
Chapter 5

Contour Integration and Transform

Theory

5.1 Path Integrals

For an integral
∫ b

a
f(x) dx on the real line, there is only one way of

getting from a to b. For an integral
∫

f(z) dz between two complex

points a and b we need to specify which path or contour C we will

use. As an example, consider

I1 =

∫
C1

dz

z
and I2 =

∫
C2

dz

z

where in both cases we integrate from z = −1 to z = +1 round a

unit semicircle: C1 above, C2 below the real axis. Substitute z = eiθ,

dz = ieiθ dθ:

I1 =

∫ 0

π

ieiθ dθ

eiθ
= −iπ

but

I2 =

∫ 2π

π

i dθ = +iπ.

The result of a contour interaction may depend on the contour.

To formally define the integral, divide C into small intervals,

separated at points zk (k = 0, . . . , N) on C, where z0 = a and

zN = b. Let δzk = zk+1 − zk and let ∆ = max
k=0,...,N−1

|δzk|. Then we

define ∫
C

f(z) dz = lim
∆→0

N−1∑
n=0

f(zk) δzk

where, as ∆ → 0, N → ∞. Note that if C lies along the real axis

then this definition is exactly the normal definition of a real integral.
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Elementary properties

If C1 is a contour from w1 to w2 in C, and C2 a contour from w2

to w3, and C is the combined contour from w1 to w3 following first

C1 then C2, we have that
∫

C
f(z) dz =

∫
C1

f(z) dz +
∫

C2
f(z) dz.

(Obvious from definition; compare with the equivalent result on the

real line,
∫ c

a
f(x) dx =

∫ b

a
f(x) dx +

∫ c

b
f(x) dx.)

If C+ is a contour from w1 to w2, and C− is exactly the same con-

tour traversed backwards, then clearly
∫

C+ f(z) dz = −
∫

C− f(z) dz.

(Cf.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.)

Integration by substitution and by parts work in C also.

If C has length L, then∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ L max
C
|f(z)|

because at each point on C, |f(z)| ≤ max
C
|f(z)|.

Closed contours

If C is a closed curve, then it doesn’t matter where we start from on

C:
∮

C
f(z) dz means the same thing in any case. (The notation

∮
denotes an integral round a closed curve.) Note that if we traverse C

in a negative sense (clockwise) we get negative the result we would

have obtained had we traversed it in a positive sense (anticlockwise).

5.2 Cauchy’s Theorem

A simply-connected domain is a region R of the complex plane with-

out any holes; formally, it is a region in which any closed curve en-

circles only points which are also in R. By a simple closed curve we

mean one which is continuous, of finite length and does not intersect

itself.

Cauchy’s Theorem states simply that if f(z) is analytic in a simply-connected domain

R, then for any simple closed curve C in R,∮
C

f(z) dz = 0.
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The proof is simple and follows from the Cauchy–Riemann equations and the Divergence

Theorem in 2D:∮
C

f(z) dz =

∮
C

(u + iv)(dx + i dy)

=

∮
C

(u dx− v dy) + i

∮
C

(v dx + u dy)

=

∫∫
S

(
−∂v

∂x
− ∂u

∂y

)
dxdy + i

∫∫
S

(
∂u

∂x
− ∂v

∂y

)
dxdy,

by applying the Divergence Theorem, where S is the region enclosed by C. But the

Cauchy–Riemann equations show that both brackets vanish, since f is analytic through-

out S. The result follows.

This result is, of course, not true if C encircles a singularity (we could not then use

the Cauchy–Riemann equations throughout S).

Changing the Contour

Suppose that C1 and C2 are two contours from a to b and that

there are no singularities of f on or between the contours. Let

C be the contour consisting of C1 followed by the reverse of

C2. C is a simple closed contour, so∮
C

f(z) dz = 0

(no singularities are enclosed). Hence∫
C1

f(z) dz −
∫

C2

f(z) dz = 0,

i.e. ∫
C1

f(z) dz =

∫
C2

f(z) dz.

So if we have one contour, we can move it around so long as

we don’t cross any singularities as we move it.

If f has no singularities anywhere, then
∫ b

a
f(z) dz does not depend at all on the path

chosen.

