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PRINCIPLES OF OPERATION OF GAIN-BASED
COMPUTING SYSTEMS, QUANTUM

ANNEALING, AND SIMULATED ANNEALING

Gain-based computing is a computational paradigm
where problems are encoded in the gain and loss rates of
driven-dissipative systems, as illustrated in Fig. (1)(a).
These systems undergo a symmetry-breaking transition
when various physical modes are excited from the vac-
uum state. As these modes grow, the loss function
evolves until a coherent state that minimizes losses
emerges. The mode that achieves the minimum of the
loss function is amplified, as shown in Fig. (1)(a). Gain-
based computing leverages soft-spin models, which pro-
vide enhanced dimensionality and small energy barriers
during amplitude bifurcation. Although these models
create a complex energy landscape with numerous local
minima, making optimization challenging, they are also
rich in potential solutions.

Simulated annealing (SA), on the other hand, is a clas-
sical optimization technique; see Fig. (1)(b). SA proba-
bilistically explores the solution space by simulating the
cooling of a material to reach a state of minimum energy.
It uses thermal fluctuations to escape local minima, as
the system trajectory shown in blue indicates, with the
probability of accepting worse solutions decreasing over
time. This simulates a cooling process that gradually
refines the search towards the global minimum. Imple-
mented on classical computing systems using stochastic
algorithms, SA explores the energy landscape by ther-
mal fluctuations, with a gradual reduction in temper-
ature controlling the balance between exploration and
exploitation. The performance of simulated annealing
is influenced by the cooling schedule, which determines
how the temperature is reduced over time, as well as the
specific parameters of the algorithm.

In contrast, quantum annealing (QA) is a quantum
computation method used to find the ground state of a
system’s energy; see Fig. (1)(c). QA operates by evolving
the system from an initial Hamiltonian, which is usually
simple and convex, to the target Hamiltonian that en-
codes the optimization problem. This evolution relies on
the principles of quantum mechanics, specifically quan-
tum tunneling, to explore the energy landscape. Quan-

tum annealing utilizes quantum fluctuations to escape
local minima and tunnel through energy barriers, poten-
tially leading to faster convergence to the global mini-
mum. This approach can be advantageous in navigat-
ing complex landscapes with high barriers between local
minima. In Fig. (1)(c), the varying energy landscape is
shown as the annealing from the initial convex Hamilto-
nian to the target Hamiltonian taking place in time. The
system starts at the ground state of the initial Hamil-
tonian and remains in the ground state if annealing is
sufficiently slow. The blue line shows the state of the
system at each moment.

CIRCULANT GRAPHS IN PHYSICAL SYSTEMS

An all-optical scalable ONN was recently proposed
for cyclic graphs; spatial light modulators (SLMs) are
used to discretize the optical field where each pixel
defines a different pulse amplitude [27]. The SLM with
Mx ×My pixels is set up with a transmission function J̃k
which multiplies the Fourier transform of the amplitudes
at each round trip. The SLM couples the fields with
coupling matrix Jij ≡ J̃j−i+1, which corresponds to a
circulant graph. An alternative setup allows for any
general coupling matrix. However, there is an N = Mx

limit to the number of pulses. Circulant graphs such as
Möbius ladders therefore lend themselves well to optical
solvers, where N =Mx ×My ∼ 10

6 spins can be defined.

The couplings are often geometrical in polariton con-
densates, photon condensates, and laser cavities (e.g. the
sign and amplitude of the coupling strength depend on
the distance between condensates and outflow wavenum-
ber [25]). The condensates arranged in a circle inter-
act with the nearest neighbours, but the interactions be-
yond this decay exponentially fast. Previously, various
ways of establishing long-range interactions in polariton-
based XY-Ising machines were discussed. An easier way
to achieve the couplings between remote sites is to use
digital micro-mirror devices (DMDs) to direct the light
across the ring. DMDs were shown to perform complex
(amplitude and phase) modulation. By splitting the com-
plex field into real and imaginary parts and using the
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Figure 1. Schematics of the operation of gain-based systems (a), simulated annealing (b), and quantum annealing (c).

time modulation scheme of the DMD, a complex signal
could be synthesised [34]. Reflecting the entire ring of
condensates on itself with a radial displacement imple-
ments a 3-regular cyclic graph. Cyclic graphs are known
to be computationally intractable for classical computers
for sampling probability distributions of quantum walks
[35].

