Two parabolic

Two parabolic contact geometries in five dimensions

Timothy Moy
MPhil thesis supervised by Michael Eastwood

Cartan Geometry and Related Topics, Geilo 7 March 2023

Contact geometry

Notation

- M a five-dimensional manifold
- $H \subseteq T M$ rank-four distribution
- Let $\wedge^{k}=\wedge^{k} T^{*} M$ and $\wedge_{H}^{k}=\wedge^{k} H^{*}$
$\vee L:=\operatorname{Ann}(H) \subseteq \wedge^{1}$ the line bundle of contact forms $\alpha \in L$.

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on contact
manifolds

Legendrean

contact
geometry
G2 contact geometries

Contact geometry

Notation

- M a five-dimensional manifold
- $H \subseteq T M$ rank-four distribution
- Let $\wedge^{k}=\wedge^{k} T^{*} M$ and $\wedge_{H}^{k}=\wedge^{k} H^{*}$
$>L:=\operatorname{Ann}(H) \subseteq \wedge^{1}$ the line bundle of contact forms $\alpha \in L$.

Contact condition: $\left.d \alpha\right|_{H}$ is a non-degenerate skew-form.

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on contact
manifolds

Legendrean

contact
geometry
G2 contact geometries

Partial connections and differential invariants

Definition (Partial connection)

A partial connection (with respect to H) on a vector bundle E is a linear differential operator $\nabla: E \rightarrow \wedge_{H}^{\frac{1}{H}} \otimes E$ satisfying

$$
\nabla(f s)=\left.d f\right|_{H} \otimes s+f \nabla s .
$$

Two parabolic contact geometries in five dimensions

Timothy Moy

Calculus on contact
 manifolds

Legendrean contact geometry

Partial connections and differential invariants

Definition (Partial connection)

A partial connection (with respect to H) on a vector bundle E is a linear differential operator $\nabla: E \rightarrow \wedge_{H}^{1} \otimes E$ satisfying

$$
\nabla(f s)=\left.d f\right|_{H} \otimes s+f \nabla s .
$$

For $E=\wedge_{H}^{1}$ we have the partial torsion

$$
\tau_{a b}{ }^{c} \omega_{c}=\left(d_{\perp} \omega\right)_{a b}-\left(\nabla_{[a} \omega_{b]}\right)_{\perp}
$$

Two parabolic contact geometries in five dimensions

Timothy Moy

Calculus on contact
 manifolds

Partial connections and differential invariants

Definition (Partial connection)

A partial connection (with respect to H) on a vector bundle E is a linear differential operator $\nabla: E \rightarrow \wedge_{H}^{1} \otimes E$ satisfying

$$
\nabla(f s)=\left.d f\right|_{H} \otimes s+f \nabla s
$$

For $E=\Lambda_{H}^{1}$ we have the partial torsion

$$
\tau_{a b}{ }^{c} \omega_{c}=\left(d_{\perp} \omega\right)_{a b}-\left(\nabla_{[a} \omega_{b]}\right)_{\perp}
$$

and for general E the partial curvature:

$$
R_{a b}{ }^{\mu}{ }_{\nu}:=\left(\nabla_{[a} \nabla_{b]} s^{\mu}\right)_{\perp}-\tau_{a b}{ }^{c} \nabla_{c} s^{\mu} .
$$

Two parabolic contact geometries in five dimensions

Timothy Moy

Calculus on contact
manifolds

Promoting partial connections

Two parabolic contact geometries in five dimensions

Timothy Moy
How do partial connections on contact manifolds relate to connections?

Calculus on contact manifolds

Legendrean contact geometry

Promoting partial connections

How do partial connections on contact manifolds relate to connections?

