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The existence of quantized vortices is a key feature of Bose–Einstein condensates. In equilibrium condensates, only
quantum vortices of unit topological charge are stable, due to the dynamical instabilities of multiply charged defects,
unless supported by strong external rotation. Due to immense interest in the physics of these topological excitations, a
great deal of work has been done to understand how to force their stability. Here we show that in photonic Bose–Einstein
condensates of exciton–polariton quasiparticles pumped in an annular geometry, not only do the constant particle
fluxes intrinsic to the system naturally stabilize multiply charged vortex states, but that such states can indeed form
spontaneously during the condensate formation through a dynamic symmetry breaking mechanism. We elucidate the
properties of these states, notably finding that they radiate acoustically at topologically quantized frequencies. Finally,
we show that the vorticity of these photonic fluids is limited by a quantum Kelvin–Helmholtz instability, and therefore
by the condensate radius and pumping intensity. This reported instability in a quantum photonic fluid represents a
fundamental result in fluid dynamics. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing
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1. INTRODUCTION

From their macroscopic coherence, it follows that Bose–Einstein
condensates (BECs) may support rotational flow only in the form
of quantized vortices [1]. These vortices are thus topological in
nature, and are characterized by a phase rotation of integer (`)
steps of 2π around a phase singularity. However, while in prin-
ciple quantized vortices may take on any topological charge, in
practice, it is understood that only vortices of charge `=±1 are
dynamically stable: higher-order vortices quickly shatter into con-
stellations of unit vortices due to the energetics of the system. This
shattering process has been detailed theoretically and observed
experimentally in the context of stationary, harmonically trapped
atomic BECs [2–4]. The case is somewhat different for superhar-
monically trapped, rapidly rotated condensates, for which there
exists a critical rotation rate above which the vorticity of the system
becomes concentrated within a single effective core. This state, in
which all vorticity is within a single effective core, has been called
the giant vortex state by its first experimental observers [5,6]. Such
a giant vortex is, therefore, different from a state in which there is a
single point singularity with topological charge magnitude greater
than one—a multiply charged vortex—however, in practice, it is
often impossible to distinguish between the two. On one hand, the
density in the vortex core is negligible, which hinders the resolu-
tion of singularity. On the other hand, the structure of interest is
hydrodynamical, and thus has meaning only up to the length scales
for which the hydrodynamical treatment applies. The classical field

description being a long wavelength approximation of something
that is in reality granular and nonclassical, the hydrodynamic
description applies only down to the healing length. Singularities
of like charge that are bound to within a healing length are thus, to
any probe in the hydrodynamical regime, indiscernible from the
theoretical multiply charged vortex. Thus, from here on, we find it
useful to call all such vortex structures multiply charged .

In our study, we focus on a BEC away from the thermodynam-
ical equilibrium supported by continuous gain and dissipation
such as polariton [7], photon [8], or magnon [9,10] condensates.
To be more specific, we use the example of polariton condensate;
however, the results reported may be relevant to other nonequilib-
rium condensates. The exciton–polariton (polariton) is a bosonic
quasiparticle composed of light (photons) and matter (excitons).
Polaritons can be generated in optical semiconductor microcav-
ities. In a typical experimental system, laser light is continuously
pumped into the cavity to excite excitons (bound electron–hole
pairs) in a semiconductor sample. The photons remain trapped
in the cavity for some time, repeatedly being absorbed by the
semiconductor to excite excitons, and then being re-emitted as
the excitons decay. The excitons form superposition states (polari-
tons) with the photons, which behave as neither light nor matter.
Due to the finite confinement times of the cavity photons, the
polaritons in the condensate are themselves short lived. In this way,
the polariton condensate is fundamentally different from other
condensates: here, neither energy nor particle number need be
conserved. Thus, while a polariton condensate may settle into a
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steady state (a state in which the wavefunction is time invariant up
to a global phase shift), such a state is one in which dissipation is
balanced by particle gain. The corollary is that steady state flows
are possible. It is well understood that the pattern-forming capa-
bilities of nonequilibrium, nonconservative systems are richer
than those of equilibrium, conservative systems [11], making the
polariton condensate a fascinating object with which to explore the
possibility of novel quantum hydrodynamical behaviors [12].

