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1 Introduction

Theoretical models of waves in the atmosphere naturally require consideration of propaga-

tion on a background state that is a shear flow. One example is that of Rossby waves (or

planetary waves) propagating from the extratropical troposphere into the stratosphere,

The background state is here the longitudinally-averaged flow, which may include westerly

winds increasing in strength with height (e.g. in the winter) or westerly winds at lower

levels changing to easterly winds at upper levels (e.g. in the summer). Another example

is that of small-scale internal-gravity waves excited by a mountain propagating upwards

through a large-scale flow that changes strength (and perhaps direction) with height.

Suppose that the background flow (i.e. the flow in the absence of the waves) is in the

x direction with speed U that is a function of a second space co-ordinate y and that

the waves have a well-defined phase speed c in the x-direction. Then a location where

U(y) = c, i.e. the flow speed matches the phase speed, is a line parallel to the x-axis and

at a fixed value of y, called a critical line. Where the second space co-ordinate is height

the equivalent term critical level is often used. If the speed U was a function of two space

co-ordinates y and z then the location U(y, z) = 0 would define a critical surface.

Simple theories for the structure of waves are often based on the assumptions that the

waves are steadily propagating, that dissipative or diabatic processes such as friction

or radiative transfer may be neglected and that the waves are small-amplitude, so that

terms in the equations of motion that are nonlinear in wave quantities may be neglected.

These theories lead to a straightforward differential or partial differential equation that

describes the spatial structure of the waves. The importance of the critical line is that it
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is a location where these differential equations are singular, in other words the solutions

imply that some physical quantity becomes infinite.

As in many physical contexts, the appearance of singular behaviour in a mathematical

model implies that the simplifications that lead to that model cannot be justified and that

some physical process that was neglected must be retained. To remove the critical-line

singularity one of the neglected processes mentioned above must therefore be included

(however weak such processes might have been estimated to be). The neglected process

will be essential only in a small, but finite, region around the critical line and may still

be negligible elsewhere. This small but finite region is named the critical layer.

2 The Rossby-wave critical layer

2.1 A simple model

One of the simplest examples of the critical-line singularity and its resolution in a finite

critical layer arises in a two-dimensional model of Rossby wave propagation on a β-plane

(a mathematical device to include the effect of the variation of Coriolis parameter with

latitude [[could be omitted if explained in another article]]). Two-dimensional cartesian

co-ordinates (x, y) may be used, with x measured in the eastward direction and y measured

in the northward direction. The corresponding velocity components are taken to be

(u, v). The assumption of incompressibility implies that the velocity components may be

expressed in terms of a streamfunction ψ(x, y, t) (with t time) where u = −∂ψ/∂y and

v = ∂ψ/∂x.

The governing equation is based on the fact that, in the absence of dissipation, the absolute

vorticity, which is the sum of the relative vorticity, ζ = ∂v/∂x − ∂u/∂y = ∇2ψ and the

planetary vorticity βy, is conserved following the fluid motion. β is a constant and in an

Earth-like atmosphere is positive. It is convenient to include linear damping of vorticity

in the model as a simple representation of a dissipative processes. The governing equation

then becomes (
∂

∂t
+ u

∂

∂x
+ v

∂

∂t

)
(ζ + βy) = −αζ (1)

where where α is the damping rate. (Another possibility for a dissipative process would

be diffusion of vorticity. Neither linear damping nor diffusion are likely to be realistic

representations of dissipative processes in the real atmosphere, but either serves as a

convenient example that captures the basic effect of dissipation in the critical layer.)
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It is assumed that in the absence of waves the flow is in the x direction with speed U(y).

