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Nonequilibrium condensates: condensates made of light

Absorption of photon by semiconductor ⇒ exciton ⇒ emitting photon ⇒
mirrors ⇒ exciton photon superposition ⇒ polariton mpol = 10−4me ⇒

BEC expected at “high” temperature!

Quantum WellsCavity
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Lower and Upper polariton branches

Polariton frequency ω~k = (c/n)
√

k2 + (2πN/Lw )2

n is the refractive index, c the speed of light in vacuum, and N labels the
transverse mode in a cavity of transverse size Lw .
For small k ~ω~k = ~ω0 + ~2k2/2m with photon mass
m = ~(n/c)(2πN/Lw ).
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
Direct observation of spectrum: transmission and reflection of the
microcavity as a function of energy and incident angle.

Exciton-polariton BECs () 5 / 50



Lower and Upper polariton branches

Polariton frequency ω~k = (c/n)
√

k2 + (2πN/Lw )2

n is the refractive index, c the speed of light in vacuum, and N labels the
transverse mode in a cavity of transverse size Lw .
For small k ~ω~k = ~ω0 + ~2k2/2m with photon mass
m = ~(n/c)(2πN/Lw ).

i~∂t
(

Ψphot

Ψex

)
=

(
~ωk

1
2g

1
2g ε

)(
Ψphot

Ψex

)
Eigenstates

ELP,UP
~k

=
1

2

(~ω0 + ε+
~2k2

2m

)
∓

√(
~ω0 − ε+

~2k2
2m

)2

+ g2


Direct observation of spectrum: transmission and reflection of the
microcavity as a function of energy and incident angle.

Exciton-polariton BECs () 5 / 50



Properties of exciton-polaritons

polariton-polariton interactions:
interactions between charged particles, saturation of the
exciton-photon interactions, electron-electron exchange;
for low densities pseudo-potential U(r)→ Uδ(r);
typical scale of U is 10−3 meVµm2.

short lifetime (5-10 ps):
(i) non-equilibrium condensate (ii) helps image the properties.
ck = ELP,UP

~k
sin(θ), therefore, refer to polariton momentum,

wavevector or emission angle θ interchangeably.

two polarisation states:
left- and right-circularly polarised photon states;

coupling between mechanical strain in the sample and the energy of
electron and hole breaks symmetry and favours a particular linear
polarisation.
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Experiments on exciton-polariton condensates

Schematic of an experiment studying polaritons:

Detector measures:

(b) the real and momentum space images;

(c) energy resolved images using a spectrometer;

(d) first-order coherence using an interferometer.

From M.Richard, PhD Thesis, Universite Joseph Fourier, Grenoble, 2004.
http://tel.archives-ouvertes.fr/tel-00009088/fr
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Experimental techniques

Materials: CdTe or GaAs
Polariton Injection

directly creating zero momentum polaritons with a
coherent pump laser;

coherently creating polaritons at a ’magic angle’;

coherently creating polaritons at large angles;

incoherent pump laser;

injecting electrons and holes by electric currents.
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Phonon emision

Momentum distribution and thermalisation

[Kasprzak et al Nature (2006); Deng et al PRL (2006)]:
Questions remained:
(1) coherent emission only in the region excited by laser;
(2) disorder: ground state poorly defined.
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Non-equilibrium condensation vs lasing

Polariton condensates are non-equilibrium steady states emitting coherent
light.

Should they be described as condensates or as lasers?
Criteria:

(i)Thermal distribution? Polariton distribution is set by balance of
pumping, decay and relaxation.
Smooth cross-over between equilibrium BEC, polariton condensate
and lasing.

(ii) Stimulated scattering into ground state. Within polariton
modes vs stimulated emission of photons in lasers.

(iii) Inversion of gain medium in lasers. Polariton condensation
occurs with a quasi-thermal distribution of polaritons. No need for
inverted (negative temperature) distribution of gain medium in order
for gain to exceed absorption.
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Coherence and correlation measurements

The first and second order correlation functions of the electromagnetic
field:

g1(~r ,~r ′, t, t ′) =
〈E ∗(~r ′, t ′)E (~r , t)〉√
〈E (~r ′, t ′)2〉〈E (~r , t)2〉

,

g2(~r ,~r ′, t, t ′) =
〈E ∗(~r ′, t ′)E ∗(~r , t)E (~r , t)E (~r ′, t ′)〉

〈E (~r ′, t ′)2〉〈E (~r , t)2〉
.

