
Chapter 7

Rotating Frames

7.1 Angular Velocity

A rotating body always has an (instantaneous) axis of rotation.

Definition: a frame of reference S ′ is said to have angular velocity

! with respect to some fixed frame S if, in an infinitesimal time δt,

all vectors which are fixed in S ′ rotate through an angle δθ = ω δt

about an axis n = !/ω through the origin, where ω = |!|.

Consider a vector u which is fixed in the rotating frame. In a time δt it rotates through

an angle δθ about n; i.e., it moves to

u + δu = u cos δθ + (u . n)n(1− cos δθ)− u× n sin δθ

= u + n× u δθ + O(δθ2)

=⇒ δu = n× uω δt + O(δt2)

=⇒ u̇ = ωn× u = !× u.

(This fact is often regarded as “obvious” and can be quoted; it is

sometimes taken as the definition of !.)

Now let S be an inertial frame and S ′ be a frame rotating with angular velocity !

with respect to S. Let {e1, e2, e3} be a basis for S and {e′1, e′2, e′3} a basis for S ′. Let

a be any vector — not necessarily fixed in either S or S ′ — with components ai and a′i
respectively, i.e.,

a = a1e1 + a2e2 + a3e3 = a′1e
′
1 + a′2e

′
2 + a′3e

′
3.

Then

ȧ =
d

dt
(aiei) = ȧiei
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since the {ei} are fixed. Also,

ȧ =
d

dt
(a′ie

′
i)

= ȧ′ie
′
i + a′iė

′
i

= ȧ′ie
′
i + a′i!× e′i (because the e′i are fixed in S ′)

= ȧ′ie
′
i + !× (a′ie

′
i)

= ȧ′ie
′
i + !× a.

Introduce the notations (
da

dt

)
S

≡ ȧiei,

(
da

dt

)
S′
≡ ȧ′ie

′
i.

Note that an observer in S ′ who does not know that it is rotating would measure the rate

of change of a as (da/dt)S′ , because he would not include the contribution of ė′i; he only

notices the rate of change of the components a′i in his own frame. We have

(
da

dt

)
S

=

(
da

dt

)
S′

+ !× a

for any vector a.

We can apply the same method again:

ä =
d

dt
(ȧ′ie

′
i + !× a)

= ä′ie
′
i + ȧ′iė

′
i + !̇× a + !× ȧ

= ä′ie
′
i + 2!× (ȧ′ie

′
i) + !̇× a + !× (!× a).

So (
d2a

dt2

)
S

=

(
d2a

dt2

)
S′

+ 2!×
(

da

dt

)
S′

+ !̇× a + !× (!× a).

7.2 The Equation of Motion in a Rotating Frame

Since S is an inertial frame, N II holds in that frame:

F = m

(
d2x

dt2

)
S

.
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Hence

F = m

{(
d2x

dt2

)
S′

+ 2!×
(

dx

dt

)
S′

+ !̇× x + !× (!× x)

}
. (7.1)

Example: a particle is suspended by a string in a laboratory on

the Earth’s surface, with position vector R relative to the centre of

the Earth which rotates with (constant) angular velocity !. The

particle is hanging at equilibrium in the lab frame. What is the

tension in the string?

Since (dx/dt)S′ = 0, because the particle is at rest in the lab,

T + mg = m!× (!×R),

i.e.,

T = −m{g − !× (!×R)}.

Without rotation, the answer would have been just −mg; so we call

g − !× (!×R) the apparent gravity.

Example: in a fairground ride on Midsummer Common, a large cir-

cular drum of radius a rotates about its own axis, which is vertical.

People pay good money to get pinned to the wall as the floor drops

away. What is the minimum safe angular velocity of the drum?

In the rotating frame of the drum, the position vector x of a

person is fixed, so (dx/dt)S′ and (d2x/dt2)S′ both vanish. The forces

on the person are mg, a reaction N from the wall and friction R, so

mg + N + R = m!× (!× x)

= m(! . x)!−m(! . !)x

= −mω2x. (Because ! is perpendicular to x.)

Resolving vertically, R = −mg, so friction is the only thing holding the person up, while

horizontally, N = −mω2x. Recall that |R| 6 µ|N| from §1.6.2, where µ is the coefficient

of static friction; so

mg 6 µmω2a, i.e., ω >
√

g/(µa).

If ω drops below this, the person slides off the ride.
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The equation of motion is sometimes rearranged (by engineers and physicists) as

m

(
d2x

dt2

)
S′

= F− 2m!×
(

dx

dt

)
S′
−m!̇× x−m!× (!× x).

The various terms on the rhs are then called fictitious forces ; they do not really exist

but an observer in S ′ (who does not know that S ′ is rotating) feels an acceleration caused

by them just as if they were real.

