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Abstract. We give an introduction to the Penrose transform from the cohomological
viewpoint. We introduce the necessary notions of the Čech cohomology of sheaves and
culminate with the proof that solutions to the holomorphic positive-helicity massless
field equations correspond to particular cohomology classes on projective twistor space.
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1. Introduction

We begin with some motivating remarks from physics. In the language of spacetime
spinors (see [20], [21]), the zero-rest-mass equations of helicity ±1:

∇A
A′ϕAB = 0(1.1)

∇A
A′
ϕ̃A′B′ = 0(1.2)

are Maxwell’s equations without sources.
There are integral formulae for solutions of these equations. For holomorphic solutions

on complexified Minkowski space (1.2) Penrose gave a solution [18] in 1968. A solution
is given by

(1.3) ϕ̃A′B′(x) =

∮
πA′πB′f(iXAA′

πA′ , πA′)πD′
dπD′

Here, f is a holomorphic function on an appropriate open subset of C4 \ {0} which is
homogeneous of degree −4. That is f(λz) = λ−4f(z). Such functions are the same as
sections of a particular canonical line bundle over the corresponding open subset of CP3.
We will make sense of the rest of the notation in the formula in due course, but the main
point is that this is a remarkable formula in that it “integrates away” the zero-rest-mass
equations by producing a solution (physical data) from unconstrained geometric data
defined on an open subset of CP3. This is the contour integral formulae version of the
Penrose transform.
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It is clear that the Penrose transform is non-local. Similar integral formulae for solu-
tions of partial differential equations were not new, even when Penrose wrote down his
formula in 1968. For example Bateman [3] in 1904 and John [17] in 1938 had written
down integral formulae for solutions of Laplace’s equation and the ultrahyperbolic wave
equation respectively. The fields of integral geometry and tomography (related to medical
imaging) are often concerned with such formulae and the existence and construction of
inverse transforms.

Primarily following [9] and [22] the aim of this essay is to obtain a one-to-one cor-
respondence between a class of “functions” on CP3 and solutions to the zero-rest-mass
equations. Our first task is to introduce twistor space and the notation appearing in the
above formula (1.3) so that we can interpret it and explain why it produces a solution
to (1.2). We will then investigate the inherent degeneracy in (1.3). Many f produce
the same ϕA′B′ . It will turn out the correct language to remove this degeneracy is the
language of sheaf cohomology. Finally we will explain how solutions on Minkowski space
correspond to cohomology classes valued in certain canonical line bundles over CP3.

2. Twistor space

Define twistor space to be the four-dimensional complex vector space with elements[
ωA

πA′

]
∈ T,

where

ωA =

[
ω0

ω1

]
, πA′ =

[
π0′
π1′

]
are called spinors.

There is an identification of points in C4 with 2× 2 complex matrices given by

(2.1) X = (X0, X1, X2, X3) 7→ 1√
2

[
X0 +X3 X1 + iX2

X1 − iX2 X0 −X3

]
:= XAA′

.

Rather than explicitly writing the map (2.1), we will abuse notation and simply take it
to identify X = XAA′

.
A note on notation: Throughout the essay we will employ Penrose’s abstract index

notation [20, 21] whereby upper case Latin indices are simply markers denoting the type
of object and repeated indices denotes the natural pairing between a bundle and its dual.
Then XAA′

πA′ denotes the usual matrix multiplication. Indices enclosed in parentheses
are symmetrised over and indices enclosed in square brackets are antisymmetrised over.
The convention we adopt, in line with [9], is that when we need to refer to explicit
numerical indices we will use upper case sans-serif Latin indices. For example XAA′

refers
to the AA′ component of XAA′

where A ranges over 0, 1 and A′ ranges over 0, 1.
Let V be a complex vector space. Define the flag manifolds :

Fk1,...,km(V ) := {(A1, ..., Am) | A1 ⊂ ... ⊂ Am, Ai a subspace of dimension ki}.
These are complex manifolds in a canonical way. Fk(V ) is usually referred to as the
Grassmannian of k-planes in V .
We will write P := F1(T) for projective twistor space, the space of the lines in T, a space

that is isomorphic to CP3. Next we will write M := F2(T), for compactified complexified
Minkowski space which is the space of planes in T. Lastly the correspondence space is
F := F1,2(T), the space of lines inside planes in T. By realising these as quotients of the
general linear group or otherwise, one can see P,M,F have complex dimensions three,
four and five respectively.
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Consider the map C4 → M given by

ϕ : C4 → M

ϕ(XAA′
) 7→ col

[
iXAA′

δA
′

A′

]
,(2.2)

where δA
′

A′ is the 2× 2 identity matrix. This is a biholomorphism onto its image since the
4 × 2 matrix with XAA′

as the top 2 × 2 submatrix has linearly independent columns.
Permuting the rows we can obtain a set of parametrisations such that the images cover
M. The inverses give a complex atlas for M.
We define affine complexified Minkowski space MI := imϕ ∼= C4. MI is dense in M.

