortices.
Variations of the velocity field around the core → vortex core breaks into
odd number of vortices (vortex rings) to preserve the total unit of
circulation of ±1 around the initial vortex.

t = 0 t = 275

t = 375 t = 425
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Nonequilibrium condensates: condensates made of light

Absorption of photon by semiconductor ⇒ exciton ⇒ emitting photon ⇒
mirrors ⇒ exciton photon superposition ⇒ polariton mpol = 10−4me ⇒

BEC expected at “high” temperature!

Quantum WellsCavity
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Properties of exciton-polaritons

polariton-polariton interactions:
interactions between charged particles, saturation of the
exciton-photon interactions, electron-electron exchange;
for low densities pseudo-potential U(r)→ Uδ(r);
typical scale of U is 10−3 meVµm2.

short lifetime (5-10 ps):
(i) non-equilibrium condensate (ii) helps image the properties.
ck = E LP,UP

~k
sin(θ), therefore, refer to polariton momentum,

wavevector or emission angle θ interchangeably.

two polarisation states:
left- and right-circularly polarised photon states;

coupling between mechanical strain in the sample and the energy of
electron and hole breaks symmetry and favours a particular linear
polarisation.
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Experimental techniques

Materials: CdTe or GaAs
Polariton Injection

directly creating zero momentum polaritons with a
coherent pump laser;

coherently creating polaritons at a ’magic angle’;

coherently creating polaritons at large angles;

incoherent pump laser;

injecting electrons and holes by electric currents.
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Phonon emision

Momentum distribution and thermalisation

[Kasprzak et al Nature (2006); Deng et al PRL (2006)]:
Questions remained:
(1) coherent emission only in the region excited by laser;
(2) disorder: ground state poorly defined.
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Non-equilibrium condensation vs lasing

Polariton condensates are non-equilibrium steady states emitting coherent
light.

Should they be described as condensates or as lasers?
Criteria:

(i)Thermal distribution? Polariton distribution is set by balance of
pumping, decay and relaxation.
Smooth cross-over between equilibrium BEC, polariton condensate
and lasing.

(ii) Stimulated scattering into ground state. Within polariton
modes vs stimulated emission of photons in lasers.

(iii) Inversion of gain medium in lasers. Polariton condensation
occurs with a quasi-thermal distribution of polaritons. No need for
inverted (negative temperature) distribution of gain medium in order
for gain to exceed absorption.
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Modelling non-equilibrium condensates

[Keeling & NB, PRL, 100, 250401 (2008)]
Equation for the macroscopically occupied polariton state Ψ(r, t):

i~∂tΨ =
[
E (i∇) + U|Ψ|2 + V (r)

]
Ψ+i

[
Pcoh(r, t) +

(
Pinc(r)− κ− σ|Ψ|2

)
Ψ
]
.

Polariton dispersion, E (k) (eg. a quadratic dispersion
E (k) ' ~2k2/2mpol);
Strength of the δ−function interaction (pseudo)potential U;
External potential V (r);
Coherent pump field Pcoh(r)e iωpt ;
Incoherent pump field Pinc(r);
κ and σ describe linear and nonlinear losses respectively.

cf. ”generic laser model” of Wouters and Carusotto PRA (2007)
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Superfluidity checklist

[J. Keeling and NB, Nature (2009)]
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Nonequilibrium condensates: condensates made of light

[Balili et al Science 316,(2007)]:
A harmonic trapping potential is created by squeezing the sample by a
sharp pin.

Signatures of BEC:
spatial and spectral narrowing; coherence

() Quantum liguids 51 / 75



Gross-Pitaevskii equation with loss and gain

Mean-field model of a non-equilibrium BEC of exciton-polaritons

i~∂tψ =

[
−~2∇2

2m
+ Vext + U|ψ|2 + i(γnet − Γ|ψ|2)

]
ψ,

Vext is an external trapping potential, = 1
2mω2r2, γnet– net gain,

Γ – effective loss, U – effective (pseudo-) interaction potential.
Length in units of oscillator length

√
~/mω, energies in units of ~ω, and

ψ →
√
~ω/2Uψ, yields:

i∂tψ =
[
−∇2 + r2 + |ψ|2 + i

(
α− σ|ψ|2

)]
ψ.

Two parameters: α = 2γnet/~ω (gain), and σ = Γ/U (loss).
Estimate from experiments: 0 ≤ α ≤ 10 and σ ∼ 0.3
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Radially symmetric stationary states

µψ =
[
−∇2 + r2 + |ψ|2 + i

(
α− σ|ψ|2

) ]
ψ

α not too large, Thomas-Fermi solution |ψ|2 = (µ− r2) for r < rTF =
√
µ∫

d2r
(
α− σ|ψ|2

)
|ψ|2 = 0 ⇒ µ = 3α/2σ.