Figure 2. Eigenvalues of the Möbius ladder graph for N = 8
as functions of J . Je is the value of J where the red dashed
line shows the two largest eigenvalues cross. Jcrit shows where
their energies equal E1 = E0. The ground state corresponds
to S0 for J < Jcrit and S1 for J > Jcrit.

EIGENVECTORS AND EIGENVALUES OF THE
MÖBIUS LADDER COUPLING MATRIX

To find the eigenvalues and eigenvectors of N × N
matrix J, for even n we use the roots of unity, so
the solutions of ωN = 1 that are ωk = exp(i2πk/N)
for k = 0, ...,N − 1. The corresponding eigenvectors
are (1, ωk, ω

2
k, ..., ω

N−1
k ) which can be verified by direct

computation. Then, from the first row of J we form
the polynomial f(ω) = −ω − JωN/2 − ωN−1 and eval-
uate it at the unit roots ωk = exp[i2πk/N] to ob-
tain the eigenvalues λk = f(ωk) = −2 cos(2πk/N) −
J(−1)k with the corresponding eigenvectors vk =

(1, ωk, ω
2
k, ..., ω

N−1
k ). The largest of f(ωk) is either

λN/2 = 2 − J or λN/2±1 = J + 2 cos(2π/N) depend-
ing on whether J < Je or J > Je with Je ≡= 1 −
cos(2π/N) is the value where these two eigenvalues cross.
The corresponding real-valued, and mutually orthogo-
nal eigenvectors µk can be formed from v(ωk) as µk =

Re[v(ωk)] + Im[v(ωk)] [32]. For two largest eigenval-
ues the eigenvectors are µN/2 = (1,−1,1,−1, ...,−1) and
µN/2±1 = (1,± cos(2π/N)± sin(2π/N), ...,± cos(2πk/N)±
sin(2πk/N), ...,± cos(2π(N −1)/N)± sin(2π(N −1)/N)).
If N/2 is even, then µN/2±1 have the components with
two zero values at the positions separated by N/2 − 1
sign alternating components.

We illustrate this construction for the Möbius ladder
coupling matrix J with N = 8 considered in the main text

J =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −1 0 0 −J 0 0 −1
−1 0 −1 0 0 −J 0 0
0 −1 0 −1 0 0 −J 0
0 0 −1 0 −1 0 0 −J
−J 0 0 −1 0 −1 0 0
0 −J 0 0 −1 0 −1 0
0 0 −J 0 0 −1 0 −1
−1 0 0 −J 0 0 −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1)

The eigenvalues are λ0 = f(ω0) = f(1) = −2 − J, λ1 =

f(ω1) = −
√
2 + J, λ2 = f(ω2) = −J, λ3 = f(ω3) =

√
2 + J,

λ4 = f(ω4) = 2 − J, λ5 = f(ω5) =
√
2 + J, λ6 = f(ω6) = −J,

and λ7 = f(ω7) = −
√
2 + J.

The eigenvector that corresponds to λ3 is µ3 =

(1,−1,1,−1,1,−1,1,−1) and the eigenvector that corre-
sponds to, say, λ4 is µ4 = (1,−

√
2,1,0,−1,

√
2,−1,0). The

soft spin system, therefore, follows (+,−,+,+,−,+,−,−)
or (+,−,+,−,−,+,−,+) direction at the onset of the pitch-
fork bifurcation when J > Je while λ4 becomes the dom-
inant eigenvalue of matrix J. Figure 2 illustrates how
these eigenvalues vary as a function of J .