Lemma (Eastwood, Gover, 2011)
Let $\nabla: E \rightarrow \Lambda_{H}^{1} \otimes E$ be a partial connection on a contact manifold.
There exists a unique connection $\tilde{\nabla}: E \rightarrow \Lambda^{1} \otimes E$ extending ∇ such that the 2 -form part of $\left.\tilde{\kappa}\right|_{H}$ is trace-free, where $\tilde{\kappa}$ is the curvature of $\tilde{\nabla}$.
Furthermore:
Calculus on contact
manifolds

- $\tilde{\nabla} \sigma=0 \Longleftrightarrow \nabla \sigma=0$.
- $\tilde{\nabla}$ is flat if and only if the partial curvature of ∇ vanishes.

Legendrean contact geometry

Definition (Legendrean contact manifold)

Two parabolic contact
geometries in five dimensions

Timothy Moy
A Legendrean contact geometry is a contact manifold of dimension $2 n+1$ with a decomposition $H=P \oplus V$ where P, V are of rank-n and isotropic for $\left.d \alpha\right|_{H}$.

Calculus on contact manifold's

Legendrean contact geometry

Legendrean contact geometry

Definition (Legendrean contact manifold)

Two parabolic contact
geometries in five dimensions

Timothy Moy
A Legendrean contact geometry is a contact manifold of dimension $2 n+1$ with a decomposition $H=P \oplus V$ where P, V are of rank-n and isotropic for $\left.d \alpha\right|_{H}$.

Examples:

- Standard contact structure with coordinates $\left(t, q^{i}, p_{i}\right)$ where $P=\operatorname{span}\left\{p_{i} \partial_{t}+\partial_{q^{i}}\right\}, V=\operatorname{span}\left\{\partial_{p_{i}}\right\}$

Calculus on contact manifold's

Legendrean contact geometry

Legendrean contact geometry

Definition (Legendrean contact manifold)

A Legendrean contact geometry is a contact manifold of dimension $2 n+1$ with a decomposition $H=P \oplus V$ where P, V are of rank-n and isotropic for $\left.d \alpha\right|_{H}$.

Examples:

- Standard contact structure with coordinates $\left(t, q^{i}, p_{i}\right)$ where $P=\operatorname{span}\left\{p_{i} \partial_{t}+\partial_{q^{i}}\right\}, V=\operatorname{span}\left\{\partial_{p_{i}}\right\}$
$-F_{1,2 n-1}\left(\mathbb{R}^{2 n}\right)=\left\{\right.$ lines inside hyperplanes in $\left.\mathbb{R}^{2 n}\right\}$. P consisting of velocities fixing the hyperplane, V consisting of velocities fixing the line.

Two parabolic contact geometries in five dimensions Timothy Moy

Calculus on

Legendrean contact geometry

Definition (Legendrean contact manifold)

Two parabolic contact geometries in five dimensions

Timothy Moy
A Legendrean contact geometry is a contact manifold of dimension $2 n+1$ with a decomposition $H=P \oplus V$ where P, V are of rank-n and isotropic for $\left.d \alpha\right|_{H}$.

Examples:

- Standard contact structure with coordinates $\left(t, q^{i}, p_{i}\right)$ where $P=\operatorname{span}\left\{p_{i} \partial_{t}+\partial_{q^{i}}\right\}, V=\operatorname{span}\left\{\partial_{p_{i}}\right\}$
- $F_{1,2 n-1}\left(\mathbb{R}^{2 n}\right)=\left\{\right.$ lines inside hyperplanes in $\left.\mathbb{R}^{2 n}\right\}$. P consisting of velocities fixing the hyperplane, V consisting of velocities fixing the line.
- Second-order overdetermined PDE in 1 unknown

$$
\frac{\partial^{2} t}{\partial q^{i} \partial q^{j}}=f_{i j}\left(t, q^{i}, \partial_{q^{i}} t\right)
$$

See [Doubrov, Medvedev, The, 2020].

Contact Legendrean as a parabolic geometry

In dimension five Legendrean contact geometries are the Cartan (parabolic) geometries of type $(S L(4, \mathbb{R}), P)$ where

$$
P=\left\{\left[\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
0 & * & * & * \\
0 & 0 & 0 & *
\end{array}\right]\right\}
$$

In particular since P is parabolic there will be no canonical connection on the tangent bundle.