2. SPONTANEOUS FORMATION OF MULTIPLY
CHARGED VORTICES

In this paper, we show theoretically that multiply charged vortex
states can appear spontaneously and remain throughout the coher-
ence time in a BEC of exciton–polariton quasiparticles excited by
a ring-shaped laser profile, without the application of any external
rotation, trapping potentials, or stirring. Previously, the sponta-
neous formation of multiply charged vortices of a given charge was
theoretically proposed and experimentally realized in polariton
condensates by pumping in an odd number of spots around a
circle [13], or by the engineering of helical pumping geometries
[14]. In the first case, the central vortex in this geometry is cre-
ated driven by the antiferromagnetic coupling of the neighboring
condensates and the frustration arising from their odd number.
In the second case, the helical patterns are engineered so that the
condensate is pumped explicitly with orbital angular momentum.
Another recent proposal has shown that phase imprinted vorticity
might remain concentrated at a localized mirror defect [15], in
contrast to another recent work in which nonresonant pumping
with a higher-order Laguerre–Gaussian beam resulted in the clear
transfer of total vorticity, while failing to form a multiply charged
vortex structure [16]. Yet other works have exploited the lack of
simple connectedness of condensates confined to annular traps,
in both equilibrium [17] and exciton–polariton condensates
[18]; as in an annular condensate rotation does not necessitate a
vortex defect. Interestingly, a central multi-charged vortex was
observed in a numerical study of polariton condensates under
the weak Mexican-hat-type pump (see supplemental material in
[19]). There, the particle fluxes exist from the center outwards as
the pumping profile peaks at the center. As the pumping intensity
increases, the central vortex of small multiplicity (three in that case)
breaks into the clusters of single-charge vortices trapped by the
minima of the pumping potential. The multiply charged vortices
we discuss here differ from these works in the geometry consid-
ered (ring-pumped trapped condensates, long coherence times),
formation mechanism (probabilistic and spontaneous during con-
densation, away from the hot reservoir), and the vortex properties
(vortices exist on the maximum density background and so are
truly nonlinear in nature). We describe their formation, stability,
and dynamics. The dynamics of two and more interacting multiply
charged vortices are also studied. We find that our results apply
for a wide range of possible experimental parameters, suggesting
that these structures are general to ring-pumped trapped polariton
BECs in the strong coupling regime.

The dynamics of the polariton BEC in the mean field are
described by the complex Ginzburg–Landau equation (cGLE)
coupled to a real reservoir equation representing the bath of hot
excitons in the sample, nonresonantly excited by the spatially
resolved laser pump profile P (r) [20–24]:

i~∂tψ =−
~2

2m
(1− i η̂NR)∇

2ψ +U0|ψ |
2ψ + g R NRψ

+
i~
2
(RR NR − γC )ψ, (1)

∂t NR = P − (γR + RR |ψ |
2)NR , (2)

in which ψ represents the condensate wavefunction, NR , and
the exciton reservoir density. U0 and g R give the polariton–
polariton and exciton–polariton interaction strengths, and RR

and η̂ represent the scattering and diffusion rates, respectively. The
effective mass of the polariton is given by m. Finally, the loss rates of
excitons and polaritons are described byγC andγR , respectively. To
rewrite these equations in a more amenable, nondimensional form,
we employ the transformsψ→

√
~RR/2U0l2

0ψ , t→ 2l2
0 t/~RR ,

r →
√
~l2

0/(m RR)r , NR→ NR/l2
0 , and P → RR P/2~l2

0 ,
and we define the nondimensionless parameters g = 2g R/RR ,
b0 = 2γR l2

0/~RR , b1 = RR/U0, η= η̂/l2
0 , γ = γC l2

0/RR , and
γ = γC l2

0/RR , where we set l0 = 1 µm. This yields [25]

i∂tψ =−(1− iηNR)∇
2ψ + |ψ |2ψ + g NRψ + i(NR − γ )ψ,

(3)