BASINS OF ATTRACTION

Figure 3 depicts the basins of attraction for various p
and fixed Je < J < Jcrit. The basins of attraction are de-
fined as the sets of points randomly distributed on [−1,1]
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from which the gradient descent leads to different min-
ima. At the threshold of large negative p, the basin of at-
traction of E1 (which is the ground state of E as given by
Eq. (1) of main text) dominates. As p increases, the basin
of attraction of the excited state E0 increases while at
small positive values of p, E0 becomes the ground state.
With a further increase of p other states with even higher
energy appear.

CRITICAL POINTS

The main text gives the energy of the CIM E in Eq. (1).
We can determine the critial (minima and the saddle)
points by setting ∂E/∂xi = 0 for all i = 1, ...,N and clas-
sify them using the Hessian matrix. The number of crit-
ical points grows exponentially fast with p; however, not
in terms of energy and the distance from the state xi = 0
∀ i as Fig. 4 illustrates.

QUANTUM ISING MODEL

We consider the transverse field Ising model with the
circulant coupling matrix J given by

Ĥ = −
1

2

N,N

∑
i,j=1
i≠j

JijŜ
z
i Ŝ

z
j −

N

∑
i=1

hiŜ
z
i − γ(t)

N

∑
i=1

Ŝx
i , (2)

Ŝα
i = 1⊗ 1⊗⋯1⊗ Ŝα

⊗1⊗⋯⊗ 1⊗ 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i−1 terms

, α = x, y, z , (3)

where Ŝα are the spin-1/2 Pauli matrices, and 1 is the
2 × 2 identity matrix. The first term, Ĥ0, is diagonal.
The symmetry-breaking longitudinal magnetic field is de-
noted by Ĥ1. The transverse field, Ĥ2, results in a non-
diagonal Hamiltonian operator and gives rise to the quan-
tum Ising model.

Our quantum system is made up of N spin-1/2 subsys-
tems each having a basis ∣↓⟩, ∣↑⟩. A general state ∣Ψ⟩ of the
N -spin system can then be written as ∣Ψ⟩ = ∑ξ Cξ ∣ξ⟩ with

∑ξ ∣Cξ ∣
2
= 1, where the C ′ξs are complex numbers and the

basis element ∣ξ⟩ ≡ ∣ξ1⋯ξN ⟩ = ∣ξN ⟩ ⊗ ⋯ ⊗ ∣ξ1⟩ , ξk = {∣↓
⟩, ∣↑⟩} , k = 1,⋯,N.

SOLUTION OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

The wavefunction is evolved according to the time-
dependent Schrödinger equation (with h̵ = 1) given by

i
d

dt
∣Ψ(t)⟩ = Ĥ(t) ∣Ψ(t)⟩ , (4)

Ĥ(ti) ∣Ψ(ti)⟩ = ϵgs ∣Ψ(ti)⟩ , (5)

Figure 3. Basins of attraction of the soft spin energy in
Eq. (2) as defined in the main text. We take N = 8,
J = 0.4, C = 1, various laser powers p, 20,000 randomly dis-
tributed xi in [−1,1] and show which minimum is reached
via gradient descent using Newton’s method. To characterise
points, the average magnetization m = ∑i xi/N (vertical axis)
and the correlations along the circle between xi defined as
Xcorr = ∑i(xi −m)(xi+1 −m)/∑i(xi −m)

2 (horizontal axis),
are used. For small p, the basin of attraction is dominated by
S1 state as any initial state descents to E1. As p grows, the
ratio of the volume of the basins of attraction of the S1 state
to the volume of the basins of attraction of the S0 approaches
4. At the critical value of p ≈ −0.08715, both S1 and S0 states
have the same energy, and after that S0 state becomes the
ground state: this is indicated by the switch between ground
(blue) and excited (red) states.