Waves are superimposed on this flow giving a contribution ψ′(x, y, t) to the streamfunc-

tion. Then the equation (1) may be written in terms of ψ′ as

∇2ψ′t + U(y)∇2ψ′x + (β − U ′′(y))ψ′x = −α∇2ψ′ − u′∂∇
2ψ′

∂x
− v′∂∇

2ψ′

∂y
(2)

where u′ = −∂ψ′/∂y and v′ = ∂ψ′/∂x are the wave velocity components

If the damping is weak then it is reasonable to neglect the first term on the right-hand

side. If the waves are small-amplitude then it is reasonable to neglect the the second

and third terms on the right-hand side, which are quadratic in wave quantities. Since

the resulting equations are linear and contain no explicit x-dependence it is possible to

consider waves with different wavelengths in the x-direction as independent.

Consider one such wave, with x-wavenumber k (i.e. wavelength 2π/k in the x-direction),

assumed to be steadily propagating in the x-direction with phase speed c. It follows that

the streamfunction for this wave may be written in the form ψ′(x, y, t) = Re[ψ̂(y)eik(x−ct)],

where ψ̂(y) is a (complex) function of y. Substituting into (2) and neglecting terms on

the right-hand side gives the ordinary differential equation

ψ̂′′ + (
β − U ′′(y)

U(y)− c
− k2)ψ̂ = 0. (3)

This equation is known as the Rayleigh-Kuo equation and, depending on context, deter-

mines the stability of the shear flow U(y) in a problem where c is an eigenvalue, or when c

is determined by forcing, which may be included in the problem by an extra term on the

right-hand side of (3) or by a boundary condition, describes through the function ψ̂(y)

the structure of the forced disturbances. The focus here is on a steady forced problem,

where c is given and real.

The appearance of the factor (U(y)− c)−1 in part of the coefficient of ψ̂ indicates that the

equation has a singular point at values of y such that U(y) = c, i.e. where the phase speed

matches the flow speed. These locations are the critical lines. If U(y) is an increasing

or decreasing function of y then there is at most one critical line. If U(y) has a turning

point (as would be the case for a jet-like flow, for example) then there may be more that

one critical line.

Consider the solution near a critical line at y = yc. The nature of (3) is such that

whilst ψ̂(y) (proportional to the velocity in the y-direction) is finite and continous in the

neighbourhood of the critical line, ψ̂′′(y) (representing part of the vorticity) is proportional
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to (y − yc)−1 and ψ′(y) (representing the velocity in the x direction) is proportional to

log |y−yc|, i.e. both are singular. This is clearly unphysical, but what is more problematic,

in a way, is that the singularity in ψ̂′(y) implies that there is no unique way to match

solutions of (3) across y = yc. In particular the jump in ψ̂′(y), corresponding to the jump

in u′, across y = yc remains unknown. It follows there is no unique solution in the whole

flow domain for the function ψ̂(y). The critical line singularity must therefore be resolved

not only to remove the local singular behaviour in certain physical quantities but also to

determine the the structure of the waves over the whole flow.

2.2 Absorption-reflection

To note the implications of the critical layer for the waves elsewhere in the flow it is useful

to focus on the following geometry, shown in Figure 1. Assume that the waves are forced

at some large positive value of y, with phase speed c = 0, i.e. the waves are stationary. As-

sume also that the flow speed U(y) is positive in y > 0 and negative in y < 0, so that the

waves have a critical line at y = 0 and that the curvature term U ′′(y) is not too large (so

that β−U ′′(y) is positive). The equation (3) predicts that the function ψ̂(y) is oscillatory

in y > 0, implying that there are propagating waves (as expected from the basic prop-

erties of Rossby waves). In y < 0, on the other hand, the function ψ̂(y) is exponentially

increasing or decreasing with y and physical considerations require that ψ̂(y) decreases as

y decreases, representing evanescent waves. One feature of the solution that is naturally

of interest is the relative amount of northward and southward propagating waves in the

region between the wave forcing and the critical layer. This measures the absorption-

reflection behaviour of the critical layer. If the critical layer acted as an absorber of waves

then the region between the forcing and the critical line would contain only waves propa-

gating southward. If it acted as a reflector of waves then there would be some contribution

to the solution in this region from waves propagating northwards. The reflection could be

partial or perfect. Indeed there could in principle be over-reflection, which would be asso-

ciated with a greater proportion of northward-propagating than southward-propagating

waves, implying that the critical layer was actively emitting waves.