∂t NR = P − (b0 + b1|ψ |
2)NR . (4)

Polaritons can be confined all-optically by shaping the exci-
tation laser beam. By using spatial light modulators to shape the
optical excitation, ring-shaped confinements were generated with
condensates forming inside the ring [26,27], and have been pre-
dicted to support the spontaneous formation of unit vortices [28].
Long-lifetime polaritons in ring traps are emerging as a platform
for studies of fundamental properties of polariton condensation
largely decoupled from the excitonic reservoir and therefore hav-
ing significantly larger coherence times [29–32]. We represent
the profile of the ring pump by a Gaussian annulus of the form
P (r , θ, t)= P e−α(r−r0)

2
with inverse width α and radius r0,

which excites local quasiparticles that then flow outward. The
closed-loop pump geometry has two major implications. The first
is that the condensation threshold is first achieved not where the
sample is pumped, but within the borders of the pumping ring.
This results in the effective spatial separation of Eqs. (3) and (4),
which makes the parameters related to excitonic reservoirs such as
b0, b1, and g irrelevant to the condensate dynamics up to a change
in pump strength. The second and most critical implication of the
ring pump geometry is the existence of constant fluxes towards
the center of the ring. Such fluxes carry the matter together with
spontaneously formed vortices and force vortices to coalesce.

It is well known that vortices can form during the rapid con-
densation of a Bose gas via the Kibble–Zurek mechanism [33–42].
However, in our system, there exists a different mechanism of
spontaneous defect generation that requires a relatively slow con-
densate formation. Due to the inward flow of particles in our
system, the condensation threshold is reached first in the center of
the system. Assuming a large enough ratio of new particle flow to
dissipation, this young condensate will grow into a relatively uni-
form disk within the boundary of the pump. However, in between
these two stages, radial matter wave interference is to be expected,
with higher frequency during the early stages of condensation.
The zeros of the radial interference pattern are well studied under
a different name: the dark ring soliton [11,43,44]. As has been
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shown previously, these dark solitons are unstable to transverse
(“snake”) perturbations, and break apart into pairs of unit vortices
of opposite charge [45,46]. Thus, for a slowly condensing system,
it is reasonable to expect that these solitons have enough time to
break down to produce a chaotic array of vortex singularities. This
process resembles a two-dimensional case of the collapsing bubble
mechanism of vortex nucleation [47]. As the condensation process
completes and the vortex turbulence decays, there is some finite
chance of the condensate being left with a net topological charge,
as vortex pairs may unbind near the boundary, and one or the other
may leave to annihilate with its image. These like-charged vortices
would then coalesce in the center of the condensate.

Direct numerical integration of Eqs. (3) and (4) not only con-
firms that this process can take place, but that for low pump power,
the condensate takes on a net topological charge more often than
not. (Fourth order Runga–Kutta integration is used. The initial
wavefunction is set to a profile of low amplitude random noise. All
simulations are repeated for many of these profiles.) We reiterate
that this coalescence of vortices exists despite the lack of exter-
nal rotation or sample nonuniformity. Repeating the numerical
experiment with many iterations of random initial wavefunction
noise, we find multiply charged vortex states of stochastic sign and
magnitude. The average topological charge magnitude is found
to depend significantly on the radius of the pump ring, increas-
ing for larger radii. An example of these dynamics is presented in
Fig. 1, which shows the main steps in the process by which the
condensate spontaneously adopts a topological charge of two: the
formation of a central condensate surrounded by annular discon-
tinuities in Fig. 1(a), the breakdown of an annular discontinuity
into vortex pairs in Fig. 1(b), vortex turbulence in Fig. 1(c), and the
final bound vortex state in Fig. 1(d). For Fig. 1, we use the system
parameters η= 0.3, γ = 0.05, g = 1, and b0 = 1, b1 = 6, but the
result was found not to depend sensitively on these choices; up to
a rescaling of pump strength, this behavior was reconfirmed for a
large range of sample parameters: g ∈ [0.1− 2], b0 ∈ [0.01− 10]