Madelung transformation, ψ =
√
ρe iφ:

∇ · [ρ∇φ] = (α− σρ) ρ,

µ = |∇φ|2 + r2 + ρ−
∇2√ρ
√
ρ
.

High density =⇒ loss
low density =⇒ gain
currents ∇φ, between these regions
(in TF φ′(r) = −σrρ(r)/6)
Large currents =⇒ density depletion.
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Spiral vortex states

Theory:

ψ = f (r) exp[isθ + iφ(r)]

Leading order
φ′(r) ∼ α/2(s + 1)r .

Experiment:
[Lagoudakis et al. Nature Physics (2008)]
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Instability of rotationally symmetric states

1

2
∂tρ+∇ · [ρv] = (α− σρ) ρ, ∂tv +∇(ρ+ r2 + |v|2) = 0

If α, σ small, find normal modes in 2D trap: δρn,m = e imθhn,m(r)e iωn,mt

ωn,m = 2
√

m(1 + 2n) + 2n(n + 1).
Add weak pumping and decay

ωn,m → ωn,m + iα
[ m(1 + 2n) + 2n(n + 1)−m2

2m(1 + 2n) + 4n(n + 1) + m2

]
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Finite Spot Size

In experiments: finite spot, of size comparable to observed cloud, is used.
Model this as α = α(r) ≡ αΘ(r0 − r)
For small r0 ( r0 < rTF ∼

√
3α/2σ), this stabilises the radially symmetric

modes and vortex modes:
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Development of instability?
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Vortex Lattices
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Vortex Lattices

Stationary µ ∼ 3α/2σ; Vortex lattice µ ∼ α/σ

r0

In rotating frame

∇ · [ρ(∇φ− Ω× r)] = (αΘ(r0 − r)− σρ) ρ,

µ = |∇φ− Ω× r|2 + r2(1− Ω2) + ρ−
∇2√ρ
√
ρ
.

In TF regime away from boundaries solution is
∇φ = Ω× r + v .c ., ρ = α/σ = µ,Ω2 = 1.
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Experiments on spinor polariton condensates

Results so far do not involve polariton spin:
[Lagoudakis et al, Science, November 2009]:

Phase maps of left- and right-circular polarized polariton states

Observed all possible (±1,±1) vortex states.
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Polariton spin degree of freedom

[Borgh, Keeling, NB, PRB, 81, 235302 (2010)]

Include spin degree of freedom: left- and right-circular polariton
states ψL and ψR .

For weakly-interacting dilute Bose gas model:

H =
~2|∇ψL|2

2m
+

~2|∇ψR |2

2m
+

U0

2

(
|ψL|2 + |ψR |2

)2

− 2U1|ψL|2|ψR |2+ΩB

(
|ψL|2 − |ψR |2

)
+ J1

(
ψ†LψR + H.c

)
+ J2

(
ψ†LψR + H.c .

)2

Tendency to biexciton formation → U1 . Magnetic field: ΩB

J2 Circular symmetry broken – two equivalent axes.
J1 preferred direction – inequivalent axes.
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Non-equilibrium spinor system

Spinor Gross-Pitaevskii equation:

i~∂tψL =

[
−~2∇2

2m
+ Vext(r) +

ΩB

2
+ U0|ψL|2 + (U0 − 2U1)|ψR |2

+ i
(
γnet − Γ|ψL|2

)]
ψL + J1ψR

Similarly for ψR with ψL ↔ ψR and ΩB → −ΩB .
Dimensionless cGPE:

i∂tψL =

[
−∇2+v(r)+|ψL|2+(1−ua)|ψR |2+

∆

2
+i
(
α− σ|ψL|2

) ]
ψL+JψR .

If v(r) = r2 then take α→ αΘ(r0 − r) as before.
Questions:

1 Normal modes of uniform model: diffusive, linear, gapped.
2 Effect of ∆ and J on vortices?
3 How does interconversion J interact with currents?
4 Synchronization/desynchronization.
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Spinor condensates—vortex lattices

[J. Keeling and NB, arXiv:1102.5302 (2011)]
Vortex patterns generated by superposition of fluxes.
Spinor complex Ginzburg-Landau equation:

2i∂tψl ,r =

[
±∆

2
−∇2 + v(r) + |ψl ,r |2 + (1− ua)|ψr ,l |2

+i
(
α−2iη∂t − σ|ψl ,r |2 − τ |ψr ,l |2

)]
ψl ,r + Jψr ,l .

η – energy relaxation [Wouters and Savona arXiv:1007.5431 (2010)];
τ – cross-spin nonlinear dissipation;
∆ – effect of the magnetic fied;
J – electric field, stress or due to asymmetry of quantum well interfaces;
Parameters estimated from [Larionov et al, PRL, 105, 256401 (2010)]
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Synchronized/desynchronized regimes

For nonzero η there is a second transition at ∆c2 back to synchronized
state, ∆c2 ' (2α/η)(σ − τ + ηua)/(σ + τ + η(2− ua)) (dashed line)

• –synchronized states ( vortex-free states or synchronized vortices);
◦– desynchronized states (vortices of opposite sign for l and r).
Conclude: homogeneous model gives good prediction of spatially varying
system.
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Vortex formation

Vortex formation in equilibrium condensates:

interactions of finite amplitude sound waves;

existence of critical velocities of the flow;

modulational instabilities.