The same idea of “moving the contour” applies to closed

contours; if C1 and C2 are closed contours as shown, then∮
C1

f(z) dz =

∮
C2

f(z) dz
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so long as there are no singularities between C1 and C2. We prove this by considering

the closed contour C shown: clearly

0 =

∮
C

f(z) dz =

∮
C1

f(z) dz −
∮

C2

f(z) dz

(the two integrals along the “joins” shown cancel).

5.3 The Integral of f ′(z)

For a real function f(x),
∫ b

a
f ′(x) dx = f(b) − f(a). This result extends immediately to

complex functions, so long as both f and f ′ are analytic in some simply-connected region

R and the integration contour C lies entirely in R. Then

∫ b

a

f ′(z) dz = f(b)− f(a)

for any complex points a, b in R.

Note that the specified conditions ensure that the integral on the LHS is independent

of exactly which path in R is used from a to b, using the results of §5.2.

Examples:

(i)
∫ i

0
z dz = 1

2
(i2 − 02) = −1

2
. (f and f ′ are analytic in the whole of C, so the LHS is

path-independent.)

(ii)
∫

C
ez dz, where C is the semicircular contour joining −1 to +1 along |z| = 1 above

the real axis, is equal to e− e−1.

(iii)
∫ −1+i

1+i
z−1 dz via a straight contour. Note that z−1 is not analytic everywhere, so we

do need to specify the contour; but we can define a simply-connected region R, given

by Im z > 1
2

say, in which it is analytic, and C lies entirely in R. Let f(z) = log z

with the standard branch cut, so that f(z) is also analytic in R; then∫ −1+i

1+i

z−1 dz = log(−1 + i)− log(1 + i)

= log
√

2 + 3
4
πi− (log

√
2 + 1

4
πi)

= 1
2
πi.
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(iv) Now consider
∫ −1+i

1+i
z−1 dz via the contour shown. Define R as in the diagram; we cannot now

choose the standard branch cut for log z (since C would cross it), so we choose a cut along the
positive imaginary axis, and define log reiθ = log r + iθ where − 3π

2 < θ ≤ π
2 . Then∫

C

z−1 dz = log(−1 + i)− log(1 + i)

= log
√

2 + (− 5
4π)i− (log

√
2 + 1

4πi)

= − 3
2πi.

5.4 The Calculus of Residues

The Contour Integral of a Laurent Expansion

Consider a single term an(z−z0)
n of an expansion, integrated

round a closed curve C which encircles z0 in a positive sense

(i.e., anticlockwise) once. For n ≥ 0, we can use Cauchy’s

Theorem to obtain immediately∮
C

an(z − z0)
n dz = 0.

For n < 0, first change the contour C to Cε, a circle of radius

ε about z0, using the ideas of §5.2. On Cε, z = z0 + εeiθ and

so ∮
C

an(z − z0)
n dz =

∫ 2π

0

anε
neinθ iεeiθ dθ

= ianε
n+1

∫ 2π

0

ei(n+1)θ dθ

=

ianε
n+1

[
ei(n+1)θ

i(n + 1)

]2π

0

n 6= −1

ianε
n+1(2π) n = −1

=

0 n 6= −1

2πia−1 n = −1

We deduce that for a function f(z) with a singularity at z0, and a contour C encircling

the singularity in a positive sense,∮
C

f(z) dz =
∞∑

n=−∞

∮
C

an(z − z0)
n dz = 2πia−1 = 2πi res

z=z0

f(z).
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We can also obtain the result as follows, using the method of §5.3:

∮
C

an(z − z0)n dz =


an

n + 1
[
(z − z0)n+1

]
C

n 6= −1

an

[
log(z − z0)

]
C

n = −1

=

{
0 n 6= −1 (because (z − z0)n+1 is single-valued)
2πia−1 n = −1 (because θ changes by 2π)

The Residue Theorem

Suppose that f(z) is analytic in a simply-connected region

R except for a finite number of poles at z1, z2, . . . , zn; and

that a simple closed curve C encircles the poles anticlockwise.

Then ∮
C

f(z) dz = 2πi
n∑

k=1

res
z=zk

f(z).

(We have just proved this in the case of a single pole.)

Proof: Consider the curve Ĉ shown. Ĉ encircles no poles,

so ∮
bC f(z) dz = 0

by Cauchy’s Theorem. But we can also work out the integral

round Ĉ by adding together several contributions: the large

outer curve (which is the same as C), the small circles around

each pole, and the contributions from the lines joining the outer curve to the inner circles.

