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Motivation

Polariton condensates as sustained non-equilibrium system with
nontrivial spatiotemporal properties.
Advantage: source term can be made to vary in space and time to control
pattern formation.
Recent experiments study

quantised vortices [Lagoudakis et al Nature Phys 2008]

solitary waves propagation [Amo et al Nature 2009]

pattern in 1D samples [Wertz et al Nature Phys 2010]

Polarization degree of freedom allows to create topological textures more
complicated than simple vortices.

How to control the transition between different states?
Phase transition from linear to elliptical to circular polarisations?
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Gross-Pitaevskii equation with loss and gain

Mean-field model of a non-equilibrium BEC of exciton-polaritons

i~∂tψ =

[
−~2∇2

2m
+ Vext + U|ψ|2 + i(γnet − Γ|ψ|2)

]
ψ,

Vext is an external trapping potential, = 1
2mω

2r2, γnet– net gain,
Γ – effective loss, U – effective (pseudo-) interaction potential.
Length in units of oscillator length

√
~/mω, energies in units of ~ω, and

ψ →
√
~ω/2Uψ, yields:

i∂tψ =
[
−∇2 + r2 + |ψ|2 + i

(
α− σ|ψ|2

)]
ψ.

Two parameters: α = 2γnet/~ω (gain), and σ = Γ/U (loss).
Estimate from experiments: 0 ≤ α ≤ 10 and σ ∼ 0.3
[Keeling and NB, PRL, 100,250401 (2008)]
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Experiments on spinor polariton condensates

[Lagoudakis et al, Science, November 2009]:
Phase maps of left- and right-circular polarized polariton states

Observed all possible (±1,±1) vortex states.
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Polariton spin degree of freedom

Include spin degree of freedom: left- and right-circular polariton
states ψL and ψR .

For weakly-interacting dilute Bose gas model:

H =
~2|∇ψL|2

2m
+

~2|∇ψR |2

2m
+

U0

2

(
|ψL|2 + |ψR |2

)2

− 2U1|ψL|2|ψR |2+ΩB

(
|ψL|2 − |ψR |2

)
+ J1

(
ψ†LψR + H.c

)
+ J2

(
ψ†LψR + H.c .

)2

Tendency to biexciton formation → U1 . Magnetic field: ΩB

J2 Circular symmetry broken – two equivalent axes.
J1 preferred direction – inequivalent axes.
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Non-equilibrium spinor system

Spinor Gross-Pitaevskii equation: [Borgh et al PRB, 81, 235302 (2010)]

i~∂tψL =

[
−~2∇2

2m
+ Vext(r) +

ΩB

2
+ U0|ψL|2 + (U0 − 2U1)|ψR |2

+ i
(
γnet − Γ|ψL|2

)]
ψL + J1ψR

Similarly for ψR with ψL ↔ ψR and ΩB → −ΩB .
Dimensionless cGPE:

i∂tψL =

[
−∇2+v(r)+|ψL|2+(1−ua)|ψR |2+

∆

2
+i
(
α− σ|ψL|2

) ]
ψL+JψR .

If v(r) = r2 then take α→ αΘ(r0 − r) as before.
Questions:

1 Normal modes of uniform model: diffusive, linear, gapped.
2 Effect of ∆ and J on vortices?
3 How does interconversion J interact with currents?
4 Synchronization/desynchronization.
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Stability of cross-polarized vortices

J = 0: All (±1, 0) and (±1,±1)
vortex complexes are
dynamically stable.

J 6= 0,∆ = 0: Solutions (+1,+1) are stable,
(±1, 0) and (+1,−1) are
unstable.

J 6= 0,∆ 6= 0: For a given J, any sufficiently
large ∆ allows the vortex
complexes (+1,−1) and
(±1, 0) to stabilize.

J = 1,∆ = 8

Outcome of instability ∆ = 0

J = 0.5

J = 1

J = 1.5

J = 2
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Two-mode system

Neglect v(r) and spatial variations, write

ψL,R =
√
ρL,Re

i(φ±θ/2), R =
ρL + ρR

2
, z =

ρL − ρR
2

,

θ̇ = −∆− 2uaz +
2Jz cos(θ)√
R2 − z2

ż = 2(α− 2σR)z − 2J
√
R2 − z2 sin(θ)

Ṙ = 2σ
(α
σ
R − R2 − z2

)
.

Josephson regime J � uaR &
z � R; R = R0 = α/σ
Equation for a driven, damped
pendulum

θ̈ + 2αθ̇ = −2α∆ + 4uaJ
α

σ
sin(θ).

[with Balanov and Janson]
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Trapped spinor system: µL,R = i∂t〈lnψL,R〉 vs ∆.

Simple case no vortices; r0 < rTF .
Marginal case r0 ∼ rTF .

∆ causes R(L) to grow (shrink).