In fact, one can make sense of M as the conformal compactification of MI . That is, M
is MI with points added “at infinity” so that the inversions, a set of sensible conformal
transformations, are defined everywhere [22].

We have the double fibration:

(2.3)
F

P M.

νµ

The fibres of ν are isomorphic to CP1 since a fibre is precisely the set of lines lying in
a two-dimensional complex subspace and we claim that the fibres of µ are isomorphic
to CP2. To see this note that an arbitrary two-dimensional subspace containing a line
span{W} takes the form

span{W,x1X + x2Y + x3Z}
for x, y, z ∈ C where X, Y, Z,W are chosen to form a basis for T. Map this subspace to
[x : y : z] ∈ CP2 and this map is a biholomorphism.
There is a useful way of viewing FI := ν−1(MI) as a product. In particular, in terms

of the preferred coordinates for MI define a biholomorphism MI × CP1 → FI by

(2.4) (XAA′
, [πA′ ]) 7→

(
col

[
iXAA′

πA′

πA′

]
, col

[
iXAA′

δA
′

A′

])
.

In terms of this trivialisation the projection µ : FI → PI where PI := µ(FI) is just:

(2.5) (XAA′
, [πA′ ]) 7→ col

[
iXAA′

πA′

πA′

]
.

There is a canonical rank-2 holomorphic vector bundle on M which we will denote S ′∗

that has as its fibre at x ∈ M the vector subspace that x represents. For a general
Grassmannian this construction is called the universal bundle but motivated by physics,
we will call S ′ the primed spin bundle. Now each fibre of S ′∗ is by definition a subspace
of T so we get an injective map of vector bundles S ′∗ ↪→ T (we have abused notation
slightly: the target is the trivial bundle T × M over M). We can then form the exact
sequence of vector bundles

0 → S ′∗ → T → S → 0

where we have defined S := T/S ′∗. Note also that PS ′∗ = F as a bundle over M by
definition, where PS ′∗ denotes the projectivisation of the vector bundle S ′∗ (the manifold
obtained by quotienting out by scalar multiplication in the fibres of S ′∗).
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Proposition 2.6 (Tangent bundle to M). There is a canonical identification:

S ′ ⊗ S ∼= TM.

where TM is the (complexified) tangent bundle of M.

Proof. Using our preferred coordinates for MI we may represent the tangent vectors TxM
for x := XAA′ ∈ MI by 2× 2 complex matrices V AA′

. The subspace of twistor space

C := col

[
δAA′

0

]
⊆ T

is complementary to all x ∈ MI . Each tangent vector V AA′ ∈ TxM defines a linear map
x→ C by

x ∋
[
iXAA′

πA′

πA′

]
7→
[
V AA′

πA′

0

]
∈ C

and it is clear we have an isomorphism TxMI ∼= Hom(x,C) since V AA′
is an arbitrary

2 × 2 matrix. Using the fact C is complementary, this gives an isomorphism TMI ∼=
Hom(S ′∗|MI , S|MI ). It remains to check that if one defines the analogous map in the other
charts by permuting the rows, one gets a well-defined isomorphism TVM ∼= Hom(S ′∗, S).
This is done by computing the transition functions and the algebra is messy and unen-
lightening so omitted. □

A more abstract proof of the general fact that TFk(V ) ∼= Hom(U, V/U) for U the
universal bundle and V the trivial bundle is found in [13].

Note that our preferred chart for MI induces preferred trivialisations for S ′∗ and S over
MI : specifically, the trivialisation for S ′∗ maps[

iXAA′
πA′

πA′

]
∈ x = S ′∗

x

to the spinor πA′ while the trivialisation for S maps:[
ωA

0

]
∈ C ∼= T/x = Sx

to the spinor ωA.

3. Conformal invariance

We denote the kth-exterior power of a vector bundle E by ∧kE and the kth-symmetric
power by ⊙kE. For brevity it is convenient to further introduce specific notation for the
line bundles

O[−1] := ∧2S∗

O[−1]′ := ∧2S ′∗.

Define O[n] = ⊗n(O[−1])∗ and O[−n] = ⊗nO[−1] for n a positive integer and similarly
for primed spinors.