A useful quantitative measure of the wave propagation is the momentum flux, u′v′, where

(.) indicates an average in the x-direction (keeping y and t constant). u′v′ indicates the

correlation between the two velocity components and the basic properties of Rossby waves

imply u′v′ > 0 for southward propagating waves and u′v′ < 0 for northward propagating

waves. It follows from (3) that u′v′ is constant in y > 0, except at the critical line at
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Figure 1: Schematic diagram of Rossby-wave propagation on a shear flow U(y) with a critical line. The
flow is positive (i.e. eastward) in y > 0 (upper portion of the diagram) and negative (i.e. westward) in
y < 0 (lower portion of the diagram). The waves are forced, with zero phase speed in x-direction, in y > 0
and propagate towards y = 0. In y < 0 the waves are evanescent (i.e. non-propagating and decaying as
y becomes more negative). The critical line is at y = 0, where U(y) = 0. In the neighbourhood of y = 0
the streamlines are closed and form a Kelvin’s cat’s eye pattern. The width of the closed streamline
region, which increases as the wave amplitude increases, defines the width of the nonlinear critical layer.
If dissipation were strong enough then dissipative effects would dominate over a relatively broad region
near y = 0 and the closed streamlines would essentially be irrelevant to the dynamics. (The critical layer
would then be linear and dissipative, rather than nonlinear.) There may be some reflected wave in y > 0,
but the amount of reflection can be determined only by considering the detailed dynamics of the critical
layer.
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y = 0. The evanescence of the waves in y < 0 implies that u′v′ = 0 there. However

the value of u′v′ cannot be determined from (3) alone. Instead the critical line must be

resolved into a finite critical layer to allow the jump in u′v′ across the layer, denoted by

[u′v′]+−, and hence the value of u′v′ in y > 0, to be evaluated.

The continuity of ψ̂(y) across the critical line singularity suggests that, when the critical

line is resolved into a thin critical layer, ψ′ and hence v′ = ∂ψ′/∂x will vary only weakly

across the critical layer. In addition, y-derivatives within the critical layer will generally

be much larger than x-derivatives (because the layer is thin), implying that ζ ′ ' −∂u′/∂y.

Putting these pieces of information together, it follows that

[u′]+− =
∫
ζ ′dy and u′v′ (in y > 0) = [u′v′]+− =

∫
ζ ′v′dy (4)

where [u′]+− denotes the jump in u′ across the critical layer, the integrals are taken across

the critical layer and v′ may be taken as constant within the second integral. The first

equality is the missing matching condition across the critical layer. The second shows

that the critical layer acts as a net absorber of waves when there is (in a y-integrated

sense) negative correlation between ζ ′ and v′ in the critical layer, as a perfect reflector

when there is zero correlation and as a net emitter (i.e. an over-reflector) when there is

positive correlation.

To summarise, the non-uniqueness in the solution of (3) left by the critical-line singularity

leaves the absorption-reflection behaviour of the critical layer uncertain. Only by deter-

mining the correlation between v′ and ζ ′ in the critical layer is it possible to determine

the precise absorption-reflection properties.

2.3 The dynamics of the critical layer

The dynamical balance in the critical layer depends on the parameters of the problem.

Consider in turn the processes that have been neglected in arriving at (3). Firstly it has

been assumed that the waves are steadily propagating, i.e. that their amplitude is not

changing with time. It is possible to analyse the non-dissipative, linearised equations [ (2)

with the right-hand side set to zero ] without making this assumption and show that the

singular behaviour predicted by (3) develops with time. For example, both the vorticity

ζ ′ and the x-component of velocity u′ are predicted to increase without bound. The time-

dependent analysis shows that the terms neglected in going from (2) to (3) inevitably

become important at large times, however small they might have first appeared.
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Secondly, consider the dissipative term −α∇2ψ′ in (2). This may be compared with the

advection term U(y)∂∇2ψ′/∂x. The relative sizes of these terms, near to y = 0, may be

estimated as α/(kU ′(0)y) and it follows that the dissipative term cannot be neglected in

a region of size δα = α/(kU ′(0)). This is (potentially) the thickness of the dissipative

critical layer.