Temporal coherence g1(τ) = g1(~r ,~r , t + τ, t);
Spatial coherence g1(|r |) = g1(r0 + r, r0, t, t).
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Modelling non-equilibrium condensates

The complex Ginzburg-Landau equation:

i∂tψ = c1∇2ψ + c2|ψ|2ψ + c3ψ.

Gross-Pitaevskii equation as a non-relativistic limit of the Klein-Gordon
equation–the simplest equation consistent with special relativity.

∂2Ψ

∂t2
= c2∇2Ψ− λ2Ψ

Represent Ψ = ψ exp[∓iλt] for matter and anti-matter solutions.

−λ2ψ − 2iλ
∂ψ

∂t
+
∂2ψ

∂t2
= c2∇2ψ − λ2ψ

Non-relativistic limit

∣∣∣∣∂2ψ∂t2 ∣∣∣∣� λ
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Gross-Pitaevskii equation

i
∂ψ

∂t
= − c2

2λ
∇2ψ

+ A|ψ|2ψ.

Exciton-polariton BECs () 11 / 50



Modelling non-equilibrium condensates

The complex Ginzburg-Landau equation:

i∂tψ = c1∇2ψ + c2|ψ|2ψ + c3ψ.

Gross-Pitaevskii equation as a non-relativistic limit of the Klein-Gordon
equation–the simplest equation consistent with special relativity.

∂2Ψ

∂t2
= c2∇2Ψ− λ2Ψ

Represent Ψ = ψ exp[∓iλt] for matter and anti-matter solutions.

−λ2ψ − 2iλ
∂ψ

∂t
+
∂2ψ

∂t2
= c2∇2ψ − λ2ψ

Non-relativistic limit

∣∣∣∣∂2ψ∂t2 ∣∣∣∣� λ

∣∣∣∣∂ψ∂t ∣∣∣∣
Gross-Pitaevskii equation

i
∂ψ

∂t
= − c2

2λ
∇2ψ

+ A|ψ|2ψ.

Exciton-polariton BECs () 11 / 50



Modelling non-equilibrium condensates

The complex Ginzburg-Landau equation:

i∂tψ = c1∇2ψ + c2|ψ|2ψ + c3ψ.

Gross-Pitaevskii equation as a non-relativistic limit of the Klein-Gordon
equation–the simplest equation consistent with special relativity.

∂2Ψ

∂t2
= c2∇2Ψ− λ2Ψ

Represent Ψ = ψ exp[∓iλt] for matter and anti-matter solutions.

−λ2ψ − 2iλ
∂ψ

∂t
+
∂2ψ

∂t2
= c2∇2ψ − λ2ψ

Non-relativistic limit

∣∣∣∣∂2ψ∂t2 ∣∣∣∣� λ

∣∣∣∣∂ψ∂t ∣∣∣∣
Gross-Pitaevskii equation

i
∂ψ

∂t
= − c2

2λ
∇2ψ + A|ψ|2ψ.

Exciton-polariton BECs () 11 / 50



Modelling non-equilibrium condensates

Equation for the macroscopically occupied polariton state Ψ(r, t):

i~∂tΨ =
[
E (i∇) + U|Ψ|2 + V (r)

]
Ψ+i

[
Pcoh(r, t) +

(
Pinc(r)− κ− σ|Ψ|2

)
Ψ
]
.

Polariton dispersion, E (k) (eg. a quadratic dispersion
E (k) ' ~2k2/2mpol);
Strength of the δ−function interaction (pseudo)potential U;
External potential V (r);
Coherent pump field Pcoh(r)e iωpt ;
Incoherent pump field Pinc(r);
κ and σ describe linear and nonlinear losses respectively.

cf. ”generic laser model” of Wouters and Carusotto PRA (2007)
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Spectrum

Bogoliubov spectrum comes from considering fluctuations of the form

Ψ(~r , t) = e−iµt/~
(

Ψ0 +
∑

k uke
−iξk t+i~k·~r + vke

iξ∗k t−i~k·~r
)

, and finding a

self consistent set of equations for uk , vk and the frequency ξk .
Spectrum of non-equilibrium system ~ξk ' −i~η +

√
µ~2k2/mpol − ~2η2

for small k .
η is a characteristic size of the pump rate, e.g. η ' Pinc − κ.
For small k, the real part of the spectrum is zero for k < η

√
mpol/µ.