A non-canonical connection

Theorem (Basically (5.2.11) (Čap, Slovák, 2008))
Suppose that P, V are integrable. Given a choice of contact form $\alpha \in L$ there is a unique partial connection $V^{*} \rightarrow \Lambda_{H}^{1} \otimes V^{*}$ such that the induced affine partial connection $\Lambda_{H}^{1} \rightarrow \Lambda_{H}^{1} \otimes \Lambda_{H}^{1}$ has vanishing partial torsion.

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on

 contact manifoldsLegendrean contact geometry

A non-canonical connection

Theorem (Basically (5.2.11) (Čap, Slovák, 2008))
Suppose that P, V are integrable. Given a choice of contact form $\alpha \in L$ there is a unique partial connection $V^{*} \rightarrow \Lambda_{H}^{1} \otimes V^{*}$ such that the induced affine partial connection $\Lambda_{H}^{1} \rightarrow \Lambda_{H}^{1} \otimes \Lambda_{H}^{1}$ has vanishing partial torsion.
The freedom in choosing a partial connection $V^{*} \rightarrow \Lambda_{H}^{1} \otimes V^{*}$ is the bundle:

$$
\Lambda_{H}^{1} \otimes \operatorname{End}\left(V^{*}\right) \quad \text { rank : } 4 \times 2 \times 2=16
$$

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on

 contact manifoldsLegendrean contact geometry

A non-canonical connection

Theorem (Basically (5.2.11) (Čap, Slovák, 2008))
Suppose that P, V are integrable. Given a choice of contact form $\alpha \in L$ there is a unique partial connection $V^{*} \rightarrow \Lambda_{H}^{1} \otimes V^{*}$ such that the induced affine partial connection $\Lambda_{H}^{1} \rightarrow \Lambda_{H}^{1} \otimes \Lambda_{H}^{1}$ has vanishing partial torsion.
The freedom in choosing a partial connection $V^{*} \rightarrow \Lambda_{H}^{1} \otimes V^{*}$ is the bundle:

$$
\Lambda_{H}^{1} \otimes \operatorname{End}\left(V^{*}\right) \quad \text { rank: } 4 \times 2 \times 2=16
$$

A priori the partial torsion lies in the bundle

$$
\operatorname{Hom}\left(\wedge_{H}^{1} \otimes \Lambda_{H \perp}^{2}\right) \quad \text { rank : } 4 \times 5=20
$$

but integrability of P, V further reduces the rank of the bundle in which the torsion lies to 16 .

Two parabolic contact geometries in five dimensions

Timothy Moy

Calculus on contact manifolds

Legendrean contact geometry

Formulae for change of contact scale

Rescale the contact form by $\hat{\alpha}=\Omega \alpha$ and let $\Upsilon_{\alpha}=\nabla_{\alpha} \log \Omega$
Two parabolic contact
geometries in five dimensions

Timothy Moy and $\bar{\Upsilon}_{\bar{\alpha}}=\bar{\nabla}_{\bar{\alpha}} \log \Omega$.

Calculus on contact manifolds

Legendrean contact geometry

Formulae for change of contact scale

Rescale the contact form by $\hat{\alpha}=\Omega \alpha$ and let $\Upsilon_{\alpha}=\nabla_{\alpha} \log \Omega$
Two parabolic contact geometries in five dimensions

Timothy Moy and $\bar{\Upsilon}_{\bar{\alpha}}=\bar{\nabla}_{\bar{\alpha}} \log \Omega$. We have change of connection formulae for sections of V^{*} :

$$
\left(\hat{\bar{\nabla}}_{\bar{\alpha}} \omega_{\beta}, \hat{\nabla}_{\alpha} \omega_{\beta}\right)=\left(\bar{\nabla}_{\bar{\alpha}} \omega_{\beta}+J_{\bar{\alpha} \beta} \bar{\Upsilon}_{\bar{\gamma}} \omega^{\bar{\gamma}}, \nabla_{\alpha} \omega_{\beta}-2 \Upsilon_{(\alpha} \omega_{\beta)}\right),
$$