Finally, consider the nonlinear term. It turns out that the most important part is

v′∂∇2ψ′/∂y. If this is to balance U(y)∂∇2ψ′/∂x ' U ′(0)y∂∇2ψ′/∂x in a thin region of

thickness δNL, then v′/δNL ∼ kU ′(0)δNL, i.e. δNL ∼ (v′/kU ′(0))1/2. This is (potentially)

the thickness of the nonlinear critical layer.

Whether nonlinearity or dissipation is dominant in the critical layer depends on the rel-

ative size of δNL/δα = (kv′U ′(0))1/2/α. If δNL/δα � 1 then the critical-layer dynamics

are dominated by dissipation and the critical layer thickness is δα. If δNL/δα � 1 then

the critical-layer dynamics are dominated by nonlinear processes and the critical layer

thickness is δNL. In the case of Rossby waves in the real atmosphere, wave amplitudes

are relatively large and dissipation is relatively weak, so that the nonlinear dynamics are

the most relevant.

The fully nonlinear equations state that ζ + βy is conserved following the flow (which is

in turn determined by the ζ field). If the critical layer is thin, i.e. δNL is small, there

is a simplification because the flow may be approximated by the superposition of the

basic flow U(y) ' U ′(0)y and the y-component of the disturbance velocity field, which

is simply a function of x, because of the continuity of ψ′ across the critical layer. This

superposition gives a flow whose streamlines form a pattern known as Kelvin’s cat’s eyes,

with closed streamlines near y = 0 (see Figure 1). The dynamics of the nonlinear critical

layer is therefore that fluid particles are advected around these streamlines, conserving

their values of ζ + βy. The rearrangement of the ζ + βy field changes the ζ ′ field, thereby

changing [u′]+− and hence the structure of the waves outside the critical layer. Furthermore

there is a corresponding change in the correlation between v′ and ζ ′, which determines

the absorption-reflection properties.

A schematic diagram of the evolution of the vorticity field in a simple nonlinear critical

layer is presented in Figure 2 and the absorption-reflection properties deduced. At early

times v′ and ζ ′ are anti-correlated and the critical layer acts as an absorber. If there

is strong dissipation then the vorticity in the centre of the critical layer is essentially

frozen in its early-time configuration and the critical layer continues to act as an absorber

at later times. (Detailed calculation shows that in this early-time/dissipative regime,
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Figure 2: Evolution of vorticity field in the nonlinear critical layer. The panels show an expanded view
of the vorticity field in the closed streamline region indicated in Figure 1. Note that this region may be
very thin in the y-direction if the wave amplitude is small. Thick dotted curves are the bounding closed
streamlines. Thick solid curves are contours of absolute vorticity ζ+βy. Thin curves are contours of wave
relative vorticity ζ ′, with solid curves indicating positive values and dashed curves indicating negative
values. Three panels show (a) absorbing stage, where y-velocity v′ is negatively correlated with ζ ′, (b)
reflecting stage, where correlation between v′ and ζ ′ is close to zero and (c) over-reflecting stage, where
v′ is positively correlated with ζ ′.

the absorption is effectively perfect.) However if dissipation is weak then the advective

rearrangement continues and, after about half a turn-round time for the closed-streamline

flow, the ζ ′ field in the centre of the critical layer (which gives the major contribution

to the integral) is such that there is no y-integrated correlation with the v′ field, i.e. the

critical layer acts as a perfect reflector. According to this particular model the advective

rearrangement continues, to give a positive correlation between v′ and ζ ′ and hence over-

reflection and the critical layer subsequently oscillates between a weakly absorbing and

weakly over-reflecting state, converging to a state of perfect reflection at large times.