Figure 4. Critical points of the CIM energy (defined by
Eq. (1) of the main text) for N = 8,C = 1 and different
values of laser power p. Minima are shown in green, sad-
dles with one, two, three and 4+ unstable directions are
shown as red, light blue, blue and black points, respectively.
The S0 state is furthest from the origin, which becomes the
global minimum for p > pc = −0.0872. The minima for
p = 2 are S0, S1, (−,−,+,−,+,−,−,+), (+,−,−,+,+,−,+,−)
and (+,−,−,+,+,−,−,+) in increasing energy.



4

where ϵgs denotes the ground state energy of the system
at the initial time.

To evolve the time-dependent Hamiltonian given by
Eq.(4), we use a second order accurate Strang time-
splitting method where Ĥ0 is evolved for half a time-step
∆t followed by Ĥ1 for a full time-step and then Ĥ0 for
another half a time-step. The resulting time-integration
scheme can then be written as

∣Ψ(tn+1)⟩ = exp(−i
∆t

2
ĤD)(−

i

2
∫

tn+1

tn
Ĥ2(t̃)dt̃)

× exp(−i
∆t

2
ĤD) ∣Ψ(tn)⟩ , (6)

where ĤD = Ĥ0 + Ĥ1 is the diagonal part of the Hamil-
tonian operator.

By placing the Hamiltonian operator Ĥ2(t) containing
the time-dependent term in the middle of the split-step
algorithm, we ensure that we have a symmetric time-
splitting method. The time integral appearing in Eq. (6)
was evaluated analytically. In our simulations, we set
∆t ≡ tn+1 − tn = 0.1. The simulations were performed
in MATLAB. The exponentials of the diagonal and non-
diagonal Hamiltonian can then be readily evaluated using
the expm function [44].

COMPUTATION OF BLOCH VECTORS IN
QUANTUM ANNEALING SIMULATIONS

The single-spin reduced density matrix ρ̂1,k is obtained
by taking the partial trace of the 2N ×2N density matrix
ρ̂ over the Hilbert space of the other N −1 spins. For the
k’th spin, this is defined as

ρ̂1,k(t) = Tr{N/k}ρ̂ , (7)

where {N/k} denotes the N spin Hilbert space excluding
the k’th spin. The single-spin density matrix can then
be parameterised as

ρ̂1,k =
1

2
(1 + uk ⋅ Ŝ) =

1

2
(

1 +wk uk − ivk
uk + ivk 1 −wk

) , (8)

where uk = (uk, vk,wk) defines the corresponding Bloch
vector and Ŝ = (Ŝx, Ŝy, Ŝz) correspond to the vector of
spin-1/2 Pauli matrices. For pure states the single-spin
reduced density matrix has rank 1, with a magnitude
of the Bloch vector ∣uk ∣ = 1. The surface of the Bloch
sphere, therefore, represents all the possible pure states
whereas the interior of the sphere corresponds to mixed
states. The collapse of the Bloch vector towards the ori-
gin implies that the state represents a maximally entan-
gled Bell-like state.

MASTER EQUATION FOR
CLASSICAL/SIMULATED ANNEALING

To model simulated annealing, we follow the method
described in [43] and introduce the Master equation for
the transition probability Pi(t) for each spin configura-
tion.

dPi(t)

dt
=

2N

∑
j=1

Aij(t)Pj(t) (9)

The 2N ×2N matrix Aij(t) describes the transition rates.
The master equation can be written in the form

dPi(t)

dt
=∑

i≠j

Aij(t)Pj(t) +Aii(t)Pi(t) (10)

=∑
i≠j

(Aij(t)Pj(t) −Aji(t)Pi(t)) (11)

where we have made use of the conservation of probabil-
ity given by

d

dt
∑
j

Pj(t) =∑
i,j

(AjiPi) = 0 , (12)

to arrive at the final equality. Since the normalisation
condition must hold for any probabilities Pj , it follows
that

∑
j

Aji = 0 , or Aii = −∑
i≠j

Aji . (13)

Using Eq.(13) to represent the diagonal terms of the Mas-
ter equation ensures that a numerical integration of this
equation continues to conserve the normalisation of the
probabilities.
The precise form of the transition probabilities is prob-

lem specific although it is common to use the Boltzmann
distribution. In our work, we follow [43] and use the
Bose-Einstein distribution such that

Aij(t) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{1 + exp [
(Ei −Ej)

T (t)
]}

−1

, ( single-spin flip)

−∑k≠iAki , (i = j)

0 , (otherwise) .