For each k, the contribution from the small circle round zk is −2πi resz=zk
f(z) because

the small circle goes clockwise round zk. Also, the contribution from the line joining the

outer curve to the small circle cancels exactly with the contribution from the line going

back. Hence

0 =

∮
bC f(z) dz =

∮
C

f(z) dz +
n∑

k=1

(
−2πi res

z=zk

f(z)
)

from which the result follows.
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5.5 Cauchy’s Formula for f (z)

Suppose that f(z) is analytic in a region R and that z0 lies in R. Then Cauchy’s formula

states that

f(z0) =
1

2πi

∮
C

f(z)

z − z0

dz

where C is any closed contour in R encircling z0 once anticlockwise.

Proof: f(z)/(z − z0) is analytic except for a simple pole at z0, where it has residue

f(z0). Using the Residue Theorem,∮
C

f(z)

z − z0

dz = 2πif(z0)

as required.

Note: Cauchy’s formula says that if we know f on C then we know it at all points

within C. We can see that this must be so by the uniqueness theorem of Chapter 2: u

and v, the real and imaginary parts of f , are harmonic, so if they are specified on C

(Dirichlet boundary conditions), then there is a unique solution for u and v inside C.

Exercise: show that if instead f is analytic except for a singularity at z0, and has a

Laurent expansion
∑∞

m=−∞ am(z − z0)
m, then the coefficients of the expansion are given

by

an =
1

2πi

∮
C

f(z)

(z − z0)n+1
dz.

If we differentiate Cauchy’s formula with respect to z0 (differentiating under the
∮

sign on the RHS), we see that

f ′(z0) =
1

2πi

∮
C

f(z)

(z − z0)2
dz.

So f ′(z0) is known for all z0 inside C. Continuing this process,

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz,

and f (n)(z0) is known. So at any point where f is analytic, i.e. differentiable once, all its

derivatives exist; hence it is differentiable infinitely many times.

5.6 Applications of the Residue Calculus

Suppose we wish to evaluate

I =

∫ ∞

0

dx

1 + x2

83 © R. E. Hunt, 2002



(which we can already do using trigonometric substitutions).

Consider ∮
C

dz

1 + z2

where C is the contour shown: from −R to R along the real axis (C0) then returning

to −R via a semicircle of radius R in the upper half-plane (CR). Now (1 + z2)−1 =

(z + i)−1(z − i)−1, so the only singularity enclosed by C is a simple pole at z = i, where

the residue is limz→i(z + i)−1 = 1/2i. Hence∫
C0

dz

1 + z2
+

∫
CR

dz

1 + z2
=

∮
C

dz

1 + z2
= 2πi

1

2i
= π.

Now ∫
C0

dz

1 + z2
=

∫ R

−R

dx

1 + x2
→ 2I as R →∞.

Consider
∫

CR
dz/(1 + z2): the integrand (1 + z2)−1 is of order R−2 on the semicircle, but

the length of the contour is πR. Hence∣∣∣∣∫
CR

dz

1 + z2

∣∣∣∣ ≤ πR×O(R−2) = O(R−1) → 0 as R →∞.

Combining all these results and taking the limit as R →∞,

2I + 0 = π,

i.e. I = π/2.

This example is not in itself impressive. But the power of the method is clear when

we see how easily it adapts to other such integrals (for which it would not be easy, or

would be impossible, to use substitutions). Examples:

(i) We wish to calculate

I =

∫ ∞

0

dx

(x2 + a2)2
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where a > 0 is a real constant. We consider
∮

C
dz/(z2 + a2)2; most of the above

analysis is unchanged. The poles now occur at z = ±ia, and they both have order

2; only the pole at +ia is enclosed by C. The residue there is

lim
z→ia

d

dz

1

(z + ia)2
= lim

z→ia

−2

(z + ia)3
=

−2

−8ia3
= −1

4
ia−3.

The integral round the semicircle still vanishes as R →∞, since now∣∣∣∣∫
CR

dz

(z2 + a2)2

∣∣∣∣ ≤ πR×O(R−4) = O(R−3).