for sections of P^{*}

$$
\left(\hat{\bar{\nabla}}_{\bar{\alpha}} \omega_{\bar{\beta}}, \hat{\nabla}_{\alpha} \omega_{\bar{\beta}}\right)=\left(\bar{\nabla}_{\bar{\alpha}} \omega_{\bar{\beta}}-2 \bar{\Upsilon}_{(\bar{\alpha}} \omega_{\bar{\beta}}, \nabla_{\alpha} \omega_{\bar{\beta}}+J_{\bar{\beta} \alpha} \Upsilon_{\gamma} \omega^{\gamma}\right)
$$

for sections of L we have

$$
\left(\hat{\bar{\nabla}}_{\bar{\alpha}} f, \hat{\nabla}_{\alpha} f\right)=\left(\bar{\nabla}_{\bar{\alpha}} f-\bar{\Upsilon}_{\bar{\alpha}} f, \nabla_{\alpha} f-\Upsilon_{\alpha} f\right)
$$

These are basically the same formulae for how the Tanaka-Webster connection changes in the CR case (see [Gover, Graham, 2003])

An invariant PDE

We can now write down invariantly PDE (only easily for low order).

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on

 contact manifoldsLegendrean contact geometry

An invariant PDE

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on

An invariant PDE

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on

We can now write down invariantly PDE (only easily for low order).
Which equation might we hope has prolongation the standard tractor bundle with canonical connection? On a particular tensor product of roots of L and $\wedge^{2} P^{*}$ (densities):

$$
\bar{\nabla}_{\bar{\alpha}} f=0, \nabla_{\alpha} \nabla_{\beta} f-2 Z_{\alpha \beta} f=0
$$

where $Z_{\alpha \beta}$ is a particular component of the partial curvature.

A canonical connection

This invariant PDE can be prolonged to:

$$
\begin{gathered}
\bar{\nabla}_{\bar{\alpha}}\left[\begin{array}{c}
f \\
\phi_{\beta} \\
g
\end{array}\right]=\left[\begin{array}{c}
\bar{\nabla}_{\bar{\alpha}} f \\
\bar{\nabla}_{\bar{\alpha}} \phi_{\beta}-J_{\bar{\alpha} \beta} g+\frac{1}{2} Y_{\bar{\alpha} \beta} f \\
\bar{\nabla}_{\bar{\alpha}} g-2 P_{\bar{\alpha}}^{\beta} \phi_{\beta}+\frac{1}{2} \bar{\nabla}_{\bar{\gamma}} Y_{\bar{\alpha}}^{\bar{\gamma}} f
\end{array}\right]=0 \\
\nabla_{\alpha}\left[\begin{array}{c}
f \\
\phi_{\beta} \\
g
\end{array}\right]=\left[\begin{array}{c}
\nabla_{\alpha} f-\phi_{\alpha} \\
\left\{\begin{array}{c}
\nabla_{\alpha} \phi_{\beta}-K_{\alpha \beta} f \\
\nabla_{\alpha} g-\frac{1}{3} \bar{\nabla}_{\bar{\beta}} K_{\alpha}^{\bar{\beta}} f+\frac{4}{3} Y_{\bar{\beta} \alpha}^{\bar{\beta}} \phi_{\gamma} \\
\left.+\frac{1}{6}\left(\nabla^{\bar{\gamma}} Y_{\bar{\gamma} \alpha}\right) f-\frac{1}{6} Y_{\bar{\gamma} \alpha} \phi^{\bar{\gamma}}\right\}
\end{array}\right]=0
\end{array}\right.
\end{gathered}
$$

Timothy Moy

Calculus on

contact manifold's

Legendrean contact geometry
$K_{\alpha \beta}, P_{\bar{\alpha} \bar{\beta}}, Y_{\bar{\alpha} \beta}^{\bar{\gamma} \nu}, Y_{\bar{\alpha} \beta}$ are parts of the partial curvature of $\left(\nabla_{\bar{\alpha}}, \nabla_{\alpha}\right)$ in a given scale.