No superfluidity in non-equilibrium condensates?
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Superfluidity checklist
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Nonequilibrium condensates: condensates made of light

[Balili et al Science 316,(2007)]:
A harmonic trapping potential is created by squeezing the sample by a
sharp pin.

Signatures of BEC:
spatial and spectral narrowing; coherence
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Gross-Pitaevskii equation with loss and gain

Mean-field model of a non-equilibrium BEC of exciton-polaritons

i~∂tψ =

[
−~2∇2

2m
+ Vext + U|ψ|2 + i(γnet − Γ|ψ|2)

]
ψ,

Vext is an external trapping potential, = 1
2mω

2r2, γnet– net gain,
Γ – effective loss, U – effective (pseudo-) interaction potential.
Length in units of oscillator length

√
~/mω, energies in units of ~ω, and

ψ →
√
~ω/2Uψ, yields:

i∂tψ =
[
−∇2 + r2 + |ψ|2 + i

(
α− σ|ψ|2

)]
ψ.

Two parameters: α = 2γnet/~ω (gain), and σ = Γ/U (loss).
Estimate from experiments: 0 ≤ α ≤ 10 and σ ∼ 0.3
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Radially symmetric stationary states

µψ =
[
−∇2 + r2 + |ψ|2 + i

(
α− σ|ψ|2

) ]
ψ

α not too large, Thomas-Fermi solution |ψ|2 = (µ− r2) for r < rTF =
√
µ∫

d2r
(
α− σ|ψ|2

)
|ψ|2 = 0 ⇒ µ = 3α/2σ.

Madelung transformation, ψ =
√
ρe iφ:

∇ · [ρ∇φ] = (α− σρ) ρ,

µ = |∇φ|2 + r2 + ρ−
∇2√ρ
√
ρ
.

High density =⇒ loss
low density =⇒ gain
currents ∇φ, between these regions
(in TF φ′(r) = −σrρ(r)/6)
Large currents =⇒ density depletion.
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Spiral vortex states

Theory:

ψ = f (r) exp[isθ + iφ(r)]

Leading order
φ′(r) ∼ α/2(s + 1)r .

Experiment:
[Lagoudakis et al. Nature Physics (2008)]
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Instability of rotationally symmetric states

1

2
∂tρ+∇ · [ρv] = (α− σρ) ρ, ∂tv +∇(ρ+ r2 + |v|2) = 0

If α, σ small, find normal modes in 2D trap: δρn,m = e imθhn,m(r)e iωn,mt

ωn,m = 2
√
m(1 + 2n) + 2n(n + 1).

Add weak pumping and decay

ωn,m → ωn,m + iα
[ m(1 + 2n) + 2n(n + 1)−m2

2m(1 + 2n) + 4n(n + 1) + m2

]
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Finite Spot Size

In experiments: finite spot, of size comparable to observed cloud, is used.
Model this as α = α(r) ≡ αΘ(r0 − r)
For small r0 ( r0 < rTF ∼

√
3α/2σ), this stabilises the radially symmetric

modes and vortex modes:
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Development of instability?
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Vortex Lattices
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Vortex Lattices

Stationary µ ∼ 3α/2σ; Vortex lattice µ ∼ α/σ

r0

In rotating frame

∇ · [ρ(∇φ− Ω× r)] = (αΘ(r0 − r)− σρ) ρ,

µ = |∇φ− Ω× r|2 + r2(1− Ω2) + ρ−
∇2√ρ
√
ρ
.

In TF regime away from boundaries solution is
∇φ = Ω× r, ρ = α/σ = µ,Ω2 = 1.
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Experiments on spinor polariton condensates

Results so far do not involve polariton spin:
[Lagoudakis et al, Science, November 2009]:

Phase maps of left- and right-circular polarized polariton states

Observed all possible (±1,±1) vortex states.

Exciton-polariton BECs () 24 / 50



Polariton spin degree of freedom

Include spin degree of freedom: left- and right-circular polariton
states ψL and ψR .

For weakly-interacting dilute Bose gas model:

H =
~2|∇ψL|2

2m
+

~2|∇ψR |2

2m
+

U0

2

(
|ψL|2 + |ψR |2

)2

− 2U1|ψL|2|ψR |2+ΩB

(
|ψL|2 − |ψR |2

)
+ J1

(
ψ†LψR + H.c

)
+ J2

(
ψ†LψR + H.c .