For example, in the fairground example above, the fictitious force is −m!× (!× x)

which equals mω2x (radially outwards) — this is called the “centrifugal force”. As far as

the observer in S ′ is concerned, the “centrifugal force” is cancelled by N.

The most physically important rotating system is the Earth itself. Our weather patterns are strongly
influenced by the Earth’s rotation, and in particular by the “Coriolis force”, i.e., the fictitious force
−2m!× (dx/dt)S′ .

Consider the motion of air masses in the atmosphere. Air close to the surface is warmer than air higher
up, which produces an upwards force that more or less balances the downwards pull of gravity: hence we
can ignore vertical motion as it is essentially static. However, there are significant effects in horizontal
directions.

As an example, consider a region of low atmospheric pressure p, known
as a depression. Weather maps usually include isobars which are con-
tours of constant p, and the (real) forces acting on air currents push
them in the direction of −∇p (i.e., from high to low pressure). There-
fore, we might näıvely expect air flow to be orthogonal to the isobars
(because ∇f is always perpendicular to a curve of constant f for any
function f(x)).

However, in the Northern hemisphere, ! has a component vertically
upwards and −!× (dx/dt)S′ therefore pushes to the right when viewed
from above. So the fictitious Coriolis force causes winds to be de-
flected rightwards. (In the Southern hemisphere, winds are deflected to
the left.) This deflection continues until the pressure force −∇p is in
balance with the Coriolis force; this happens when the wind direction
(dx/dt)S′ is along the contour lines. The result is that winds actually
circle anticlockwise around a depression, parallel to the isobars, rather
than orthogonal to them. (In reality, other effects such as friction cause
the air flow to move slightly inwards as it circulates.)

7.3 The Foucault Pendulum

This is just a simple pendulum, with a bob of mass m and a

string of length l attached to the point (0, 0, l). We assume

that the displacements are small, i.e., |x| � l. We choose our

axes such that the x-axis points East and the y-axis North.

We note that x2 + y2 + (l − z)2 = l2, so

z =
1

2l
(x2 + y2 + z2).
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Since x, y, z are all small, z is actually very small (second order), and we therefore take

it to be zero. So we can use plane polar coordinates (r, φ) in the (x, y) plane. Note that

θ (the angle of the pendulum from the vertical) is small and that sin θ = r/l; so the

components of T = (Tx, Ty, Tz) are

Tz = T cos θ ≈ T,

Tx = −T sin θ cos φ

= −T (r/l)(x/r)

= −Tx/l,

Ty = −Ty/l.

Now our co-ordinate frame is rotating with the Earth at (constant) angular velocity

!. Since ω = |!| is small, we may ignore terms of order ω2; hence, from (7.1),

T + mg = m

{(
d2x

dt2

)
S′

+ 2!×
(

dx

dt

)
S′

}
.

Since (d/dt)S′ refers to the rate of change measured in this frame, (dx/dt)S′ = (ẋ, ẏ, ż)

and (d2x/dt2)S′ = (ẍ, ÿ, z̈). We also have ! = (0, ω cos λ, ω sin λ) where λ is the latitude.

Hence

Tx/m = ẍ + 2ω(ż cos λ− ẏ sin λ),

Ty/m = ÿ + 2ωẋ sin λ,

Tz/m− g = z̈ − 2ωẋ cos λ.

Since z ≈ 0, the last of these three equations gives Tz ≈ mg + O(ω); since T ≈ Tz,

we obtain Tx = −(mg/l)x + O(ωx/l). As both ω and x/l are small, we can ignore the

second-order correction term to Tx and obtain

ẍ = −g

l
x + 2ωẏ sin λ, (7.2)

ÿ = −g

l
y − 2ωẋ sin λ. (7.3)

Now let ζ = x + iy. Taking (7.2) + i(7.3),

ζ̈ = −g

l
ζ − 2iωζ̇ sin λ.

The auxiliary equation is

α2 + 2iωα sin λ +
g

l
= 0,
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i.e.,

α = −iω sin λ±
√
−ω2 sin2 λ− g

l
≈ −iω sin λ± i

√
g/l.

The general solution is therefore

ζ = e−iωt sin λ
(
A cos(

√
g/l t) + B sin(

√
g/l t)

)
.

In particular,

arg ζ = −ωt sin λ + arg
(
A cos(

√
g/l t) + B sin(

√
g/l t)

)
.

We note that φ = arg ζ, because the (x, y)-plane is simply the Argand plane for ζ. The

only effect of ω is to cause φ to decrease at a constant rate ω sin λ; that is, the direction

of swing of the pendulum moves clockwise at constant angular speed ω sin λ while the

pendulum continues to swing to and fro with frequency
√

g/l.

(This rotation is slow: its period is 2π/(ω sin λ), and ω = 2π/(1 day), so at λ = 52◦ N

the period is around 301
2

hours.)
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