The prolongation bundle

Two parabolic contact
geometries in five dimensions

Timothy Moy

The change of splitting / prolongation variables given a change of scale is given by:

$$
\widehat{\left[\begin{array}{c}
f \tag{1}\\
\phi_{\alpha} \\
g
\end{array}\right]}=\left[\begin{array}{c}
f \\
\phi_{\alpha}+\Upsilon_{\alpha} f \\
g+\bar{\Upsilon}_{\bar{\gamma}} \phi^{\bar{\gamma}}+\frac{1}{2}\left(\bar{\nabla}_{\bar{\gamma}} \Upsilon_{\bar{\gamma}}\right) f+\bar{\Upsilon}_{\bar{\gamma}} \Upsilon_{\bar{\gamma}} f
\end{array}\right]
$$

Legendrean contact geometry

Calculus on

contact
manifolds

The prolongation bundle

Two parabolic contact geometries in five dimensions

Timothy Moy

The change of splitting / prolongation variables given a change of scale is given by:

$$
\widehat{\left[\begin{array}{c}
f \tag{1}\\
\phi_{\alpha} \\
g
\end{array}\right]}=\left[\begin{array}{c}
f \\
\phi_{\alpha}+\Upsilon_{\alpha} f \\
g+\bar{\Upsilon}_{\bar{\gamma}} \phi^{\bar{\gamma}}+\frac{1}{2}\left(\bar{\nabla}_{\bar{\gamma}} \Upsilon^{\bar{\gamma}}\right) f+\bar{\Upsilon}_{\bar{\gamma}} \Upsilon^{\bar{\gamma}} f
\end{array}\right]
$$

These formulae can be checked (after a change of variables) to be consistent with the standard tractor bundle given in [Čap, Slovák, 2008].
Flatness of the tractor partial connection implies a (local) isomorphism with the flat model, by general theory [ČS] or constructing the isomorphism directly [M. 2021].

Calculus on contact manifolds

Legendrean contact geometry

G_{2} contact geometry

Definition (G_{2} contact geometry)
A G_{2} contact geometry is a contact manifold of dimension 5 equipped with a rank-two vector bundle S and an isomorphism $\wedge_{H}^{1} \cong \odot^{3} S$ which is compatible with the Levi form.

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on

 contact manifolds
G_{2} contact geometry

Definition (G_{2} contact geometry)
A G_{2} contact geometry is a contact manifold of dimension 5 equipped with a rank-two vector bundle S and an isomorphism $\wedge_{H}^{1} \cong \odot^{3} S$ which is compatible with the Levi form.

Alternatively, these are contact manifolds of dimension 5 which have a field of twisted cubic curves in the contact distribution (with a compatibility condition).

Two parabolic contact geometries in five dimensions

Timothy Moy

G_{2} contact geometry

Definition (G_{2} contact geometry)
A G_{2} contact geometry is a contact manifold of dimension 5 equipped with a rank-two vector bundle S and an isomorphism $\wedge_{H}^{1} \cong \odot^{3} S$ which is compatible with the Levi form.

Alternatively, these are contact manifolds of dimension 5 which have a field of twisted cubic curves in the contact distribution (with a compatibility condition) .
These are the parabolic geometries of type (G_{2}, P_{2}) where (thinking of $G_{2} \subseteq S O(3,4)$ the usual way) P_{2} is the the stabiliser of a plane null with respect to the indefinite metric and which inserts trivially into the 3-form ω.

