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Motivation

Slides available at damtp.cam.ac.uk/tjahm2

Some slightly vague motivating remarks:

Bridgeland introduced Joyce structures as a geometric
structure that should exist on the space M of stability
conditions of a CY3 triangulated category.

The argument for their existence involves DT invariants...
won’t talk about this today

Joyce structure: complex hyperkähler g metric on
X = TM with a homothetic Killing vector field
(LW g = g) and some lattice invariance conditions (see
Bridgeland-Strachan (2021) for a precise geometric
definition)
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Lax distributions

In what follows let X be a complex manifold of dimension 4n
and TX the holomorphic tangent bundle. For our purposes:

Definition (Lax distribution)

A (hyper-Hermitian) Lax distribution is a subbundle of TX

L(λ) = span
{
vi + λhi

}2n
i=1

. (1)

depending on a spectral parameter λ ∈ C, where vi , hi are vector
fields on X such that TX = span{vi , hi}2ni=1

Letting M = X/span{vi} we can think of L(λ) as a family of (not
necessarily linear) Ehresmann connections on the bundle X → M
depending ‘linearly’ on λ.



Hyper-Kähler
metrics from
isomonodromy

Timothy Moy

Motivation

Twistors and
integrability

Isomonodromic
flows and the
deformed
cubic oscillator

A2n complex
hyper-Kähler
metric

Bibliography

Lax distributions

In what follows let X be a complex manifold of dimension 4n
and TX the holomorphic tangent bundle. For our purposes:

Definition (Lax distribution)

A (hyper-Hermitian) Lax distribution is a subbundle of TX

L(λ) = span
{
vi + λhi

}2n
i=1

. (1)

depending on a spectral parameter λ ∈ C, where vi , hi are vector
fields on X such that TX = span{vi , hi}2ni=1

Letting M = X/span{vi} we can think of L(λ) as a family of (not
necessarily linear) Ehresmann connections on the bundle X → M
depending ‘linearly’ on λ.



Hyper-Kähler
metrics from
isomonodromy

Timothy Moy

Motivation

Twistors and
integrability

Isomonodromic
flows and the
deformed
cubic oscillator

A2n complex
hyper-Kähler
metric

Bibliography

Quaternionic structure

L(λ) = span
{
vi + λhi

}2n
i=1

determines a quaternionic structure:

I (vi ) = ivi , J(vi ) = −hi , K (vi ) = ihi (2)

L(λ) Frobenius integrable for each λ is equivalent to
integrability of the complex structures I , J,K and the existence
of the twistor space Z.
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Associated family of hyper-Hermitian metrics

L(λ) = span
{
vi + λhi

}2n
i=1

also determines a family of
holomorphic metrics satisfying the hyper-Hermitian condition
I ∗g = J∗g = K ∗g = g :

g =
2n∑

i , j=1

eijh
i ⊙ v i (3)

each corresponding to a non-degenerate skew matrix eij of
holomorphic functions.

n = 1 case well studied (e.g. Penrose (1976)): conformal class
of holomorphic metrics on 4-dimensional X and L(λ) is the
twistor distribution. Frobenius integrability ⇐⇒ g has
anti-self-dual Weyl tensor
n > 1 these are almost Grassmannian (or paraconformal)
geometries. See (Bailey-Eastwood (1991))
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Complex hyper-Kähler metrics

Definition (Complex hyper-Kähler)

A complex hyper-Kähler structure is a holomorphic metric g
and triple of holomorphic endomorphisms I , J,K of TX
satisfying the quaternion relations such that g is Hermitian for
each and ∇I = ∇J = ∇K = 0.

When is there a hyper-Kähler metric in the class?

Conformal case: (Mason-Newman (1989))

[v1 + λh1, v2 + λh2] = 0

and the flows preserved a volume form volX .
General case (sufficient condition): Integrability of L(λ) ∀λ and
the existence of ω, a symplectic form on M := X/span{vi} with

Lhi (π
∗ω) = 0, i = 1, ..., 2n.
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Plebaśnki’s heavenly equation

There is a hyperkähler metric in the class if and only if there
exists coordinates (x i , y i ) such that

vi =
∂

∂y i
(4)

hi =
∂

∂xi
+

2n∑
j ,k=1

ηjk
∂2Θ

∂y i∂y j
∂

∂yk
(5)

where Θ(xi , yi ) satisfies (a higher dimensional version of)
Plebański’s second heavenly equation

∂2Θ

∂y i∂x j
− ∂2Θ

∂y j∂x i
−

2n∑
k,l=1

ηkl
∂2Θ

∂y j∂yk
∂2Θ

∂y j∂y l
= 0. (6)
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Rough idea of isomonodromy

We will consider particular spaces X parametrising ODE on
which will live L(λ) ⊆ TX .