Given a choice of non-vanishing sections ϵAB, ϵA′B′ over MI of O[−1] and O[−1]′ re-
spectively there is an induced complex metric on TMI ∼= S ′|MI ⊗ S|MI with components

gAA′BB′ = ϵABϵA′B′ .
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Over MI , the trivialisations for the spin-bundles induce flat connections ∇AA′ simply
given by exterior differentiation of components. Up to multiplication by a constant there
are unique such non-vanishing sections for which:

∇AA′ϵBC = 0

∇AA′ϵB′C′ = 0.

(These are just the sections with constant components with respect to the preferred
trivialisations.) So given our coordinates for MI , we have specified a complex metric up
to multiplication by a constant. We can do the same on other coordinate patches. On the
overlap of coordinate patches, let the flat connection associated to the new coordinate
patch be denoted ∇̂AA′ . We will have

∇̂AA′ ϵ̂BC = 0

∇̂AA′ ϵ̂B′C′ = 0

for ϵ̂BC = ΩϵBC and ϵ̂B′C′ = Ω̃ϵB′C′ for some functions Ω, Ω̃ (using the fact ϵBC , ϵB′C′

are sections of line bundles). Then the new metric ĝAA′BB′ = ΩΩ̃gAA′BB′ is conformally
related to the original one.
In order for our calculations to hold in generality, and not just in our trivialisation

for MI we would therefore like to calculate without reference to specific non-vanishing
sections of O[−1], and O[−1]′. What is true is that there is a canonical non-vanishing
section of O[−1]⊗O[1] (the preimage of the constant function 2 under the natural pairing
between O[−1] and its dual). Denoting this by ϵAB or ϵAB we will use this to raise and
lower unprimed indices. For a vector bundle V over MI define V [n] := V ⊗O[n] and so
on. Sections of V [n] are called sections of V of weight n. So given a spinor ϕA ∈ S∗ we
get a spinor ϕA := ϕBϵ

AB ∈ S∗[−1]. We treat the primed indices analogously.
Going further, the zero-rest-mass free field equations can be seen to be invariant under

general conformal transformations of the metric gAA′BB′ by writing it in terms of spinors
with appropriate weight: Fixing a connection ∇AA′ on S ′∗ the general connection is given
by

∇̂AA′ϕB′ = ∇AA′ϕB′ + ΓAA′B′
C′
ϕC′

where ΓAA′B′C
′
is a section of T ∗M ⊗ End(S ′). As usual we can calculate the induced

connection on tensor powers via the Leibniz rule, and the induced connection on ∧2S ′∗

applied to a fixed choice of scale, a non-vanishing section ϵA′B′ of ∧2S ′∗ defined over some
open U ⊆ M is:

∇̂AA′ϵB′C′ = ∇AA′ϵB′C′ + ΓAA′B′
D′
ϵD′C′ + ΓAA′C′

D′
ϵB′D′

= ∇AA′ϵB′C′ + 2ΓAA′[B′C′]

where we are (for the moment) using the fixed scale ϵA′B′ to raise and lower indices. We
may set 2ΓAA′[B′C′] = −∇AA′ϵB′C′ to insist that our new connection (defined over U)
annihilates the scale. The remaining freedom lies in the bundle T ∗M⊗⊙2S ′∗. Similarly
we may find a connection on S∗ which annihilates a choice of scale ϵAB.

Proposition 3.1 (Change of conformal scale). Given choices of scale ϵAB, ϵA′B′ defined
over U ⊆ M there are unique connections on S, S ′∗ defined over U such that ∇AA′ϵBC = 0
and ∇AA′ϵB′C′ = 0 and such that the induced connection on T ∗M is torsion-free (so
corresponds to the Levi-Civita connection). Furthermore given ϵ̂BC = ΩϵBC, ϵ̂B′C′ =
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Ω̃ϵB′C′ the connections associated with the new scales are:

∇̂AA′ϕB = ∇AA′ϕB − 1

2
ΥBA′ϕA − 1

2
Υ̃BA′ϕA − 1

4
ΥAA′ϕB +

1

4
Υ̃AA′ϕB(3.2)

∇̂AA′ϕB′ = ∇AA′ϕB′ − 1

2
ΥAB′ϕA′ − 1

2
Υ̃AB′ϕA′ +

1

4
ΥAA′ϕB′ − 1

4
Υ̃AA′ϕB′(3.3)

where ΥAA′ := ∇AA′ lnΩ, Υ̃AA′ := ∇AA′ ln Ω̃.