The precise details of the evolution depend on the particular flow configuration. However

a general description of absorption-reflection behaviour can be formulated by considering

-u′v′ as the flux (in the y-direction) of wave activity (i.e. a quantity that is positive when

waves are present and zero when they are not). In the early-time absorbing stage wave

activity builds up in the critical layer. As the reflecting stage approaches the rate of build-
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up decreases to zero and in the over-reflecting stage the critical layer re-emits some of its

wave activity. If there is dissipation then the flux of wave activity into the critical layer

may be balanced by local dissipation of wave activity and an absorbing state may persist.

However, for the critical layer to continue to act as an absorber without dissipation then,

the amount of wave activity in the critical layer must continue to increase. The total

amount of wave activity in the critical layer may be shown to depend on the thickness

of the region over which the vorticity field has been rearranged, i.e. the thickness of the

critical layer. If this thickness is finite then there is an upper bound to the total amount of

wave activity that can be stored there and it is therefore not possible to sustain absorption.

In such a case the long-time average of the flux of wave activity must approach zero and

one can therefore say that the long-time average behaviour is perfect reflection. The only

way that absorption could be sustained in the long-term would be if the thickness of the

critical layer systematically increased in size.

A complementary viewpoint comes from considering u′v′ as a momentum flux. In the

absorbing stage [u′v′]+− is positive, implying that there is a negative force exerted on the

x-averaged flow in the critical layer. The time-averaged perfect reflection in the case where

dissipation is zero translates into no time-averaged x-average force exerted on the flow in

the critical layer. (If there was such a force then the critical line, and hence the critical

layer, would move closer and closer to the wave source.) Sustained absorption where there

is dissipation translates into a non-zero time-averaged x-average force exerted on the flow

in the critical layer, with this force being balanced by forces provided by dissipative

processes (i.e. by the linear vorticity damping in the model described above).

The critical layer theory makes clear the nature of the two-way interaction between the

wave propagation region outside the critical layer, and the flow in the critical layer itself.

The waves outside the critical layer directly determine the flow pattern inside it (because

of the continuity of v′ across the critical layer). However inside the critical layer the

flow changes the vorticity field and hence the jump in u′ across the critical layer, thereby

changing the waves outside it. It is important to note that there is no wave propagation

within the critical layer itself. The dynamics is simply that of vorticity advection by

a simple cat’s eye flow whose structure is determined by the waves outside the critical

layer. It is not the case that waves can be said to propagate into the critical layer and

are reflected by the structure of the flow profile that they encounter there.
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2.4 Wave breaking

The behaviour seen in the nonlinear critical layer for δNL small may be interpreted as

an example of the breaking of Rossby waves. By ‘breaking’ it is meant that the mate-

rial contours or surfaces that would, in wave propagation, be reversibly undulated, are

strongly and irreversibly deformed. The most familiar example of wave breaking occurs

for surface waves. There the wave dynamics is associated with the undulation of the ocean

surface. Waves might be forced in one region, e.g. by a storm, and propagate through

large distances. The presence of the waves in this propagation stage is associated with

distortion of the ocean surface, but the distortion is weak and reversible. As the waves en-

ter shallow water in a coastal region the distortion of the ocean surface becomes stronger

and, ultimately, complex and irreversible and the flow will become three-dimensionally

turbulent.

Rossby-wave propagation involves the reversible distortion of contours of potential vor-

ticity (absolute vorticity in the simple two-dimensional context discussed above). In the

critical layer region the distortion of these contours is strong and irreversible and the

waves may be said to be breaking. Indeed in many cases the flow in the critical layer

may be shown to involve a sort of turbulence (quasi-geostrophic or two-dimensional), but

this is not essential for the behaviour to be described as breaking. As in the surface-wave

case, where the breaking may allow the waves to drive systematic long-shore currents, the

breaking of Rossby waves allows a systematic force to be exerted by the waves.