The general solutions of linear ODE with meromorphic
coefficients may have branching behaviour near poles x0, ..., xM
of the coefficients. The fundamental group of the punctured
space CP1 \ {x0, ..., xM} then has a linear representation on the
space of solutions called the monodromy.
Given a family of ODE depending on some parameters, a
isomonodromic flow is a family of deformations of the
parameters continuous with the identity which preserves the
monodromy.
The situation for irregular singularities is more complicated...
(want to also preserve Stokes’ data)



Hyper-Kähler
metrics from
isomonodromy

Timothy Moy

Motivation

Twistors and
integrability

Isomonodromic
flows and the
deformed
cubic oscillator

A2n complex
hyper-Kähler
metric

Bibliography

Rough idea of isomonodromy

We will consider particular spaces X parametrising ODE on
which will live L(λ) ⊆ TX .
The general solutions of linear ODE with meromorphic
coefficients may have branching behaviour near poles x0, ..., xM
of the coefficients. The fundamental group of the punctured
space CP1 \ {x0, ..., xM} then has a linear representation on the
space of solutions called the monodromy.

Given a family of ODE depending on some parameters, a
isomonodromic flow is a family of deformations of the
parameters continuous with the identity which preserves the
monodromy.
The situation for irregular singularities is more complicated...
(want to also preserve Stokes’ data)



Hyper-Kähler
metrics from
isomonodromy

Timothy Moy

Motivation

Twistors and
integrability

Isomonodromic
flows and the
deformed
cubic oscillator

A2n complex
hyper-Kähler
metric

Bibliography

Rough idea of isomonodromy

We will consider particular spaces X parametrising ODE on
which will live L(λ) ⊆ TX .
The general solutions of linear ODE with meromorphic
coefficients may have branching behaviour near poles x0, ..., xM
of the coefficients. The fundamental group of the punctured
space CP1 \ {x0, ..., xM} then has a linear representation on the
space of solutions called the monodromy.
Given a family of ODE depending on some parameters, a
isomonodromic flow is a family of deformations of the
parameters continuous with the identity which preserves the
monodromy.

The situation for irregular singularities is more complicated...
(want to also preserve Stokes’ data)



Hyper-Kähler
metrics from
isomonodromy

Timothy Moy

Motivation

Twistors and
integrability

Isomonodromic
flows and the
deformed
cubic oscillator

A2n complex
hyper-Kähler
metric

Bibliography

Rough idea of isomonodromy

We will consider particular spaces X parametrising ODE on
which will live L(λ) ⊆ TX .
The general solutions of linear ODE with meromorphic
coefficients may have branching behaviour near poles x0, ..., xM
of the coefficients. The fundamental group of the punctured
space CP1 \ {x0, ..., xM} then has a linear representation on the
space of solutions called the monodromy.
Given a family of ODE depending on some parameters, a
isomonodromic flow is a family of deformations of the
parameters continuous with the identity which preserves the
monodromy.
The situation for irregular singularities is more complicated...
(want to also preserve Stokes’ data)



Hyper-Kähler
metrics from
isomonodromy

Timothy Moy

Motivation

Twistors and
integrability

Isomonodromic
flows and the
deformed
cubic oscillator

A2n complex
hyper-Kähler
metric

Bibliography

Equation for isomonodromic flows of 2nd order
linear ODE

For the purposes of our problem the output of the general
theory is the following theorem:

Theorem (Schlesinger / Jimbo-Miwa-Ueno(1981))

A one-parameter family Q(t, x) of deformations of the
potential for the ODE

d2y

dx2
= Q(x)y

varying holomorphically with the parameter t has constant
(generalised) monodromy if and only if

∂Q(x , t)

∂t
= 2Q(x)

∂A(t, x)

∂x
+

∂Q(t, x)

∂x
A(t, x)− 1

2

∂3A(t, x)

∂x3

for some A(t, x).
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Geometry of isomonodromic flows

If potentials are parametrised by a space X with coordinates
w i , then a one-parameter family of deformations corresponds
to a vector field U satisfying the Schlesinger equation:

U(Q(x ,w i )) = 2Q
∂A

∂x
+

∂Q

∂x
A− 1

2

∂3A

∂x3
(7)

for some A(x ,w i ).