Fig. 1. Spontaneous formation of a multiply charged quantum vor-
tex in a ring pumped polariton condensate by numerical integration of
Eqs. (3) and (4). Density (top row) and phase (bottom row) snapshots
are shown at various stages of the condensate formation. For clarity, each
density profile is rescaled to unit maxima. The pumping profiles are super-
posed in black (in units of P), showing the spatial separation between the
pump and the condensate. (a) At the beginning of the condensate forma-
tion, due to the pump geometry, matter wave interference leads to annular
zeros in the wavefunction. (b) These ring singularities are unstable to
dynamical instability, become asymmetrical and can be observed to break
into more stable unit vortices as the condensate continues to develop.
(c) The condensate fills a disk shaped region with near uniformity within
the ring pump, but remaining vortices interact chaotically. The vortex
turbulence eventually decays, leaving a net topological charge [48,49].
Repeating these simulations with different random initial conditions,
the magnitude and sign of the final vorticity vary. Here, P = 5 and
r0 = 11.5 µm.

for γ ∈ [0.05− 0.1], and for all reasonably physical values of η
(includingη= 0.)

An advantage of the spatial separation of the condensate from
the reservoir in ring-pumped geometry is in the enhanced coher-
ence time that exceeds the individual particle lifetime by three
orders of magnitude [50]. Therefore, spontaneously created
multiply charged vortices might soon be observable in single-shot
experiments within one condensate realization. However, for
now, only the average wavefunctions of many iterations of the
stochastic condensate formation are observable in experiment. In
a perfectly uniform sample, one would expect an equal chance of
the stochastic formation of vortex charges of either handedness,
which would cancel in the experimentally observable mean wave-
function. However, it has been established in experiments that the
slight inhomogeneities inherently present in all physical samples
act to favor one handedness over the other [13]. Thus, the only
experimental observable is the mean magnitude of the vorticity
distribution. This magnitude is well above zero for a wide range
of parameters, making the experimental observation of this effect
highly feasible within the current state of the art. (For example:
mean vorticity amplitudes determined from direct simulations of
Eqs. (3) and (4) for pump radius 12 µm tend linearly from 2.5 to
4.9 as the pump strength is decreased from P = 9 to P = 5.)

3. VORTEX IMPRINTING

Another way to study multiply charged vortices is to imprint them
explicitly upon a fully formed, uniform condensate [51]. This
allows for the study of the structure and dynamics of carefully
controlled systems of vortices. To model the result of experimental
pulsed phase imprinting, we first model the formation of fully
developed non-singular condensate disks. To prevent the spon-
taneous formation of vortices by the process described above, a
relatively strong pump amplitude is used, so that the condensate
forms too quickly for the decay of ring singularities into vortices.
After the background condensate is formed, phase singularities
are imprinted instantaneously, and their dynamics are observed.
To first understand the structure of isolated multiply charged vor-
tices, we imprint a series of condensates with different topological
charges, and allow these structures to form steady states. When
imprinted in equilibrium BEC, multiply charged vortices quickly
break into vortices of a single unit of quantization [52].

From the spatial separation of the condensate and the reser-
voir, the reservoir density is negligible near the central core of
the multiply charged vortex, so that Eq. (3) takes the familiar
form of the damped nonlinear Schrödinger equation (dNLSE):
i∂tψ =−∇

2ψ + |ψ |2ψ − iγψ .
Under the Madelung transformation ψ =A exp[i S − iµt],

whereµ is the chemical potential, the velocity is the gradient of the
phase S: u=∇S, the density isρ(r )=A2, and the imaginary part
of the dNLSE yields ∇ · (ρu)=−γρ. Except for a narrow spatial
region where the density heals itself from zero to the density of
the vortex-free state, the density is almost a constant, so the radial
component of the velocity becomes ur =−γ r . The real part of the
dNLSE reads