”Simple case” not so simple:
retrograde loop
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Full two-component model

Full model with a trap confirms the predictions of two-mode model,
but has richer behaviour:

Phase portraits: fixed points, limit cycles with winding 0, 1, 2;
retrograde loops, quasi-periodic and chaotic behaviours
Counter-rotating lattices; spatially non-uniform interconversions...
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Stationary solitary waves

Stationary density depletion for intermediate J and small ∆

∆ = 0

Density depletions appear in trapped and uniform equilibrium condensates:
dark/black/grey solitons; rarefaction waves;
Travelling hole solutions of the complex Ginzburg–Landau equations: e.g.
Nozaki–Bekki solutions

Are these relevant?
From simulations ψL(x , y) = ψR(x ,−y), so this stationary state satisfies

i∂tψ = [−∇2 + r2 + |ψ|2 + i(αΘ(r0 − r)− σ|ψ|2)]ψ + Jψ(x ,−y).
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Are these relevant?
From simulations ψL(x , y) = ψR(x ,−y), so this stationary state satisfies

i∂tψ = [−∇2 + r2 + |ψ|2 + i(αΘ(r0 − r)− σ|ψ|2)]ψ + Jψ(x ,−y).
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One-dimensional modified GL equation

Consider solutions of a modified GL equation without trap

i∂tψ = −ψxx + |ψ|2ψ + i(α− σ|ψ|2)ψ + Jψ(−x).

Stationary solutions exist for 0 < J < Jcr . Black soliton evolves into these
states.

Note: For Nozaki–Bekki holes J = 0 but one needs diffusion iψxx

(spectral filtering to stabilize the central frequency of the pulse)
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Vortex trajectories

Densities of L and R components for J = 1

Trajectories for ∆ = 4

Spirographs
(epitrochoids/hypotrochoid)

Similarly complicated cycloid trajectories of vortices are known for
two-layer fluids with one vortex in each layer — e.g. in models of tropical
vortices. Reaction difusion equations may lead to spiral wave dynamics.
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Spinor condensates—vortex lattices

[J.Keeling and NB, arXiv:1102.5302]
Vortex patterns generated by superposition of fluxes.
Spinor complex Ginzburg-Landau equation:

2i∂tψl ,r =

[
±∆

2
−∇2 + v(r) + |ψl ,r |2 + (1− ua)|ψr ,l |2

+i
(
α−2iη∂t − σ|ψl ,r |2 − τ |ψr ,l |2

)]
ψl ,r + Jψr ,l .

η – energy relaxation [Wouters and Savona arXiv:1007.5431 (2010)];
τ – cross-spin nonlinear dissipation;
∆ – effect of the magnetic fied (in Hamiltonian ∼ ∆(|ψr |2 − |ψl |2));
J – electric field, stress or due to asymmetry of quantum well interfaces;

Magnetic field, ∆, drives the transition from synchronized to
desyncronized regimes for η = τ = 0.
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Synchronized/desynchronized regimes

For nonzero η there is a second transition at ∆c2 back to synchronized
state, ∆c2 ' (2α/η)(σ − τ + ηua)/(σ + τ + η(2− ua)) (dashed line)

• –synchronized states ( vortex-free states or synchronized vortices);
◦– desynchronized states (vortices of opposite sign for l and r).
Conclude: homogeneous model gives good prediction of spatially varying
system.
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Vortex formation

Vortex formation in equilibrium condensates:

interactions of finite amplitude sound waves;

existence of critical velocities of the flow;

modulational instabilities.

In addition in nonequilibrium condensates – pattern forming, interaction of
fluxes with a disorder etc.
Vortex formation due to interference of supercurrents

Analytical solution for the velocity u(r) on ∞ < r <∞.
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Pumping in three equidistant spots

(a) ∆ = 0 showing geometry of
pumping;
(b) Desynchronized ∆ = 20 steady
majority density with streamlines;
(c) Lower synchronized ∆ = 5
steamlines of both polarizations;
(d) Upper synchronized ∆ = 40
steamlines of both polarizations.
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Half-vortices

”Half-vortices” have been seen in experiments:
[Lagoudakis et al Nature Phys. (2009)]
Are ”half-vortices” pinned and stabilized by disorder?

(a) Desyncronized ∆ = 20 half-vortex
lattice;
(b) -(c) -(d) evolution of minority
component in desyncronized regime
∆ = 20.

Majority component is stationary in both regimes;
Minority component is stationary in syncronized regime only.
In desyncronized regime averages to vortex-free state.
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Vortex Lattice Spacing

Currents are neglible at the pumping centre, µ(ρl ,r );
away from pumping spot – densities are neglible.