Suppose we have another:

V (Q(x ,w i )) = 2Q
∂B

∂x
+

∂Q

∂x
B − 1

2

∂3B

∂x3
. (8)

Proposition (Lie bracket of isomonodromic flows)

[U,V ](Q(x ,w i )) = 2Q
∂C

∂x
+

∂Q

∂x
C − 1

2

∂3C

∂x3
.

where

C = U(B)− V (A)−
(
A
∂B

∂x
− B

∂A

∂x

)
(I suppose this follows from the map from X to the ODE’s
monodromy data is holomorphic but it can be seen directly!)
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Deformed cubic oscillator I

The following example is due to Bridgeland-Masoero (2022):

Q(x) =
Q0(x)

λ2
+

Q1(x)

λ
+ Q2(x)

where

Q0(x) = x3 + ax + b (9)

Q1(x) =
p

x − q
+ r (10)

where p2 = q3 + aq + b.

Loosely, we pick Q2(x) to be the simplest function so that the
ODE, written as a first order system, has no singularity at q
after a gauge transformation. Specifically

Q2(x) =
3

4(x − q)2
+

r

2p(x − q)
+

r2

4p2
. (11)
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Deformed cubic oscillator II

Q(x) =
Q0(x)

λ2
+

Q1(x)

λ
+ Q2(x) (12)

Q0(x) = x3 + ax + b, Q1(x) =
p

x − q
+ r (13)

Q2(x) =
3

4(x − q)2
+

r

2p(x − q)
+

r2

4p2
. (14)

The ODE is therefore specified by a point on a manifold X with
local coordinates (a, b, q, r). The isomonodromic flows are of
the right number and have the right form to define a Lax pair:

U = − ∂

∂r
+ λ

(
∂

∂b
+

r

2p2
∂

∂r

)
(15)

V = −2p
∂

∂q
+ λ

(
∂

∂a
− r

p

∂

∂q
− r(3q2r + ar − qp)

2p3
∂

∂r

)
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A2 complex hyper-Kähler metric

There is a hyper-Kähler metric on X in the conformal class:

gω =
( r(3q2r + ar − 2qp)

2p3
da− r

2p2
db − q

2p
dq + dr

)
⊙ da

−
( r

2p2
da+

1

2p
dq
)
⊙ db.

with homothetic Killing vector

W =
4a

5

∂

∂a
+

6b

5

∂

∂b
+

2q

5

∂

∂q
+

r

5

∂

∂r
.
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Identifying TM → X

Recall Joyce structures were defined on the total space of the
tangent bundle TM → M. M a space of stability conditions.
How to see this for the cubic oscillator?

Bridgeland-Smith (2013) realise spaces of meromorphic
quadratic differentials with fixed pole orders as spaces of
stability conditions.
The choices of

Q0(x) = x3 + ax + b

parametrised by (a, b) correspond to quadratic differentials
Q0(x)dx

2 on CP1 with a single pole of order 7 up to Möbius
transformation.
So X fibres over M = (a, b) a space of stability conditions.
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Bridgeland-Smith (2013) realise spaces of meromorphic
quadratic differentials with fixed pole orders as spaces of
stability conditions.
The choices of

Q0(x) = x3 + ax + b

parametrised by (a, b) correspond to quadratic differentials
Q0(x)dx

2 on CP1 with a single pole of order 7 up to Möbius
transformation.
So X fibres over M = (a, b) a space of stability conditions.
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Gauss-Manin isomorphism

To get a (local identification) TM → X we note that a point in
(a, b) ∈ M defines an elliptic curve

Σ(a,b) = {(x , y) ∈ C2 | y2 = x3 + ax + b} ∪ {∞} (16)

Consider the holomorphic vector bundle E of rank two with
fibre H1(Σ(a,b),C) at (a, b).
It has a canonical connection ∇GM : T ∗M ⊗ Γ(E ) → Γ(E ) the
Gauss-Manin connection: the flat connection with parallel
sections those that take values in the fundamental co-cycles.
We also have a canonical section Z with value at (a, b) given by

Z(a,b) = [y dx ] ∈ H1(Σ(a,b),C)

Then we get an isomorphism TM ∼= E given by

v 7→ ∇GM
v Z .
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Abelian holonomy map

We claim (a, b, q, r) ∈ X defines a class in H1(Σ(a,b),C×):

Q1(x) =
p

x − q
+ r ↔ ϖ = 2πi

(y + p

x − q
+ r
)dx
2y

(17)

a meromorphic one-form on Σ(a,b) on the elliptic curve Σ(a,b)

with residues integer multiples of 2πi =⇒ integration of ϖ
over homology classes is well-defined after exponentiation.

We have maps over M:

X E× E TMexp v 7→∇GM
v Z

Where E , E× have fibres H1(Σ(a,b),C), H1(Σ(a,b),C×)
respectively. All this is made rigorous in Bridgeland-Masoero
(2022).
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Generalising the deformed cubic oscillator metric

This example was the first non-trivial example of a Joyce
structure with a description in local coordinates.