∂2
r A+ ∂rA/r + (µ− u2

−A2)A= 0, (5)

which coincides with the corresponding steady state equation for
the equilibrium condensates where the velocity profile plays the
role of the external potential. We therefore expect the structure
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of the vortices to be similar to those in equilibrium condensates,
with the external potential given by u2. Close to the center of the
condensate, the velocity becomes u=−γ r r̂ + `

r θ̂ , where r̂ and

θ̂ are unit vectors in polar coordinates. When this expression for u
is substituted into Eq. (5), it becomes the equation on the vortex
amplitude in the center of the harmonic trap, whereγ characterizes
the frequency of the “trap.” In the vortex core, for small r , the
centrifugal velocity dominates the radial velocity, so the equation
on the rescaled amplitude A=A/√µ, with r̃ =

√
µr , becomes

∂r̃ 2 A+ ∂r̃ A/r̃ +
(

1−
`2

r̃ 2
− A2

)
A= 0. (6)

The profiles A take the approximate form

A=
r̃ |`|

(r̃ n +w)
|`|/n , (7)

with parameters w and n, in which we incorporated the power
expansion behavior of the amplitude A∼ r̃ |`| as r̃ → 0. Figure 2
shows the amplitude cross-section profiles of stable giant vor-
tices with different topological charges ` ∈ {1, 2, . . . , 10} as the
solutions to Eq. (6), along with Eq. (7), showing a compelling fit
between vortex profiles seen in the full numerical simulations of the
coupled condensate–reservoir system (without an external trap)
and those of the steady state solutions of an equilibrium condensate
under harmonic trapping, as predicted by our theory.

We have shown above that the inward fluxes necessitated
by the closed pumping geometry result in an effective trapping
potential—independent of any effective trapping from the reser-
voir near the edge of the condensate—which drives the vortices
closer together. Our analysis, which shows that the forces from
the inward fluid fluxes overcome the topological repulsion of
like-signed vortices, applies when the condensate is nearly uni-
form, which is the case until the vortices begin to overlap. At this
stage, there is further interaction between vortices: it has long
been understood that in nonequilibrium systems, the topologi-
cal repulsion of like-signed vortices can be balanced due to the
nontopological force emerging from the effective variations in the
supercriticality stemming from the density decrease surrounding
the defects [53]. The variable-supercriticality force is negligible
until the vortices are close enough for significant overlap between
their associated density structures. In our system, the radial flux
forces bring the vortices of like sign to within the regime at which
they may bind to form a multiply charged vortex.

Fig. 2. Wavefunction amplitude cross sections
√
ρ(r ) of multiply

charged vortices. For clarity, and without loss of generality, we show
only odd topological charges less than `= 10. Profiles from the full
numerical integration of Eqs. (3) and (4) (normalized) for r0 = 20 µm,
P = 12, and γ = 0.3 are shown in black, and illustrate the decay of the
condensate near the pump ring. The numerical solutions to the reduced
equation Eq. (6) are marked by circles colored by charge, and the corre-
sponding fits to the ansatz Eq. (7) by squares with matching colors. From
these fits, we can write the approximate parameterization of Eq. (6) as
n(`)= (1.1)`1.6

− 2.8 andw(`)= 2.3+ (0.6) ln(`)).

4. VORTEX MERGER

Next we consider the arrangements of multiple multiply charged
vortices imprinted away from the trap center and brought together
by the radial fluxes. Figure 3 shows two examples of the coalescence
dynamics of imprinted phase defects. In the first case, three unit
vortices coalesce while moving in inward spirals towards the center
of the condensate, where there is no net lateral flow. In the second
case, which shows the coalescence of two doubly charged vortices,
it is observed that both doubly charged vortices hold together
for a while before merging in the center to form a single vortex of
multiplicity four. These results are found to be repeatable for a
wide range of system parameters, suggesting that this behavior is
to be expected for any system parameter that allows the formation
of a trapped condensate within a ring pump. We note that in this
system, the center of the condensate corresponds to the location of
maximum background fluid density, in stark contrast to systems
designed to collect virtual vorticity into a low-density area [17].