In addition in nonequilibrium condensates – pattern forming, interaction of
fluxes with a disorder etc.
Vortex formation due to interference of supercurrents

Analytical solution for the velocity u(r) on ∞ < r <∞.
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Pumping in three equidistant spots

(a) ∆ = 0 showing geometry of
pumping;
(b) Desynchronized ∆ = 20 steady
majority density with streamlines;
(c) Lower synchronized ∆ = 5
steamlines of both polarizations;
(d) Upper synchronized ∆ = 40
steamlines of both polarizations.

() Quantum liguids 66 / 75



Half-vortices

”Half-vortices” have been seen in experiments:
[Lagoudakis et al Nature Phys. (2008)]
Are ”half-vortices” pinned and stabilized by disorder?

(a) Desyncronized ∆ = 20 half-vortex
lattice;
(b) -(c) -(d) evolution of minority
component in desyncronized regime
∆ = 20.

Majority component is stationary in both regimes;
Minority component is stationary in syncronized regime only.
In desyncronized regime averages to vortex-free state.
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Vortex Lattice Spacing

Currents are neglible at the pumping centre, µ(ρl ,r );
away from pumping spot – densities are neglible.

Synchronized regime: away from the pump
µ− |~u|2 ∓∆/2 = J (ρl/ρr)

∓1/2 cos(θ) and
∇ · (ρl ,r~u) + α1ρl ,r = ∓J

√
ρlρr sin(θ).

These are solved by sin(θ) = 0 and ∇(ρl/ρr ) = 0,
so |~u|2 = µ+

√
J2 + ∆2/4.

Desynchronized regime: θ and ρl/ρr are not time independent, so one
calculates averages. If ρr � ρl , then for majority component
〈|~ur |2〉 = 〈µr 〉+ ∆/2.
Superposition of such currents results in hexagonal vortex lattice with
spacing l = (2π/|~u|)× 2/3

√
3.

∆
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Experimental realization: Cavendish, UK
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Interference of currents

[ N.G.Berloff, arXiv:1010.5225 (2010)]
Regular emission of vortices Many irregular spots: turbulence

Two regimes: forced turbulence and turbulence decay.
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Weak turbulence

In forced turbulence it is possible to reach a weak turbulence state:
g2 = 〈|ψ|4〉/〈|ψ|2〉2. Weak turbulence implies g2 ∼ 2.

Red Squares – nonzero η facilitates the transition to weak turbulence.

() Quantum liguids 71 / 75



Outlook:

Modelling superfluid helium using GP-like equations with a correct
equation of state

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + (U0|φ|2 − V0|ψ|2 − Q0|ψ|4 + W0|ψ|6 − E )ψ,

i~
∂φ

∂t
= − ~2

2µ
∇2φ+ (U0|ψ|2 − Ee)φ,

∫
|φ|2dV = 1.

Nonlocal equation with a roton minimum

Modelling normal fluid and finite temperature

Turbulence at low temperature
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Conclusions

Nonequilibrium condensates: condensates made of light
Gross-Pitaevskii equation with loss and gain

i∂tψ =
[
−∇2 + r2 + |ψ|2 + i

(
αΘ(r0 − r)− σ|ψ|2

)]
ψ.

Radially symmetric stationary states: narrowing of density profile
Spiral vortex states

Vortex lattices
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Conclusions

Non-equilibrium spinor system

i∂tψL =

[
−∇2 + V (r) +

∆

2
+ |ψL|2 + (1− ua)|ψR |2

+ i
(
αΘ(r0 − r)− σ|ψL|2

)]
ψL + JψR

Effect of ∆ and J on vortices.

Densities of L and R components for J = 1
Trajectories for ∆ = 4

Spirographs
(epitrochoids/hypotrochoid)

Synchronization/desynchronization with the region of bistability.
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Conclusions

Turbulence in exciton-polariton condensates may lead to novel
regimes of turbulence of classical matter field.

The regimes can be distinguished by finding second order correlation
function; by looking at the wave spectrum.
What are the stages in transition from strong turbululence to weak
turbulence and back?

Spinor condensates: predictions of homogeneous model
(syncronization/desynchronization) are not significantly modified by
spatial inhomogeneity.

Observation of the experimental behaviour in an applied field can thus
be used to distinguish the loss nonlinearities σ, τ and η.
Vortices, vortex lattices and half-vortex latices in spinor condensates.
Being stationary these textures can be studied experimentally.

Turbulence in spinor condensates.

Scaling laws? Cross-overs of different regimes? Interplay between
turbulent regimes and the effects of magnetic field?...
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