G_{2} contact geometry

Definition (G_{2} contact geometry)
A G_{2} contact geometry is a contact manifold of dimension 5 equipped with a rank-two vector bundle S and an isomorphism $\wedge_{H}^{1} \cong \odot^{3} S$ which is compatible with the Levi form.
Alternatively, these are contact manifolds of dimension 5 which have a field of twisted cubic curves in the contact distribution (with a compatibility condition) .
These are the parabolic geometries of type $\left(G_{2}, P_{2}\right)$ where (thinking of $G_{2} \subseteq S O(3,4)$ the usual way) P_{2} is the the stabiliser of a plane null with respect to the indefinite metric and which inserts trivially into the 3 -form ω.
Theorem (Eastwood, Nurowski, 2019)
Given a choice of contact form there exists a unique partial connection $\nabla_{A B C}: S \rightarrow \odot^{3} S \otimes S$ such that the induced partial connection on $\odot^{3} S=\Lambda_{H}^{1}$ has partial torsion $\tau_{A B C D E F G}$ totally symmetric.

Two parabolic contact geometries in five dimensions

Timothy Moy

Calculus on contact

Another invariant PDE

Two parabolic contact
geometries in five dimensions

Timothy Moy

For the standard tractor bundle, P_{2} preserves a plane in the standard representation (so also its orthogonal completement of rank-five) \Longrightarrow the projecting part of the tractor bundle is a rank-two subbundle. So to obtain it by prolongation we need an invariant differential operator on (weighted) spinors.

Calculus on contact manifold's

Another invariant PDE

Two parabolic
contact geometries in five dimensions

Timothy Moy

For the standard tractor bundle, P_{2} preserves a plane in the standard representation (so also its orthogonal completement of rank-five) \Longrightarrow the projecting part of the tractor bundle is a rank-two subbundle.
So to obtain it by prolongation we need an invariant differential operator on (weighted) spinors. Using the formulae for a change of scale:

$$
\hat{\nabla}_{A B C} \phi_{D}=\nabla_{A B C} \phi_{D}+(1 / 3+w) \Upsilon_{A B C} \phi_{D}-\Upsilon_{D(A B} \phi_{C)}
$$

we obtain the invariant PDE (G_{2} contact 'twistor equation')

$$
\nabla_{(A B C} \phi_{D)}=0
$$

Calculus on

The prolongation connection

Two parabolic contact
geometries in five dimensions

Timothy Moy

Which has prolongation (in the case of vanishing partial torsion):
$\nabla_{A B C}\left[\begin{array}{c}\phi_{D} \\ \mu_{D E} \\ \rho_{D}\end{array}\right]=\left[\begin{array}{c}\nabla_{A B C} \phi_{D}-\mu_{\left(A B^{\varepsilon} C\right) D} \\ \nabla_{A B C} \mu_{D E}+P_{A B C D E F} \phi^{F} \\ \nabla_{A B C} \rho_{D}+X_{A B C}{ }^{D} \phi_{D}+Y_{A B C}{ }^{D E} \mu_{D E}\end{array}\right]=0$
where, $P_{A B C}$ DEF $=P_{D E F} A B C$, and P, X, Y have long expressions in terms of the partial curvature and its derivatives.

Calculus on

 contact manifold's
Legendrean

 contact geometry
G2 contact

 geometries
The prolongation bundle

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on

 contact manifold'sThe change of splitting / prolongation variables given a change of scale is given by:

$$
\left.\begin{array}{c}
\widehat{\phi_{D}} \\
\mu_{D E} \\
\rho_{D}
\end{array}\right]=\left[\begin{array}{c}
\phi_{D} \\
\mu_{D E}+\Upsilon_{D E F} \phi^{F} \\
\rho_{D}+\Upsilon_{D E F} \mu^{E F}+\frac{1}{2} \Upsilon_{D E F} \Upsilon^{E F}{ }_{G} \phi^{G}+\frac{1}{4} \nabla_{E F G} \Upsilon^{E F G} \phi_{D}
\end{array}\right] .
$$

Geometric structure on the prolongation bundle

Very nicely, the geometric structure that should be on the standard tractor bundle has a simple description.