Therefore

2I = 2πi(−1
4
ia−3) = π/2a3,

i.e., I = π/4a3.

(ii) For I =
∫∞

0
dx/(1 + x4), the (simple) poles are at eπi/4, e3πi/4, e−πi/4 and e−3πi/4.

Only the first two poles are enclosed. The residue at eπi/4 is

lim
z→eπi/4

z − eπi/4

1 + z4
= lim

z→eπi/4

1

4z3
= 1

4
e−3πi/4 = −1

4
eπi/4

using L’Hôpital’s Rule, and at e3πi/4 it is (similarly) 1
4
e−πi/4. Hence

2I = 2πi(−1
4
eπi/4 + 1

4
e−πi/4) = 2πi(−1

4
)(2i sin π

4
) = π sin π

4
,

i.e., I = π/2
√

2.

(iii) For I =
∫∞

0
x2dx/(1 + x4), the poles are as in (ii) but with residues +1

4
e−πi/4 and

−1
4
eπi/4 respectively (check for yourself). So the value of the integral is unchanged.

(iv) For I =
∫∞

0
dx/(1 + x4) again, an alternative to the method used in example (ii)

above (and similarly in example (iii) above) is to use a contour which is just a

quarter-circle, as shown.
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Let C consist of the real axis from 0 to R (C0); the arc of circle from R to iR (C1);

and the imaginary axis from iR to 0 (C2). Now
∫

C0
dz/(1 + z4) → I as R → ∞;

and, along C2, we substitute z = iy to obtain∫
C2

dz

1 + z4
=

∫ 0

R

i dy

1 + (iy)4
= −i

∫ R

0

dy

1 + y4
→ −iI as R →∞.

The integral along C1 vanishes as R → ∞, using the same argument as for CR

above, but this time we only enclose one pole, which makes the calculation easier.

Hence

I − iI = 2πi(−1
4
eπi/4) = −1

2
πe3πi/4 =⇒ I = π/2

√
2

as before.

Jordan’s Lemma

For many applications (in particular, ones involving Fourier

transforms) we need to show that

∫
CR

f(z)eiλz dz → 0

as R → ∞, where λ > 0 is some real constant and f is

an analytic function (except possibly for a finite number of

poles). Jordan’s Lemma states that this is true so long as

f(z) → 0 as |z| → ∞. For λ < 0, the same conclusion holds

for the semicircular contour C ′
R in the lower half-plane.

Note that this result is obvious if f(z) = O(|z|−2) as |z| → ∞ – i.e., if f(z) = O(R−2)

on CR – by the following argument. First note that eiλz = eiλ(x+iy) = e−λyeiλx, and y ≥ 0

on CR, so |eiλz| = e−λy ≤ 1 on CR. Hence∣∣∣∣∫
CR

f(z)eiλz dz

∣∣∣∣ ≤ πR max
CR

|f(z)|

= πR×O(R−2) → 0 as R →∞.

Jordan’s Lemma simply extends the result from functions satisfying f(z) = O(|z|−2) to

any function satisfying f(z) → 0 as |z| → ∞. Examples:∫
CR

e2iz

z
dz → 0 as R →∞;

∫
C′

R

e−iz

z2
dz → 0 as R →∞.

86 © R. E. Hunt, 2002



The proof of Jordan’s Lemma stems from the fact that for 0 ≤ θ ≤ π/2,
sin θ ≥ 2θ/π. Now∣∣∣∣∫

CR

f(z)eiλz dz

∣∣∣∣ ≤ max
CR

|f(z)|
∫ π

0

|eiλz| |Reiθ|dθ

= R max |f(z)|
∫ π

0

e−λR sin θ dθ

[using y = R sin θ]

= 2R max |f(z)|
∫ π/2

0

e−λR sin θ dθ

≤ 2R max |f(z)|
∫ π/2

0

e−2λRθ/π dθ

=
π

λ
(1− e−λR) max |f(z)|

→ 0 as R →∞.

A similar proof holds on C ′
R for λ < 0.

5.7 Laplace Transforms

The Fourier transform is a powerful technique for solving differential equations and for

investigating many physical problems, but not all functions have a Fourier transform:

the integral defining the transform does not converge unless the function tends to zero at

infinity.