Fig. 3. From top: density (first row) and phase (second row) resolved
dynamics of three unit vortices of like charge in a condensate formed
within the boundary of an annular pump (green). Over time, the three
vortices approach each other in an inward spiral, eventually merging to an
inter-singularity length scale less than the healing length of the conden-
sate. Density (third row) and phase (fourth row) of two doubly charged
vortices (each having topological charge n = 2), which over time merge
into a single fourth-order vortex. Here, P = 10 and r0 = 15 µm. Color
scales are the same as in Fig. 1. At bottom, a density isosurface of the two
merging second-order vortices, with time shown along the horizontal axis,
from 12 ps (left) to 240 ps (right).
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As two (or more) vortices merge while spiraling around the
center, they excite density waves in the otherwise uniform back-
ground fluid. These acoustic excitations are long lived, and take
on a frequency set by the angular frequency of the vortex spiral.
For well-separated vortices, this frequency increases consistently
as time progresses and their separation shrinks. However, as the
vortices begin to share a core, these dynamics become even more
complicated, and the new physics dominated by the processes in
the vortex core emerges [54].

Figure 4 shows the relative amplitudes of the density waves radi-
ated during the motion of two vortices of unit charge imprinted
with a large initial separation. The average frequency of acoustic
radiation is found to increase with time at a fixed rate until the
vortex cores begin to overlap (left vertical line). During this phase,
the frequency distribution narrows, and the average radiation
frequency increases linearly at a much lower rate than in the well-
separated vortex regime. This continues until the singularities
within the core overlap within a healing length (right vertical line),
after which a fixed narrow band of acoustic radiation is emitted.

Of course, multiply charged vortices may also collide: we find
that from merger of two equal multiply charged vortices of increas-
ing topological charge, the characteristic acoustic resonances have
decreasing frequency, in the near-terahertz regime. This is because
the effective mass of the vortex increases with topological charge, so
that vortices of larger multiplicity orbit more slowly. As expected,
we see that in contrast, when multiple singly charged vortices
placed evenly about a common radius merge, they emit higher
frequency radiation as the number of unit vortices is increased.
Once the multiply charged vortex has formed and is allowed to
settle, low-energy density perturbations can be applied to the con-
densate. To model this, we simulate the effect of a small Gaussian
laser pump pulse centered on the vortex. The observed effect is the

Fig. 4. Power spectral density of acoustic waves radiated by the
approach and merger of two vortices, resolved in time–frequency space.
Top panel shows the merger of two unit vortices, and vertical lines mark
the time of transition from well-separated vortices to vortices sharing a
common low-density core (left) and the time at which the singularities
have merged to within a healing length (right). Middle and bottom panels
show the acoustic spectra of two merging doubly charged vortices (mid-
dle) and two merging triply charged vortices (bottom). The ring pump
radius is 20 µm. In the case of two single vortices, one vortex is imprinted
at the condensate center, and the other at a distance of 18 µm from the
center. In the cases of two multiply charged vortices, both vortices are
imprinted 18 µm from the center.

emission of an acoustic energy pulse at the characteristic frequency
of the vortex, as is seen from the merger of the equivalent number
of unit vortices. As in any physical system, there exist many small
perturbations due to intrinsic disorder, and it is likely that multiply
charged vortices in a real system are regularly being excited and
emitting acoustic radiation.

Kelvin–Helmholtz instability. Next we will establish the limit on
the vortex multiplicity that the trapped condensate can support.
This limit is set by the maximum counterflow velocity that can
be supported between the condensate and the reservoir, therefore
determined by the onset of Kelvin–Helmholtz instability (KHI).
KHI is the dynamical instability at the interface of two fluids when
the counterflow velocity exceeds a criticality. It appears in a variety
of disparate systems, both classical and quantum, but has never
been discussed in the context of polaritonic systems. In quantum
fluids, KHI manifests itself via nucleation of vortices at a coun-