The form given above that is used for our simulated an-
nealing simulations means that entries of Aij are non-zero
only for transitions corresponding to single-spin flips.
The annealing is performed by varying the temperature
T (t) with time. To maintain consistency with our quan-
tum annealing simulations, we have varied the tempera-
ture according to T (t) =D/

√
t, where D is a free param-

eter which we set to D = 5.
For our classical annealing (CA) simulations, we did

not zero out any of the transition probabilities in order to
infer how collective transitions of spins at each time-step,



5

that are associated with spin correlations, as opposed to
only single-spin transitions, affects the performance of
classical algorithms. Such collective transitions can be
important when frustration arises with particular spin
configurations that can render certain single-spin transi-
tions ineffective at escaping local energy minima. It is
also useful to make the observation that quantum and
classical annealing can be closely related to one another
if one formulates quantum annealing in imaginary time
following a Wick rotation. It then follows that the evo-
lution of the N -spin wavefunction ∣Ψ(t)⟩ is given by

d

dt
∣Ψ(t)⟩ = (µ(t) − Ĥ(t)) ∣Ψ(t)⟩ . (14)

Here, µ(t) plays the role of a Lagrange multiplier which
ensures that the normalisation of the wavefunction is con-
served in analogy with the modification introduced above
to the diagonal term of the Master equation. Therefore,
by comparing quantum annealing, simulated annealing,
and classical annealing, we can distinguish between the
effects of retaining all-spin transitions from the difference
of evolving our equations in real and imaginary time.

RESULTS OF ANNEALING SIMULATIONS

Here, we include additional simulation results to com-
plement the results presented in the main text. In Figs. 2f
and 2g of the main text, we presented results for the time
evolution of the ground state probability for J = 0.35 and
B = 5. In Fig. 5, we also present results for J = 0 for
the probability amplitude of the eigenstates with the two
energy minima to discern the role of grounstate degen-
eracy and how this is lifted by the symmetry breaking
terms. In Figs. 5a and 5b we present simulations for the
case where no symmetry breaking term is included so
that the system contains two degenerate energy minima.
Time evolution of the probabilities for finding the sys-
tem in one of the two degenerate ground states show an
equal probability for the system to be found in either one
of these states. Moreover, the results are relatively sim-
ilar regardless of which numerical method is considered.
Therefore, all models including QA, SA and CA show a
similar performance in tracking the ground states as in-
dicated by the curves representing adiabatic evolution of
the system.

In Figs. 5c and 5d we present simulations for the case
where a symmetry breaking term is included as in the
main text. Here, we used 0.05∣ξ⟩S0 + 0.05∣ξ⟩S1 to intro-
duce the symmetry breaking term. In contrast to the
previous case, the behaviour of the different models is
now markedly different. In particular, we observe that
both QA and CA correctly evolve with the true ground
state as indicated by the curves corresponding to the adi-
abatic evolution. Moreover, due to the symmetry break-
ing there is one unique ground state that the two meth-

Figure 5. Time-evolution of ground state probability of tar-
get Hamiltonian with J = 0 and B = 5 for quantum annealing
(QA), single-spin simulated annealing (SA), classical anneal-
ing (CA) and corresponding probabilities expected for adia-
batic simulated (SA-ad) and adiabatic quantum (QA-ad) an-
nealing. (a) and (b) correspond to simulation without sym-
metry breaking term which corresponds to a doubly degener-
ate ground state. Each figure corresponds to the projection of
the probability density onto each one of the ground states; (c)
and (d) correspond to a simulation with a symmetry breaking
term added which lifts the degeneracy and leads to a unique
ground state.

ods can follow. In contrast, simulated annealing is not
always successful at tracking the true ground state even
for this case where J = 0. We found a success proba-
bility of only 67%, whereas the remaining probability is
associated with the system converging to what is now a
metastable state.