Proof. (See appendix A)

We can write any section of O[−1]′ over U as fϵB′C′ for some smooth function f . The
change in connection on O[−1]′ is given by:

∇̂AA′(fϵB′C′) = (∇AA′f)ϵB′C′ + f∇̂AA′

(
1

Ω̃
ϵ̂B′C′

)
= ∇AA′(fϵB′C′)− Υ̃AA′fϵB′C′ .

The Leibniz rule then implies the connection on S ′∗[−k]′ is given by:

∇̂AA′ϕB′ = ∇AA′ϕB′ − 1

2
ΥAB′ϕA′ − 1

2
Υ̃AB′ϕA′ +

1

4
ΥAA′ϕB′ −

(
1

4
+ k

)
Υ̃AA′ϕB′ .

Now a general conformal transformation of the metric is given by ĝAA′BB′ = λ2gAA′BB′ ,
and this can be achieved by rescaling ϵBC and ϵB′C′ by setting Ω = Ω̃ = λ so that
ΥAA′ = Υ̃AA′ . Consider the following differential equation:

(3.4) ∇A
A′
ϕA′...B′C′ = 0,

where ϕA′...B′C′ is a section of ⊙nS ′∗[−1]′. Setting ϵ̂BC = λϵBC , ϵ̂B′C′ = λϵB′C′ . From the
Leibniz rule we get:

∇̂AA′ ϕB′...C′D′︸ ︷︷ ︸
n indices

= ∇A
A′
ϕA′...B′C′ − nΥA(B′ϕC′...D′)A′ +ΥAA′ϕB′...C′D′

=⇒ ∇̂A
A′
ϕA′...B′C′ = ∇A

A′
ϕA′...B′C′ +ΥA

A′
ϕA′...B′C′ −ΥA

A′
ϕA′...B′C′ = 0,

so that (3.4), also known as the zero-rest-mass field equations of helicity n/2 are seen to
be invariant under conformal rescalings of the metric.

4. Complex projective space

We need to define the so-called tautological bundle and its tensor powers on CPn. For
this we take the standard open cover {Ui}ni=0 for CPn, where

Ui = {[z0 : ... : zn] ∈ CPn | zi ̸= 0}

with coordinates

φi([z
0 : ... : zn]) = (z0/zi, ..., zn/zi) ∈ Cn.

We then define a holomorphic line bundle on CPn by

OCPn(m) =
⊔

i=0,...,n

Ui × C
/

∼

where Ui × C ∋ ([z0 : ... : zn], w) ∼ ([z0 : ... : zn], (zi/zj)mw) ∈ Uj × C.
We say a function g : Cn+1 \ {0} → C is of homogeneity m if g(λz0, ..., λzn) =

λmg(z0, ..., zn). In practice it is simpler to think of local sections of the above bundles as
functions on open subsets of Cn+1 with particular homogeneity.

6



Proposition 4.1. Let U ⊆ CPn be an open set. There is an isomorphism

Γ(U,OCPn(m)) ∼= {holomorphic functions on π−1(U) of homogeneity m}

where π : Cn+1 \ {0} → CPn is the map sending a point to the subspace it lies in.

Proof. Over U ∩Ui a section has a representation fi which is a holomorphic function of n
complex variables. On the overlap of charts the transition functions imply these functions
satisfy

(zi)mfi

(z0
zi
, ...

zi−1

zi
,
zi+1

zi
, ...,

zn

zi

)
= (zj)mfj

(z0
zj
, ...,

zi−1

zi
,
zi+1

zi
, ...,

zn

zj

)
which shows we can define a function of homogeneity m on π−1(U) by setting, for
(z0, ..., zn) ∈ π−1(U ∩ Ui)

f(z0, ..., zn) := (zi)mfi

(z0
zi
, ...,

zi−1

zi
,
zi+1

zi
, ...,

zn

zi

)
,

and this is holomorphic. We therefore have a map:

Γ(U,OCPn(m)) → {holomorphic functions on π−1(U) of homogeneity m}.

Since a section is determined by the collection {fi}ni=0 this map is injective. To see
surjectivity let f : π−1(U) → C be a function of homogeneity m. On π−1(Ui∩U) we have
zi ̸= 0. Then

f(z0, ..., zn) = (zi)mf
(z1
zi
, ...,

zi−1

zi
, 1,

zi+1

zi
, ...,

zn

zi

)
.

So we see that if we define a section of OCPn(m) by giving it the local representation

fi(Z
1, ..., Zn) = f

(
Z1, ..., Zi−1, 1, Zi, ..., Zn

)
,

in coordinates over Ui, this produces the required function f under the map. □

Corollary 4.2. Global sections of OCPn(m) correspond to homogeneous polynomials of
degree m in n-variables for m ≥ 0 while there are no global sections for m < 0.