)2

Tendency to biexciton formation → U1 . Magnetic field: ΩB

J2 Circular symmetry broken – two equivalent axes.
J1 preferred direction – inequivalent axes.
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Non-equilibrium spinor system

Spinor Gross-Pitaevskii equation:

i~∂tψL =

[
−~2∇2

2m
+ Vext(r) +

ΩB

2
+ U0|ψL|2 + (U0 − 2U1)|ψR |2

+ i
(
γnet − Γ|ψL|2

)]
ψL + J1ψR

Similarly for ψR with ψL ↔ ψR and ΩB → −ΩB .
Dimensionless cGPE:

i∂tψL =

[
−∇2+v(r)+|ψL|2+(1−ua)|ψR |2+

∆

2
+i
(
α− σ|ψL|2

) ]
ψL+JψR .

If v(r) = r2 then take α→ αΘ(r0 − r) as before.
Questions:

1 Normal modes of uniform model: diffusive, linear, gapped.
2 Effect of ∆ and J on vortices?
3 How does interconversion J interact with currents?
4 Synchronization/desynchronization.
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Stability of cross-polarized vortices

J = 0: All (±1, 0) and (±1,±1)
vortex complexes are
dynamically stable.

J 6= 0,∆ = 0: Solutions (+1,+1) are stable,
(±1, 0) and (+1,−1) are
unstable.

J 6= 0,∆ 6= 0: For a given J, any sufficiently
large ∆ allows the vortex
complexes (+1,−1) and
(±1, 0) to stabilize.

J = 1,∆ = 8

Outcome of instability ∆ = 0

J = 0.5

J = 1

J = 1.5

J = 2
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Two-mode system

Neglect v(r) and spatial variations, write

ψL,R =
√
ρL,Re

i(φ±θ/2), R =
ρL + ρR

2
, z =

ρL − ρR
2

,

θ̇ = −∆− 2uaz +
2Jz cos(θ)√
R2 − z2

ż = 2(α− 2σR)z − 2J
√
R2 − z2 sin(θ)

Ṙ = 2σ
(α
σ
R − R2 − z2

)
.

Josephson regime J � uaR &
z � R; R = R0 = α/σ
Equation for a driven, damped
pendulum

θ̈ + 2αθ̇ = −2α∆ + 4uaJ
α

σ
sin(θ).

[with Balanov and Janson]
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Trapped spinor system: µL,R = i∂t〈lnψL,R〉 vs ∆.

Simple case no vortices; r0 < rTF .
Marginal case r0 ∼ rTF .

∆ causes R(L) to grow (shrink).

”Simple case” not so simple:
retrograde loop
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Full two-component model

Full model with a trap confirms the predictions of two-mode model,
but has richer behaviour:

Phase portraits: fixed points, limit cycles with winding 0, 1, 2;
retrograde loops, quasi-periodic and chaotic behaviours
Counter-rotating lattices; spatially non-uniform interconversions...
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Stationary solitary waves

Stationary density depletion for intermediate J and small ∆

∆ = 0

Density depletions appear in trapped and uniform equilibrium condensates:
dark/black/grey solitons; rarefaction waves;
Travelling hole solutions of the complex Ginzburg–Landau equations: e.g.
Nozaki–Bekki solutions

Are these relevant?
From simulations ψL(x , y) = ψR(x ,−y), so this stationary state satisfies

i∂tψ = [−∇2 + r2 + |ψ|2 + i(αΘ(r0 − r)− σ|ψ|2)]ψ + Jψ(x ,−y).
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One-dimensional modified GL equation

Consider solutions of a modified GL equation without trap

i∂tψ = −ψxx + |ψ|2ψ + i(α− σ|ψ|2)ψ + Jψ(−x).

Stationary solutions exist for 0 < J < Jcr . Black soliton evolves into these
states.

Note: For Nozaki–Bekki holes J = 0 but one needs diffusion iψxx

(spectral filtering to stabilize the central frequency of the pulse)
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Vortex trajectories

Densities of L and R components for J = 1

Trajectories for ∆ = 4

Spirographs
(epitrochoids/hypotrochoid)

Similarly complicated cycloid trajectories of vortices are known for
two-layer fluids with one vortex in each layer — e.g. in models of tropical
vortices. Reaction difusion equations may lead to spiral wave dynamics.
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Vortex trajectories explained (somewhat)

Taking into account forces: Magnus force, radial advection, vortex
interactions can explain stationary vortex pairs.