To get around this restriction, we can use another kind of transform known as the

Laplace transform. The price we pay is a different restriction: it is only defined for

functions which are zero for t < 0 (by convention). From now on, we shall make this

assumption, so that if we refer to the function f(t) = et for instance, we really mean the

function f(t) =

0 t < 0,

et t ≥ 0.

The Laplace transform of a function f(t) is defined by

f̄(p) =

∫ ∞

0

f(t)e−pt dt

where p may be complex. The notation L [f ] or L [f(t)] is also used for f̄(p); and the

symbol s is often used instead of p. Many functions – for instance, t and et – which do not

have Fourier transforms do have Laplace transforms; however, there are still exceptions
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(e.g., et2). Laplace transforms are particularly useful in initial value problems, where we

are given the state of a system at t = 0 and desire to find its state for t > 0.

Examples:

(i) L [1] =

∫ ∞

0

e−pt dt =
1

p
.

(ii) L [t] =

∫ ∞

0

te−pt dt =

[
−1

p
te−pt

]∞
0

+
1

p

∫ ∞

0

e−pt dt =
1

p2
.

(iii) L [eλt] =

∫ ∞

0

e(λ−p)t dt =
1

p− λ
.

(iv) L [sin t] = L

[
1

2i
(eit − e−it)

]
=

1

2i

(
1

p− i
− 1

p + i

)
=

1

p2 + 1
.

Note that, strictly speaking, in example (iii), the integral only converges for Re p > Re λ (otherwise the
integrand, e(λ−p)t, diverges as t →∞). However, once we have calculated the integral for Re p > Re λ we
can consider f̄(p) to exist everywhere in the complex p-plane (except for singularities such as at p = λ
in this example). This process of extending a complex function which is initially only defined in some
part of the complex plane to the whole of the plane is known as analytic continuation.

It is useful to have a “library” of Laplace transforms to hand; some common ones are

listed below.

f(t) f̄(p) f(t) f̄(p)

1
1

p
tn

n!

pn+1

eλt 1

p− λ
tneλt n!

(p− λ)n+1

sin ωt
ω

p2 + ω2
cos ωt

p

p2 + ω2

sinh λt
λ

p2 − λ2
cosh λt

p

p2 − λ2

eλt sin ωt
ω

(p− λ)2 + ω2
eλt cos ωt

p− λ

(p− λ)2 + ω2

δ(t) 1 δ(t− t0) e−pt0

Elementary Properties of the Laplace Transform

(i) Linearity: L [αf(t) + βg(t)] = αf̄(p) + βḡ(p).
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(ii) Change of scale: using the substitution t′ = λt,

L [f(λt)] =

∫ ∞

0

f(λt)e−pt dt =
1

λ

∫ ∞

0

f(t′)e−(p/λ)t′ dt′ =
1

λ
f̄

(p

λ

)
.

(iii) Shifting theorem: L [eλtf(t)] = f̄(p− λ). (Easy to check.)

(iv) Derivative of a Laplace transform:

L [tf(t)] = − d

dp
f̄(p).

Proof:

f̄(p) =

∫ ∞

0

f(t)e−pt dt =⇒ d

dp
f̄(p) = −

∫ ∞

0

tf(t)e−pt dt.

By repeating this trick n times, we see that the Laplace transform of tnf(t) is

(−1)nf̄ (n)(p).

Examples:

L [t sin t] = − d

dp

1

p2 + 1
=

2p

(p2 + 1)2
; L [tn] = (−1)n dn

dpn

1

p
=

n!

pn+1
.

(v) Laplace transform of a derivative:

L

[
df

dt

]
= pf̄(p)− f(0).

Proof: ∫ ∞

0

df

dt
e−pt dt = [f(t)e−pt]∞0 + p

∫ ∞

0

f(t)e−pt dt = pf̄(p)− f(0).

We can deduce that

L

[
d2f

dt2

]
= pL

[
df

dt

]
− ḟ(0) = p2f̄(p)− pf(0)− ḟ(0)

and so on.

(vi) Asymptotic limits: pf̄(p) → f(0) as p → ∞, and pf̄(p) → limt→∞ f(t) as p → 0.