terflow velocity exceeding the local speed of sound: vc =

√
U0ρ

m .
It has been extensively studied for the interface between different
phases of 3He [55], two components in atomic BECs [56], or for
the relative motion of superfluid and normal components of 4He
[57,58]. In the trapped condensates considered here, the coun-
terflow is that between the condensate of radius R (which rotates
with velocity ~

m
|`|

R at the boundary) and the reservoir particles
along the ring, which are stationary. Thus, it is expected that KHI
should be initiated when the topological charge of the multiply
charged vortex state is high enough that the velocity of condensate
particles at the ring pump radius reaches vc . Thus, the maximum
topological charge `c allowed is set by

|`c | =

√
R2mU0ρ

~
. (8)

Figure 5 shows Eq. (8) (dashed line) along with the critical topo-
logical charges found by direct numerical integration of Eqs. (3)
and (4) (dots). In these numerical experiments, we begin with a
fully developed, vortex-free condensate. A unit topological charge
is imprinted in the center of the condensate, and the system is
allowed to settle, before another unit charge is added. This process
is repeated until the onset of KHI leads to the vortex nucleation fol-
lowed by annihilation of vortex pairs and, therefore, by a reduction
in the topological charge of the system. This dynamical process is
shown in Fig. 6. We note that the question of the critical velocity
in superfluids is always a subtle one. Even in the simplest case of a
homogeneous superflow around a 2D disk (first studied in [59]),
both numerical and experimental data fluctuate significantly
around the analytical prediction of criticality [60]. In contrast,
we have a much more complicated nonequilibrium system on a
nonuniform background with a nonuniform reservoir, and our

Fig. 5. Critical topological charge at which the KHI sets in, as a func-
tion of pump radius. This is obtained by the direct numerical simulations
of Eqs. (3) and (4). The dashed line represents the theoretical expectation
of Eq. (8).
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Fig. 6. For a great enough topological charge (compared to the size of the condensate), the rotational flow at the boundary of the condensate reaches
the critical velocity for the Kelvin–Helmholtz instability to set in, which results in a reduction in topological charge via the nucleation of new vortices, with
charges opposite to that of the multiply charged vortex and further pair annihilation. Shown are density profiles from a direct simulation of Eqs. (3) and
(4) exhibiting this process (radius 7 µm, P = 10). The initial topological charge is imprinted one quantum at a time, and the dynamics observed. After
the fourth quantum of rotation is imprinted, the system loses stability and expels some rotation through the KHI mechanism, ending with unit topological
charge.

numerical data as compared to the analytical estimate are rather
accurate and show the correct trend.

5. CONCLUSION

In conclusion, we have shown that exciton–polariton condensates
excited by an annular pump can spontaneously rotate despite a
uniform sample and no angular momentum applied, forming
multiply charged vortices. The formation, dynamics, and struc-
ture of these vortices were studied. We emphasize that the KHI
mechanism is quite specific to the ring-like pumping configuration
we considered. In gain-dissipative condensate systems, particle
fluxes exist even in the steady state, connecting the regions where
they are predominantly created to the regions where they are pre-
dominantly dissipated. With the ring-like pumping, the fluxes
are oriented strictly towards the center, stabilizing the multiply
charged vortex while preventing the formation of localized vortex
clusters elsewhere. When other pumping profiles are considered,
a more complicated flux distribution emerges. In some localized
parts of the sample, radial fluxes may exist similar to our ring-like
pumping, but much weaker and less controllable. This may create
conditions for the formation of multiply charged vortices, but of
rather small multiplicity and that are quickly destroyed by the small
changes in parameters (e.g., pumping intensity or the pumping
spot size). For instance, the Mexican hat pumping profile in [19]
gives rise to outward particle fluxes from the center in addition
to inward fluxes from the annular pump, so a vortex of small
multiplicity (two or three) is destroyed as the pumping intensity
is increased, instead bringing about clusters of vortices stabilized
where the fluxes from the center meet the radially inward fluxes.

This destruction of the multiply charged vortices in this and similar
cases cannot be attributed to KHI.
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