Given the close analogy between CA and QA identi-
fied at the end of the previous section, it is interesting
to observe that both methods perform well in the test
case presented in Fig. 5 whilst SA fails. This points to
the important role played by inter-spin correlations that
are encoded in the transition matrix that is absent in
SA. Nevertheless, it is known that provided a sufficiently
slow annealing schedule is used, SA will still converge
to the correct ground state although the long annealing
times involved make this approach impractical for solv-
ing hard optimization problems. To demonstrate this,
we have performed additional simulations for the case
of J = 0 with a symmetry breaking term as before and
with two different annealing schedules corresponding to
γ(t) = T (t) = B/ ln(t + t0) and B/

√
t + t0, where t0 = 0.5.

Results presented in Fig. 6 show that for the former, even
SA appears to asymptote to the correct ground state but
the convergence is remarkably slow. Reducing the value
of B appears to deteriorate the success probability of
finding the ground state for SA. For the second schedule
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Figure 6. Time-evolution of ground state probability of target
Hamiltonian with J = 0 with a symmetry breaking term of the
form 0.05∣ξ⟩S0 +0.05∣ξ⟩S1 added for quantum annealing (QA),
single-spin simulated annealing (SA), classical annealing (CA)
and corresponding probabilities expected for adiabatic simu-
lated (SA-ad) and adiabatic quantum (QA-ad) annealing. (a)
and (b) correspond to simulation wit B = 3 and B = 4, respec-
tively with annealing schedule γ(t) = T (t) = B/ ln(t + t0); (c)
and (d) correspond to simulation wit B = 3 and B = 4, re-
spectively with annealing schedule γ(t) = T (t) = B/

√
t + t0.

we tested, SA appears to always fail for the range of B
values tested. In contrast, QA and CA continue to per-
form better and demonstrate the advantage of the two
methods that we attribute to the role played by inter-
spin correlations.

In order to perform a more systematic study of the im-
pact of including the symmetry breaking terms on QA,
in Fig. 7 we present results of simulations obtained with
a symmetry breaking term of the form 0.05∣ξ⟩S0+h1∣ξ⟩S1 ,
where h1 is varied from 0.005 to 0.1. For each value of
h1, we have evaluated the time evolution of the proba-
bility amplitudes ⟨↑ ∣ ρ̂1,k ∣ ↑⟩ for each spin k as well as
the time evolution of the magntude of the corresponding
Bloch vectors ∣uk ∣. The results demonstrate that as h1

is increased, the initial evolution of the probability am-
plitudes is to align the spins towards the S1 state which
is caused by the increasing contribution of the symme-
try breaking term. However, as the system navigates the
energy landscape, quantum correlations develop as indi-
cated by the decreasing amplitude of the Bloch vectors
of the individual spins. This emerging quantum entan-
glement of the spins prevents the system from becoming
stuck in local energy minima and subsequently allows the
spins to readjust in order to track the true ground state.
Subsequently the system converges to the true ground
state that is well described by a pure state as the mag-
nitude of the Bloch vectors converge to unity. We note
that during the evolution, the maximal entanglement oc-

Figure 7. Time-evolution of probability amplitude of ∣↑⟩ state
(left panels) and magnitude of Bloch vectors (right panels)
in quantum annealing computation with J = 0.35 and B = 5.
The dashed lines correspond to spins that at the end of the
annealing align along the ∣↓⟩ state whereas solid lines corre-
spond to spins that align with the ∣↑⟩ state. The red and blue
colored lines correspond to the color of the spins shown in
Fig. 1b of main text.

curs at the time when the projection of some of the spins
flips to the opposite direction. This time also coincides
with the time where SA fails to track the correct ground
state in comparison to QA as reflected in the results of
Figs. 5c and 5d. We, therefore, conclude that quantum
correlations play a key role in allowing QA to outperform
other methods in this region of the parameter space of
the Möbius circulant graph.
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