Proofs: from (v) above,

pf̄(p) = f(0) +

∫ ∞

0

df

dt
e−pt dt,

so as p → ∞ (and therefore e−pt → 0 for all t > 0), pf̄(p) → f(0). Similarly, as

p → 0, e−pt → 1 so that

pf̄(p) → f(0) +

∫ ∞

0

df

dt
dt = f(0) + [f(t)]∞0 = lim

t→∞
f(t).
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Solving Differential Equations using Laplace Transforms

The Laplace transform is particularly suited to the solution of initial value problems.

Example: solve

ÿ + 5ẏ + 6y = 0

for y(t) subject to y(0) = 1, ẏ(0) = −4. Taking Laplace transforms, and using the results

for the Laplace transform of a derivative, we see that

(p2ȳ(p)− p + 4) + 5(pȳ(p)− 1) + 6ȳ(p) = 0,

which we may solve for ȳ(p):

ȳ(p) =
p + 1

p2 + 5p + 6
=

p + 1

(p + 2)(p + 3)
=

2

p + 3
− 1

p + 2

using partial fractions. We now need to invert ȳ(p) to find y(t); in general we must

use the inversion formula described below, but in many cases (such as this one) it is

possible to “spot” the answer using the “library” of transforms given above (and taking

advantage of the fact that inverse Laplace transforms are unique). Here, we know that

L [eλt] = 1/(p− λ); hence

y(t) = 2e−3t − e−2t.

The Convolution Theorem for Laplace Transforms

The convolution of two functions f(t) and g(t) is

(f ∗ g)(t) =

∫ ∞

−∞
f(t− t′)g(t′) dt′.

We are dealing here with functions which vanish for t < 0, so this reduces to

(f ∗ g)(t) =

∫ t

0

f(t− t′)g(t′) dt′

since g(t′) = 0 for t′ < 0 and f(t− t′) = 0 for t′ > t. The convolution theorem for Laplace

transforms then states that

L [f ∗ g] = f̄(p)ḡ(p).

Proof:

L [f ∗ g] =

∫ ∞

0

{∫ t

0

f(t− t′)g(t′) dt′
}

e−pt dt

=

∫ ∞

0

{∫ t

0

f(t− t′)g(t′)e−pt dt′
}

dt.
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From the diagram, we see that we can change the order of integration in the (t, t′)-

plane, giving

L [f ∗ g] =

∫ ∞

0

{∫ ∞

t′
f(t− t′)g(t′)e−pt dt

}
dt′

=

∫ ∞

0

{∫ ∞

0

f(t′′)e−pt′′e−pt′ dt′′
}

g(t′) dt′

[substituting t′′ = t− t′]

=

∫ ∞

0

{f̄(p)e−pt′}g(t′) dt′

= f̄(p)

∫ ∞

0

g(t′)e−pt′ dt′

= f̄(p)ḡ(p)

as required.

The Inverse Laplace Transform

Inverting Laplace transforms is more difficult than inverting Fourier transforms because

it is always necessary to perform a contour integration. Given f̄(p), we can calculate f(t)

using the Bromwich inversion formula

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
f̄(p)ept dp.

Here γ is a real constant, and the Bromwich inversion

contour Γ runs from γ − i∞ to γ + i∞ along a straight line.

Γ must lie to the right of all the singularities of f̄(p).
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Note that it is possible to derive the Bromwich inversion formula from the inverse Fourier transform by
substituting p = ik and noting that f̄(p) = f̃(−ip) where f̃(k) is the Fourier transform of f(t). The only
difference is in the detail of the inversion contour.

Suppose that f̄(p) has only poles, and no other singu-

larities; all these poles lie to the left of Γ. When t < 0,

consider the integral round the contour C shown consisting

of C0 followed by C ′
R. C encloses no poles, so∮

C

f̄(p)ept dp = 0.

Now on C ′
R, Re p ≥ γ, so Re(pt) ≤ γt (since t < 0) and hence

|ept| ≤ eγt. Therefore if f̄(p) = O(|p|−2) as |p| → ∞ – i.e., if

f̄(p) = O(R−2) on C ′
R – then∣∣∣∣∫

C′
R

f̄(p)ept dp

∣∣∣∣ ≤ πReγt ×O(R−2) → 0

as R → ∞. In fact the same is true even if we only have f̄(p) → 0 as |p| → ∞, by a

slight modification of Jordan’s Lemma. So in either case,∫
Γ

f̄(p)ept dp = lim
R→∞

∫
C0

f̄(p)ept dp

= lim
R→∞

(∮
C

f̄(p)ept dp−
∫

C′
R

f̄(p)ept dp

)
= 0− 0 = 0,

and therefore for t < 0 the inversion formula gives

f(t) =
1

2πi

∫
Γ

f̄(p)ept dp = 0

(as it must do, since f(t) = 0 for t < 0 by our initial assumption).