In arXiv:2402.14352 we generalise this construction to
produce explicit expressions for a complex hyper-Kähler metric
in 4n dimensions from the isomonodromy of ODE with
potentials having leading term a polynomial of degree 2n + 1.



Hyper-Kähler
metrics from
isomonodromy

Timothy Moy

Motivation

Twistors and
integrability

Isomonodromic
flows and the
deformed
cubic oscillator

A2n complex
hyper-Kähler
metric

Bibliography

Generalising the deformed cubic oscillator metric

This example was the first non-trivial example of a Joyce
structure with a description in local coordinates.

In arXiv:2402.14352 we generalise this construction to
produce explicit expressions for a complex hyper-Kähler metric
in 4n dimensions from the isomonodromy of ODE with
potentials having leading term a polynomial of degree 2n + 1.



Hyper-Kähler
metrics from
isomonodromy

Timothy Moy

Motivation

Twistors and
integrability

Isomonodromic
flows and the
deformed
cubic oscillator

A2n complex
hyper-Kähler
metric

Bibliography

Deformed polynomial oscillator

The ODE setup is the obvious generalisation:

Q(x) =
Q0(x)

λ2
+

Q1(x)

λ
+ Q2(x)

where

Q0(x) = x2n+1 + anx
2n−1 + ...+ a1x

n + bnx
n−1 + ...+ b1 (18)

Q1(x) =
n∑

i=1

pi
x − qi

+ R(x) (19)

where p2i = q3i + aqi + b and R(x) is the general polynomial of
degree at most n − 1 (parametrised (v1, ...vn)).

Again Q2(x) is picked so that there is no singularity at qi after a
gauge transformation.
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Isomonodromy result

Proposition (Dunajski-M,(2023))

The equation with potential specified by (18) and (19) and
Q2(x) chosen appropriately has 2n linearly independent
isomonodromic flows of the form

Li = vi + λhi

where TX = span{vi , hi}2ni=1 and the vi are vertical for the
projection X → M.

The proof proceeds by breaking down the Schlesinger equation
into manageable subsystems by Laurent expanding at the
various poles ∞, q1, ..., qn.
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A hyper-Kähler metric in the class

So we have the Lax distribution and hence a family of metrics.
How can we distinguish a hyper-Kähler metric?

Recall the
family of metrics

g = eijh
i ⊙ v j (20)

Choose eij = ωij , the pull-back of the natural symplectic form
ω on M (affine symplectic fibration).

Theorem (Dunajski-M(2023))

The metric
gω = ωijh

i ⊙ v j

is complex hyper-Kähler.

We call it the A2n complex hyper-Kähler metric.
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Symplectic structure on M

To see this symplectic structure note p ∈ M defines a
hyper-elliptic curve

Σ = {y2 = x2n+1 + anx
2n−1 + ...+ a1x

n + bnx
n−1 + ...+ b1} (21)

each with cohomology intersection form H1(Σ,C)× H1(Σ,C) → C.

Recall the Gauss-Manin connection defines an isomorphism
T(a,b)M → H1(Σ,C) by

v 7→ ∇GM
v Z .

ω is the pull-back of the intersection form by this isomorphism.
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Intriguing geometry: hyper-Lagrangians

This countable family of hyper-Kähler metrics has some nice
properties:

Recall the Plebański potential Θ. Such that we may
write

hi =
∂

∂xi
+

2n∑
j ,k=1

ηjk
∂2Θ

∂y i∂y j
∂

∂yk
(22)

The A2n metrics gω admit foliations by submanifolds which are
Lagrangian for the symplectic forms ΩI ,ΩJ ,ΩK . We call such
a foliation a hyper-Lagrangian foliation.

Proposition (Projectable hyper-Lagrangian foliation)

Given a hyper-Lagrangian foliation which pushes down to a
Lagrangian foliation of M, Θ can be taken to be at most
quadratic in half of the coordinates y i . When n = 1 such a
foliation implies the heavenly equation linearises in an
appropriate sense.
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Open questions

Many open questions:

Example rather contrived without link to Joyce
structures... Generally, which isomonodromy problems are
set up correctly to have an analogous complex
hyper-Kähler metric on the space X parametrising
potentials?

Calculations can presumably be adapted to quadratic
differentials with any fixed number of poles with fixed
orders... Does some confluence phenomenon manifest on
the level of the metric?

A2n Frobenius structure on the base space M... Is this
encoded by the Joyce structure? This is somehow true for
the cubic oscillator. Our metrics could answer this
question after taking an appropriate limit.
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