2.5 Implications for the atmosphere

In the nonlinear Rossby wave critical layer described above there is a clear division (de-

scribed by simplified mathematical equations that may be derived by a formal approxi-

mation procedure) between the broad region outside the critical layer where the dynamics

is wave-like and the thin critical layer itself where the dynamics is strong advective rear-

rangement of the potential vorticity or absolute vorticity field, that might be called wave

breaking. In the real atmosphere the wave amplitudes are very large and the formal esti-

mate δNL of the nonlinear critical layer thickness is generally as large as the other length

scales in the problem. The same simplified mathematical equations do not hold precisely.

Nonetheless observations and numerical models show clearly that there are regions of

wave propagation and regions of wave breaking and that these exist side-by-side. There

are at least two important examples. One is in the winter stratosphere, where planetary-
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scale Rossby waves propagate up from the troposphere, distort and shift the polar-night

vortex and break in what is now called the stratospheric ‘surf zone’ (which covers a large

region of the midlatitudes and subtropics). The stirring of potential vorticity in the surf

zone leads to weak large-scale gradients in the interior of the surf zone and corresponding

strong gradients at its poleward edge, which is the boundary of the polar vortex. These

strong potential vorticity gradients act as a kind of wave guide for upward propagation

of Rossby waves. A second is in the upper troposphere and lower stratosphere, where

synoptic-scale baroclinic eddies lead to a wave-like distortion of the subtropical jet and to

wave-breaking regions on the poleward and equatorward sides of the jet. Again the effect

on PV gradients is to lead to a kind of wave guide for tropospheric Rossby waves.

In these examples nonlinear critical layer theory provides quantitive guidance as to how

the different regions interact. For example, it indicates that the wave-breaking regions

may be considered to absorb, reflect or emit wave activity and that the waves may have

a systematic effect on the flow in the wave breaking region.

In the last ten years or so Rossby-wave critical layer ideas have also been applied to

hurricane dynamics. For example the role of non-axisymmetric Rossby-wave disturbances

to a hurricane in promoting hurricane intensification have been described in terms of the

propagation of such disturbances and their subsequent dissipation in a critical layer. In

a separate line of argument, the nonlinear critical layer of a subtropical Rossby wave has

been interpreted as a preferred location for hurricane vortex development, with one stage

of the development being a period of co-propagation (in longitude) of the pre-existing

wave and the growing vortex.

3 Internal gravity wave critical layers

3.1 Description

Critical lines and critical layers arise generically in any problem of wave propagation in

a fluid. Another example that is particularly important for the atmosphere is that of

internal gravity waves. This has some important differences from the Rossby wave case.

Consider the propagation of internal gravity waves on a background state that has stable

stratification with buoyancy frequency N(z) and flow in the x direction with speed U(z),

where z is height. Assuming that the flow is incompressible (which is not necessarily de-

fensible for many atmospheric gravity waves, but the model serves to illustrate important
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points that continue over to the compressible case) it may be shown that the analogue of

(3) is

ψ̂′′ + { N2(z)

(U(z)− c)2
− U ′′(z)

U(z)− c
− k2}ψ̂ = 0. (5)

This equation is known as the Taylor-Goldstein equation and, as is the case for (3) for

Rossby waves, depending on context determines the stability of density-stratified shear

flows or the structure of waves propagating on such flows. Again the critical line singular-

ity at U(z) = c is manifested by the inverse powers of U(z)−c appearing in the expression

multiplying ψ̂. There is an important difference from (3) in that the one of the expressions

contains the factor of (U(z) − c)2. This means that the behaviour of solutions near the

critical-line singularity is quite different from the Rossby-wave case. In fact, provided that

the local Richardson number N(z)2/U ′(z)2 > 1
4

(which is precisely the condition required

for the flow to be stable) the function ψ̂(z) oscillates rapidly in z near to the critical line

and the oscillations become infinitely rapid as the critical line is approached. Indeed there

are infinitely many oscillations before the critical lines is reached. These oscillations are a

manifestation of the rapid shrinking of the vertical wavelength of the wave as the critical

line is approached, due to the tilting of the wave by the shear. An analogous shrinking

of the wavelength occurs in the Rossby-wave case, but there are only a finite number

of oscillations before the critical line is reached – a subtle and important difference be-

tween this and the internal-gravity wave case. The reason for the difference is that in the

internal-gravity wave case decrease in wavelength gives a stronger decrease in the group

velocity (i.e. the propagation velocity for wave packets). Indeed in the Rossby-wave case

the idea of group velocity is simply not at all useful in the neighbourhood of the critical

line, whereas in the internal-gravity wave case it is.