When t > 0, we close the contour to the left instead, and

once again we can show that∫
CR

f̄(p)ept dp → 0

as R → ∞, so long as f̄(p) → 0 as |p| → ∞. Hence in the

limit R →∞ we obtain∫
Γ

f̄(p)ept dp = 2πi
n∑

k=1

res
p=pk

(
f̄(p)ept

)
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by the Residue Theorem, where p1, . . . , pn are the poles of f̄(p). We deduce that

f(t) =
n∑

k=1

res
p=pk

(
f̄(p)ept

)
for t > 0, so long as f̄(p) → 0 as |p| → ∞.

Examples:

(i) f̄(p) = 1/(p−1). This has a pole at p = 1, so we must use γ > 1. We have f̄(p) → 0

as |p| → ∞, so Jordan’s Lemma applies as above. For t < 0, therefore, f(t) = 0,

and for t > 0,

f(t) = res
p=1

(
ept

p− 1

)
= et.

This agrees with our earlier result for the Laplace transform of eλt when λ = 1.

(ii) f̄(p) = p−n. Here we need γ > 0, because there is a pole of order n at p = 0. For

t < 0, f(t) = 0 as usual. For t > 0,

f(t) = res
p=0

(
ept

pn

)
= lim

p→0

{
1

(n− 1)!

dn−1

dpn−1
ept

}

= lim
p→0

{
1

(n− 1)!
(tn−1ept)

}

=
tn−1

(n− 1)!
.

(iii) What if f̄(p) 6→ 0 as |p| → ∞? Consider the example

f̄(p) =
e−p

p
;

here, as p → −∞ on the real axis, f̄(p) →∞. We need to calculate

f(t) =
1

2πi

∫
Γ

e−p

p
ept dp,

but Jordan’s Lemma does not immediately apply. Note, however, that e−pept =

ep(t−1) = ept′ where t′ = t− 1; so

f(t) =
1

2πi

∫
Γ

ept′

p
dp.
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Now we can use Jordan’s Lemma: when t′ < 0, close to the right, and when t′ > 0,

close to the left, picking up the residue from the pole at p = 0. Hence

f(t) =

0 t′ < 0,

1 t′ > 0

=

0 t < 1,

1 t > 1.

What function f(t) has Laplace transform f̄(p) = p−
1/2? We need to find

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
p−

1/2ept dp.

For t > 0 we can close the contour to the right as usual and obtain f(t) = 0. For t < 0, however, the
branch cut gets in the way.

Use a contour as shown, with a small circle of radius ε round the origin and two large quarter-circles of
radius R. Substituting p = εeiθ on the small circle gives a contribution of∫ −π

π

ε−
1/2e−iθ/2eεeiθt iεeiθ dθ = O(ε1/2) → 0 as ε → 0.

Similarly, the integrals round the two large quarter-circles vanish as R →∞, using the method used to
prove Jordan’s Lemma. Hence the required integral is equal to the sum of the integrals on either side of
the branch cut: i.e., for t > 0,

f(t) =
1

2πi

{
−

∫ 0

∞
r−

1/2e−iπ/2e−rt(−dr)−
∫ ∞

0

r−
1/2eiπ/2e−rt(−dr)

}
[substituting p = reiπ and p = re−iπ respectively]

=
1

2πi

{
2i

∫ ∞

0

r−
1/2e−rt dr

}

=
2
π

∫ ∞

0

e−s2t ds

[substituting r = s2]

94 © R. E. Hunt, 2002



=
1
π

√
π

t

=
1√
πt

.

So L [t−1/2] =
√

π p−
1/2. This is a generalisation of the result that L [tn] = n!/pn+1 to L [tα] = Γ(α +

1)/pα+1 where the Gamma function is defined by

Γ(α) =
∫ ∞

0

xα−1e−x dx

and can easily be shown to be equal to (α− 1)! when α is a positive integer.
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