Two parabolic contact
geometries in five dimensions

Timothy Moy

Geometric structure on the prolongation bundle

Very nicely, the geometric structure that should be on the standard tractor bundle has a simple description. We have:

- An invariant signature- $(3,4)$ metric for which the invariant rank-2 subbundle is null:

$$
\left[\begin{array}{c}
\phi_{D} \\
\mu_{D E} \\
\sigma_{D}
\end{array}\right] \otimes\left[\begin{array}{c}
\psi_{D} \\
\nu_{D E} \\
\lambda_{D}
\end{array}\right] \mapsto \phi_{D} \lambda^{D}+\mu_{D E} \nu^{D E}-\sigma_{D} \psi^{D}
$$

Two parabolic contact
geometries in five dimensions

Timothy Moy

Geometric structure on the prolongation bundle

Very nicely, the geometric structure that should be on the standard tractor bundle has a simple description. We have:

- An invariant signature-(3,4) metric for which the invariant rank-2 subbundle is null:

$$
\left[\begin{array}{c}
\phi_{D} \\
\mu_{D E} \\
\sigma_{D}
\end{array}\right] \otimes\left[\begin{array}{c}
\psi_{D} \\
\nu_{D E} \\
\lambda_{D}
\end{array}\right] \mapsto \phi_{D} \lambda^{D}+\mu_{D E} \nu^{D E}-\sigma_{D} \psi^{D}
$$

- An invariant 3-form into which the invariant rank-2 subbundle inserts trivially:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\phi_{D} \\
\mu_{D E} \\
\rho_{D}
\end{array}\right] \otimes\left[\begin{array}{c}
\psi_{D} \\
\nu_{D E} \\
\lambda_{D}
\end{array}\right] \otimes\left[\begin{array}{c}
\gamma_{D} \\
\kappa_{D E} \\
\zeta_{D}
\end{array}\right] \mapsto} \\
& \rho_{D} \nu^{D E} \gamma_{E}-\lambda_{D} \mu^{D E} \gamma_{E}+\phi_{D} \kappa^{D E} \lambda_{E} \\
& -\psi_{D} \kappa^{D E} \rho_{E}-\phi_{E} \nu^{D E} \zeta_{D}+\psi_{D} \mu^{D E} \zeta_{E}+\mu_{D E} \nu^{D F} \kappa_{F}^{E}
\end{aligned}
$$

Two parabolic contact geometries in five dimensions

Timothy Moy

G_{2} contact geometries from Legendrean data

Lets investigate the connection between Legendrean contact and G_{2} contact geometries:

Two parabolic contact geometries in five dimensions

Timothy Moy

Calculus on contact manifolds

Legendrean contact geometry

G2 contact geometries

A recipe for G_{2} contact geometries

G_{2} contact geometries from Legendrean data

Lets investigate the connection between Legendrean contact and G_{2} contact geometries:
Given a contact Legendrean splitting $H=P \oplus V$ pick (appropriately weighted) $\Phi_{\bar{\alpha}}, \Psi_{\alpha}$ which pair to 1 under the Levi form J.

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on contact manifolds

A recipe for G_{2} contact geometries

G_{2} contact geometries from Legendrean data

Lets investigate the connection between Legendrean contact
Two parabolic
contact geometries in five dimensions

Timothy Moy and G_{2} contact geometries:
Given a contact Legendrean splitting $H=P \oplus V$ pick (appropriately weighted) $\Phi_{\bar{\alpha}}, \Psi_{\alpha}$ which pair to 1 under the Levi form J.
Take the bundle $S=E \oplus F$ over M where E and F are bundles of appropriate weights. Then define $\odot^{3} S^{2} \cong E^{3} \oplus E^{2} F \oplus E F^{2} \oplus F^{3} \rightarrow P^{*} \oplus V^{*}$ by:

$$
(x, y, z, w) \mapsto\left(x \Phi_{\bar{\alpha}}-\frac{y}{\sqrt{3}} J\left(\Psi_{\alpha}\right),-\frac{z}{\sqrt{3}} J\left(\Phi_{\bar{\alpha}}\right)+w \Psi_{\alpha}\right)
$$

A recipe for G_{2} contact geometries
which defines a G_{2} contact structure (basically the 'flying saucers' construction in [Eastwood, Nurowski, 2020]).

