
CATAM Lecture Notes
Complexity

We often have a choice of algorithms to perform some calculation, and it is useful to be
able to compare how long the different algorithms might take. We use the complexity of
the algorithms — expressed in terms of one or more parameters such as N , the number
of steps in an ODE integration, or the size of a matrix — to make the comparison. The
complexity is measured in terms of how many operations (or “steps”) the computer
needs to perform in order to complete the algorithm.

To do this we need to choose a definition for an operation. In making a calculation
involving additions and multiplications, for example, we usually count the multipli-
cations as “operations” and ignore the additions, because they take so little time in
comparison. However, in an algorithm which performs thousands of additions and only
a few multiplications, this would be a silly definition. Therefore the definition of an op-
eration varies from case to case, and you should always choose your definition carefully
and state it.

Example: Suppose we calculate
∑n

r=1 r3. This involves 2n multiplications (two
for each r3), and n− 1 additions, which we ignore. The complexity is said to be O(n);
i.e., the time taken will be proportional to n for large n.

If instead we use the formula 1
4n2(n + 1)2 we only need 4 multiplications and the

complexity is O(1), i.e., not dependent on n.

The actual time which a computer takes to perform a given algorithm will vary
from machine to machine — the constant of proportionality in the example above will
vary — so the idea of complexity gives us a machine-independent way of comparing
algorithms. It is quite possible for an algorithm of complexity O(n) to run more quickly
on Computer A than an algorithm of complexity O(1) does on Computer B, for a specific
given value of n, if Computer A is much quicker than the other. The complexity only
tells us which algorithm is better on a given machine.

Notice also that an O(n2) algorithm may be quicker for some values of n than an
O(n) one. Suppose that the former requires 1

2n2 operations and the latter 10n; then
the first algorithm is quicker for n < 20. Complexity only tells us which is quicker for
large values of n (i.e., as n →∞).

Example: Multiplying an m × n matrix by an n × p matrix. For each of the mp
entries in the result we need to perform n multiplications (and several additions, which
we ignore); so the complexity is O(mnp). In particular, to multiply two n×n matrices,
the complexity is O(n3). In fact, there is an algorithm which takes only O(nlog2 7)
multiplications!

Example: Sorting a list of numbers (or names). Here the basic operation is (of-
ten) a comparison. The most efficient algorithm can be proved to require O(n log n)
comparisons; simple alternatives like “Bubblesort” require O(n2).

Most algorithms have some kind of “overheads”. For instance, suppose we wish to
calculate (

b 3
√

nc
)
!

where b. . .c denotes the integer part. We would need to calculate m = b 3
√

nc once; this
takes O(1) steps, i.e., it is not dependent on n. (Depending on the way the computer



calculates the root, this may not be strictly true, but the time taken will certainly
be only weakly dependent on n.) Then we must calculate m!, which involves m − 2
multiplications. We will also need a loop counter, but the costs of this will be much less
than the multiplications. Overall the algorithm takes O(n1/3) steps; for large n, which
is all that interests us in a complexity calculation, the O(1) steps to calculate m are
negligible, and the difference between m − 2 and m can be ignored (as can the b. . .c
operation and the loop counting).

Similarly, an algorithm taking 4 + 5n + 1
3n3 operations would be referred to as

O(n3).

Finally, note the notations Ω and Θ which may sometimes be used instead of O.
A function f(n) is said to be Ω

(
g(n)

)
iff g(n) = O

(
f(n)

)
; i.e., Ω is (in some sense) the

opposite of O. Furthermore, f(n) is said to be Θ
(
g(n)

)
iff both f(n) = O

(
g(n)

)
and

g(n) = O
(
f(n)

)
. Hence:

3n = O(n); 3n = O(n2); 3n 6= O(
√

n);
n2 = Ω(n); 1

2n2 + n = Ω(n2); n 6= Ω(n2);

2n3 + 2 = Θ(n3); 3n2 6= Θ(n3).

Informally, O means “same order of magnitude or less for large n”; Ω means “same
order of magnitude or greater”; and Θ means “same order of magnitude”.