Synchronized regime: away from the pump
µ− |~u|2 ∓∆/2 = J (ρl/ρr)

∓1/2 cos(θ) and
∇ · (ρl ,r~u) + α1ρl ,r = ∓J√ρlρr sin(θ).
These are solved by sin(θ) = 0 and ∇(ρl/ρr ) = 0,
so |~u|2 = µ+

√
J2 + ∆2/4.

Desynchronized regime: θ and ρl/ρr are not time independent, so one
calculates averages. If ρr � ρl , then for majority component
〈|~ur |2〉 = 〈µr 〉+ ∆/2.
Superposition of such currents results in hexagonal vortex lattice with
spacing l = (2π/|~u|)× 2/3

√
3.

∆
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Turbulence

Classical Turbulence
In 50th Batchelor wrote to his friend and close colleague, Alan Townsend,
who remained in Australia:

You will come to Cambridge, study turbulence, and work with G. I. Taylor.

The answer came immediately: I agree, but I have two questions:
who is G. I. Taylor and ... what is turbulence?
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Motivation

Classical turbulence – cascading vorticity;
Superfluid turbulence – quantisation of velocity circulation – differences
with classical turbulence;
Strong turbulence– unstructured vortices (distance between vortices of the
order of their core);
Weak turbulence regime – almost independent motion of weakly
interacting dispersive waves.

Stages in condensate formation from a nonequilibrium state:
[Berloff & Svistunov Phys Rev A (2002)]
weak turbulence → strong turbulence → superfluid turbulence →
condensate
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Experimental realization in ultra-cold atoms

Vortex formed during nonequilibrium kinetics of BEC
[Weiler et al. Nature (2008)]

Reverse the process going from condensate to weak turbulent state?
[Henn at el PRL (2009)]: applied an external oscillatory perturbation to
produce vortices.
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Interference of currents

Regular emission of vortices Many irregular spots: turbulence

Two regimes: forced turbulence and turbulence decay.
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Weak turbulence

In forced turbulence it is possible to reach a weak turbulence state:
g2 = 〈|ψ|4〉/〈|ψ|2〉2. Weak turbulence implies g2 ∼ 2.

Red Squares – nonzero η facilitates the transition to weak turbulence.
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Turbulence spectra

Assume
(i) the existence of inertial range in the momentum space;
(ii) neglect pumping and dissipation there.

Weak turbulence theory
[Zhakharov et al (1992); Salman and Berloff, Physica D (2009)]:

Main idea:
Use random phase approximation to obtain evolution equation for the
wave spectrum

〈
ak1a

∗
k2

〉
= nk1δ(k1 − k2),

ak – the Fourier transform of ψ and ki are discrete wave vectors.
∂tnk1(t) =∫
d2k2d

2k3d
2k4Wk1,k2;k3,k4 (nk3nk4nk1 +nk3nk4nk2−nk1nk2nk3−nk1nk2nk4),

where Wk1,k2;k3,k4 = 4π
(2π)2

δ(k1 + k2 − k3 − k4)δ(k21 + k22 − k23 − k24 )
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Wave spectra

Two solutions:
(i) Equipartition of the total kinetic energy E =

∫
k2nk dk, so that

nk ∼ k−2;
(ii) Equipartition of the total number of particles N =

∫
nk dk, so that

nk ∼ const.
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Conclusions-1

Nonequilibrium condensates: condensates made of light
Gross-Pitaevskii equation with loss and gain

i∂tψ =
[
−∇2 + r2 + |ψ|2 + i

(
αΘ(r0 − r)− σ|ψ|2

)]
ψ.

Radially symmetric stationary states: narrowing of density profile
Spiral vortex states

Vortex lattices
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Conclusions-2

Non-equilibrium spinor system

i∂tψL =

[
−∇2 + V (r) +

∆

2
+ |ψL|2 + (1− ua)|ψR |2

+ i
(
αΘ(r0 − r)− σ|ψL|2

)]
ψL + JψR

Effect of ∆ and J on vortices.

Densities of L and R components for J = 1
Trajectories for ∆ = 4

Spirographs
(epitrochoids/hypotrochoid)

Synchronization/desynchronization with the region of bistability.
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Conclusions-3

Turbulence in exciton-polariton condensates may lead to novel
regimes of turbulence of classical matter field.

The regimes can be distinguished by finding second order correlation
function; by looking at the wave spectrum.
What are the stages in transition from strong turbululence to weak
turbulence and back?

Spinor condensates: predictions of homogeneous model
(syncronization/desynchronization) are not significantly modified by
spatial inhomogeneity.

Observation of the experimental behaviour in an applied field can thus
be used to distinguish the the loss nonlinearities σ, τ and η.
Vortices, vortex lattices and half-vortex latices in spinor condensates.
Being stationary these textures can be studied experimentally.

Turbulence in spinor condensates.

Scaling laws? Cross-overs of different regimes? Interplay between
turbulent regimes and the effects of magnetic field?...
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