Again the critical line singularity can be resolved either by dissipation or nonlinearity,

depending on the relative strengths of the two. One possibility is that the wave will

eventually dissipate. This is possible however weak dissipative processes might seem,

since the decrease in group velocity as the critical line is approached means that there is

infinite time for the dissipation to act. Indeed the wave will dissipate before the critical

line is reached. In this case the thickness of the dissipative critical layer may be defined

as the distance to the critical line at which the dissipation occurs, and the critical layer

may be regarded as a wave absorber. If wave amplitudes are sufficiently large compared

to dissipative processes, however, then nonlinear terms in the equations may become

important before dissipation occurs and, again, before the critical line is reached. The

distance to the critical line defines the thickness of the nonlinear critical layer. Here the
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situation is more complicated than in the Rossby-wave case. For example, it is not possible

to argue that the velocity component in the z-direction (analogous to v′ in the Rossby-

wave case) is continuous across the nonlinear critical layer (and therefore independent

of z within the critical layer). If governing equations for the nonlinear critical layer are

derived, they are essentially the full nonlinear governing dynamical equations, with a

slight simplification because the structure is very thin in the z direction. The critical-

layer dynamics is therefore a complex juxtaposition of wave propagation and nonlinearity.

Furthermore if nonlinearity is important it is also almost inevitable that there will be the

potential for gravitational instability and therefore, in reality, breakdown of the flow into

complex three-dimensional turbulence. For this reason, while there have been some formal

asymptotic studies of nonlinear internal-gravity wave critical layers, the behaviour that

is most likely to be relevant in the real atmosphere is better investigated using full three-

dimensional numerical simulation. Evidence from such simulations is that some nonlinear

reflection effect is possible, particularly when the local Richardson number (see above) is

not too large.

3.2 Implications for the atmosphere

Dissipation and breaking of internal gravity waves as they approach critical lines is po-

tentially an important process in the atmosphere, since it implies the possibility of wave-

induced forces. Breaking may also be caused by the decrease of density with height, which

leads to a corresponding increase in wave amplitudes. However there is little doubt that

breaking at (or more strictly near) critical lines also plays a major role. For example

the mechanism for the equatorial quasi-biennial oscillation in the stratosphere requires

selective filtering, breaking and dissipation of waves (depending on their horizontal phase

speed) by the background flow. Such waves are believed to arise primarily from convection

in the tropical troposphere (on a whole range of different scales). Observations confirm

the expected relation between the phase speed of the waves observed at a particular height

and the background flow at lower levels, through which they would have propagated.

Critical-line/critical-layer behaviour is an important ingredient of gravity-wave parametriza-

tions, that seek to represent the effects (primarily the wave-induced forces) of small-scale

gravity waves in global-scale numerical models. Such parametrization is essential for

useful simulation of the stratosphere and mesosphere. One very simple parametrization

would be that, for a spectrum of upward-propagating gravity waves, each component of
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the spectrum dissipates at its critical line and therefore gives rise to a force at that loca-

tion. In practice, some kind of breaking criterion is applied so that waves break before

the critical line is reached. Almost all current parametrizations assume the equivalent of

critical-layer absorption. If critical-layer reflection had to be taken into account then it

would greatly increase the complexity of the parametrization problem.

See also: Dynamic Meteorology (Potential Vorticity, Waves), Quasi-biennial Oscillation,

Middle Atmosphere (Gravity Waves, Planetary Waves), Rossby Waves, Wave Mean-Flow

Interaction
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