Variational technique and ansatz
ψL = A(t)(z − zL(t)) exp(−|z |2) ,
ψR = B(t)(z∗ − z∗R(t)) exp(−|z |2)
yield equations of motion.

Spirographs:

zL(t) = xL(t) + iyL(t),

zR(t) = xR(t) + iyR(t),

żL = a(∆− δ)izL + 2Jbiz∗R ,

˙zR = a(∆ + δ)izR − 2Jbiz∗L .
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Spinor condensates—vortex lattices

Vortex patterns generated by superposition of fluxes.
Spinor complex Ginzburg-Landau equation:

2i∂tψl ,r =

[
±∆

2
−∇2 + v(r) + |ψl ,r |2 + (1− ua)|ψr ,l |2

+i
(
α−2iη∂t − σ|ψl ,r |2 − τ |ψr ,l |2

)]
ψl ,r + Jψr ,l .

η – energy relaxation [Wouters and Savona arXiv:1007.5431 (2010)];
τ – cross-spin nonlinear dissipation;
∆ – effect of the magnetic fied (in Hamiltonian ∼ ∆(|ψr |2 − |ψl |2));
J – electric field, stress or due to asymmetry of quantum well interfaces;

Magnetic field, ∆, drives the transition from synchronized to
desyncronized regimes for η = τ = 0.
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Synchronized/desynchronized regimes

For nonzero η there is a second transition at ∆c2 back to synchronized
state, ∆c2 ' (2α/η)(σ − τ + ηua)/(σ + τ + η(2− ua)) (dashed line)

• –synchronized states ( vortex-free states or synchronized vortices);
◦– desynchronized states (vortices of opposite sign for l and r).
Conclude: homogeneous model gives good prediction of spatially varying
system.
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Pumping in three equidistant spots

(a) ∆ = 0 showing geometry of
pumping;
(b) Desynchronized ∆ = 20 steady
majority density with streamlines;
(c) Lower synchronized ∆ = 5
steamlines of both polarizations;
(d) Upper synchronized ∆ = 40
steamlines of both polarizations.
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Half-vortices

”Half-vortices” have been seen in experiments:
[Lagoudakis et al Nature Phys. (2008)]
Are ”half-vortices” pinned and stabilized by disorder?

(a) Desyncronized ∆ = 20 half-vortex
lattice;
(b) -(c) -(d) evolution of minority
component in desyncronized regime
∆ = 20.

Majority component is stationary in both regimes;
Minority component is stationary in syncronized regime only.
In desyncronized regime averages to vortex-free state.
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Vortex Lattice Spacing

Currents are neglible at the pumping centre, µ(ρl ,r );
away from pumping spot – densities are neglible.

Synchronized regime: away from the pump
µ− |~u|2 ∓∆/2 = J (ρl/ρr)

∓1/2 cos(θ) and
∇ · (ρl ,r~u) + α1ρl ,r = ∓J√ρlρr sin(θ).
These are solved by sin(θ) = 0 and ∇(ρl/ρr ) = 0,
so |~u|2 = µ+

√
J2 + ∆2/4.

Desynchronized regime: θ and ρl/ρr are not time independent, so one
calculates averages. If ρr � ρl , then for majority component
〈|~ur |2〉 = 〈µr 〉+ ∆/2.
Superposition of such currents results in hexagonal vortex lattice with
spacing l = (2π/|~u|)× 2/3

√
3.

∆
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Motivation

Classical turbulence – cascading vorticity;
Superfluid turbulence – quantisation of velocity circulation – differences
with classical turbulence;
Strong turbulence– unstructured vortices (distance between vortices of the
order of their core);
Weak turbulence regime – almost independent motion of weakly
interacting dispersive waves.