G_{2} contact geometries from Legendrean data

Lets investigate the connection between Legendrean contact
Two parabolic contact geometries in five dimensions

Timothy Moy and G_{2} contact geometries:
Given a contact Legendrean splitting $H=P \oplus V$ pick (appropriately weighted) $\Phi_{\bar{\alpha}}, \Psi_{\alpha}$ which pair to 1 under the Levi form J.
Take the bundle $S=E \oplus F$ over M where E and F are bundles of appropriate weights. Then define $\odot^{3} S^{2} \cong E^{3} \oplus E^{2} F \oplus E F^{2} \oplus F^{3} \rightarrow P^{*} \oplus V^{*}$ by:

$$
(x, y, z, w) \mapsto\left(x \Phi_{\bar{\alpha}}-\frac{y}{\sqrt{3}} J\left(\Psi_{\alpha}\right),-\frac{z}{\sqrt{3}} J\left(\Phi_{\bar{\alpha}}\right)+w \Psi_{\alpha}\right)
$$

A recipe for G_{2} contact geometries
which defines a G_{2} contact structure (basically the 'flying saucers' construction in [Eastwood, Nurowski, 2020]). See [Eastwood, M., 2022] for computation of the G_{2} contact torsion (the Cartan curvature) in terms of Legendrean contact data.

Legendrean geometries from G_{2} contact data

Two parabolic contact
geometries in five dimensions

Timothy Moy

Calculus on

Conversely every G_{2} contact structure and a choice of $\phi_{A}, \psi_{B} \in S$ gives rise to a Legendrean contact structure via:

$$
\begin{aligned}
P^{*} & \left.=\operatorname{span}\left\{\phi_{A} \phi_{B} \phi_{C}, \phi_{(A} \phi_{B} \psi_{C}\right)\right\} \\
V^{*} & =\operatorname{span}\left\{\psi_{A} \psi_{B} \psi_{C}, \psi_{(A} \psi_{B} \phi_{C)}\right\}
\end{aligned}
$$

A recipe for G_{2} contact geometries

Legendrean geometries from G_{2} contact data

Conversely every G_{2} contact structure and a choice of $\phi_{A}, \psi_{B} \in S$ gives rise to a Legendrean contact structure via:

$$
\begin{aligned}
P^{*} & \left.=\operatorname{span}\left\{\phi_{A} \phi_{B} \phi_{C}, \phi_{(A} \phi_{B} \psi_{C}\right)\right\} \\
V^{*} & \left.=\operatorname{span}\left\{\psi_{A} \psi_{B} \psi_{C}, \psi_{(A} \psi_{B} \phi_{C}\right)\right\}
\end{aligned}
$$

and this Legendrean contract geometry gives rise to the original G_{2} contact geometry via the previous construction. So every G_{2} contact structure (locally) arises by the previous slide's construction. Details in [M. 2021].

Two parabolic contact geometries in five dimensions

Timothy Moy

References

B. Doubrov, A.Medvedev, D. The Homogeneous Integrable Legendrian Contact Structures in Dimension Five, J. Geom. Analysis 30, 3806-3858 (2020)
A.Čap, J. Slovák

Parabolic Geometries I: Background and General Theory, AMS
Mathematical Surveys and Monographs 154 (2009)
M.Eastwood, R.Gover

Prolongation on contact manifolds, Ind. Univ. Math. J., 60, no. 5 (2009)
M.Eastwood, T.Moy

Spinors in Five-Dimensional Contact Geometry, SIGMA 18031 (2022)
M. Eastwood, P. Nurowski

The Aerodynamics of Flying Saucers, Commun. Math. Phys. 375 (2020).
R.Gover, C.R. Graham

CR invariant power of the sub-Laplacian, Journal fur die Reine und Angewandte Mathematik 583, 1-27 (2005)
T.Moy

Legendrean and G_{2} contract structures, MPhil Thesis (2021).

Two parabolic contact geometries in five dimensions

Timothy Moy

Calculus on contact
manifolds
Legendrean
contact
geometry
G2 contact geometries

A recipe for
G_{2} contact
geometries
Bibliography