Stages in condensate formation from a nonequilibrium state:
[Berloff & Svistunov Phys Rev A (2002)]
weak turbulence → strong turbulence → superfluid turbulence →
condensate
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Experimental realization in ultra-cold atoms

Vortex formed during nonequilibrium kinetics of BEC
[Weiler et al. Nature (2008)]

Reverse the process going from condensate to weak turbulent state?
[Henn at el PRL (2009)]: applied an external oscillatory perturbation to
produce vortices.
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Complex Ginzburg–Landau equation

Modelling Exciton-polariton condensates:
the complex Ginzburg-Landau equation

2i∂tψ =
[
−∇2 + v(r) + |ψ|2 + i

(
α(r)− i2η∂tψ − σ|ψ|2

)]
ψ,

v(r) – external disorder potential (ex. v(r) = mω2r2/2);
α – an effective gain (intensity of the pumping field);
σ – nonlinear losses.
Energy and length rescaled using harmonic oscillator energy and length.
From experiments, 0 ≤ α ≤ 10, σ ∼ 0.3.
η – energy relaxation [Wouters and Savona arXiv:1007.5431 (2010)] –
interactions with normal fluid [Pitaevskii, JETP (1959)].

Exciton-polariton BECs () 42 / 50



Vortex formation

Vortex formation in equilibrium condensates:

interactions of finite amplitude sound waves;

existence of critical velocities of the flow;

modulational instabilities.

In addition in nonequilibrium condensates – pattern forming, interaction of
fluxes with a disorder etc.
Vortex formation due to interference of supercurrents

Analytical solution for the velocity r(u) on ∞ < r <∞.

Exciton-polariton BECs () 43 / 50



Interference of currents

Regular emission of vortices Many irregular spots: turbulence

Two regimes: forced turbulence and turbulence decay.
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Weak turbulence

In forced turbulence it is possible to reach a weak turbulence state:
g2 = 〈|ψ|4〉/〈|ψ|2〉2. Weak turbulence implies g2 ∼ 2.

Red Squares – nonzero η facilitates the transition to weak turbulence.
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Turbulence spectra

Assume
(i) the existence of inertial range in the momentum space;
(ii) neglect pumping and dissipation there.

Weak turbulence theory
[Zhakharov et al (1992); Salman and Berloff, Physica D (2009)]:

Main idea:
Use random phase approximation to obtain evolution equation for the
wave spectrum

〈
ak1a

∗
k2

〉
= nk1δ(k1 − k2),

ak – the Fourier transform of ψ and ki are discrete wave vectors.
∂tnk1(t) =∫
d2k2d

2k3d
2k4Wk1,k2;k3,k4 (nk3nk4nk1 +nk3nk4nk2−nk1nk2nk3−nk1nk2nk4),

where Wk1,k2;k3,k4 = 4π
(2π)2

δ(k1 + k2 − k3 − k4)δ(k21 + k22 − k23 − k24 )
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Wave spectra

Two solutions:
(i) Equipartition of the total kinetic energy E =

∫
k2nk dk, so that

nk ∼ k−2;
(ii) Equipartition of the total number of particles N =

∫
nk dk, so that

nk ∼ const.
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Conclusions-1

Nonequilibrium condensates: condensates made of light
Gross-Pitaevskii equation with loss and gain

i∂tψ =
[
−∇2 + r2 + |ψ|2 + i

(
αΘ(r0 − r)− σ|ψ|2

)]
ψ.

Radially symmetric stationary states: narrowing of density profile
Spiral vortex states

Vortex lattices
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Conclusions-2

Non-equilibrium spinor system

i∂tψL =

[
−∇2 + V (r) +

∆

2
+ |ψL|2 + (1− ua)|ψR |2

+ i
(
αΘ(r0 − r)− σ|ψL|2

)]
ψL + JψR

Effect of ∆ and J on vortices.

Densities of L and R components for J = 1
Trajectories for ∆ = 4

Spirographs
(epitrochoids/hypotrochoid)

Synchronization/desynchronization with the region of bistability.
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Conclusions-3

Turbulence in exciton-polariton condensates may lead to novel
regimes of turbulence of classical matter field.

The regimes can be distinguished by finding second order correlation
function; by looking at the wave spectrum.
What are the stages in transition from strong turbululence to weak
turbulence and back?

Spinor condensates: predictions of homogeneous model
(syncronization/desynchronization) are not significantly modified by
spatial inhomogeneity.

Observation of the experimental behaviour in an applied field can thus
be used to distinguish the the loss nonlinearities σ, τ and η.
Vortices, vortex lattices and half-vortex latices in spinor condensates.
Being stationary these textures can be studied experimentally.

Turbulence in spinor condensates.

Scaling laws? Cross-overs of different regimes? Interplay between
turbulent regimes and the effects of magnetic field?...
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