Proof. A holomorphic function f on Cn+1 \ {0} is holomorphic if and only if it is holo-
morphic separately in each variable (this is Hartog’s theorem [12]). From single variable
complex analysis we know that we can expand f as a Laurent series in zi about zi = 0
for each i.

f(z) =
∑

k>−K

ck(z
1, ..., zi−1, zi+1, ..., zn)(zi)k

for some K > 0. Now if ck ̸= 0 for k < 0 then we obtain a contradiction since then f
is clearly not holomorphic in zi away from the origin. So we see that in fact f extends
to a holomorphic function on the complex plane and hence has a Taylor series about 0.
The Taylor series must only contain non-vanishing terms of order m otherwise we have a
contradiction with the homogeneity. □

Another useful interpretation of OCPn(−1) is that the fibre of OCPn(−1) at [v] ∈ CPn

is span{v}. That is, it is the universal bundle of CPn.
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5. Contour integral formulae

We now interpret the formula (1.3) in terms of the notation we have set up and show
that this formula indeed produces solutions to the zero-rest-mass field equations. In this
section we will work with unweighted spinors and compute with respect to the fixed basis
for T introduced in §2 and the associated trivialisation for the spin bundles over MI . The
scale ϵA′B′ which we use to raised and lower indices will also be fixed with ϵ0′1′ = 1. Let
f be a holomorphic function of homogeneity −4 on an open region T \ {0} (so this is
an arbitrary holomorphic section of OP(−4) defined over an open set in P). Recall that
coordinates on T are given by a pair of spinors (ωA, πA′). Now consider the 1-forms

πA′πB′fπD′
dπD′ .

for A′ = 0, 1,B′ = 0, 1. A choice of x = XAA′ ∈ MI and πA′ determines a point
(iXAA′

πA′ , πA′) ∈ T. For fixed XAA′
consider:

ωA′B′ = πA′πB′f(iXCC′
πC′ , πC′)πD′

dπD′

which depends only on πA′ . We claim that it does not depend on the scale of πA′ , that
is, it is a pull-back of a 1-form defined on an open subset of CP1. More specifically we
have the canonical projection pr : (π0′ , π1′) 7→ [π0′ : π1′ ] ∈ CP1 and using the usual open
cover for CP1 with coordinates Z0 =

π1′
π0′

on U0 and Z1 =
π0′
π1′

on U1 we see that:

pr∗ dZ0 = d(π∗Z0) = d
(π1′
π0′

)
=
π0′dπ1′ − π1′dπ0′

π0′π0′

so that πD′
dπD′ = π0′π0′ pr

∗ dZ0 over pr−1(U0). Now, πA′πB′f(iXCC′
πC′ , πC′)π0π0 is a

genuine holomorphic function on an open subset of U0 since it is of homogeneity 0 in the
coordinates. On the overlaps we have

Z0 =
1

Z1

=⇒ dZ0 = − dZ1

Z1Z1
=⇒ π∗dZ0 = −π1π1

π0π0
π∗dZ1

That is, we see ωA′B′ is the pull-back of the 1-form IA′B′ on an open subset of CP1 defined
by

IA′B′ =

{
−πA′πB′f(iXCC′

πC′ , πC′)π0′π0′ dZ
0 on U0 ∩ pr(Vx)

πA′πB′f(iXCC′
πC′ , πC′)π1′π1′ dZ

1 on U1 ∩ pr(Vx)
(5.1)

where Vx is the set of (π0′ , π1′) for which f(iX
CC′

πC′ , πC′) makes sense.
It therefore makes sense to integrate ωA′B′ over a closed contour in CP1. Now define a

symmetric spinor with the following components in our preferred trivialisation over MI :

ϕ̃A′B′(XCC′
) =

∮
πA′πB′f(iXCC′

πC′ , πC′)πD′
dπD′

where we are pushing down to CP1 then integrating over a closed contour γx. If we
vary XAA′

, we may need to adjust the contour γx since the set Vx will change, but by
Cauchy’s theorem if we do this by smooth homotopy the integral will be independent of
how we modify γx and furthermore ϕ̃A′B′(XCC′

) will be holomorphic as we vary the point
XCC′ ∈ M. The holomorphicity means it is safe to take the derivative with respect toXCC′

under the integral sign (recall the flat connection over MI induced by the trivialisation
just corresponds to differentiating the components with respect to XCC′

). The chain rule
gives:

∇AA′f(iXCC′
πC′ , πC′) = iπA′fA(iX

CC′
πC′ , πC′)
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where fA is the derivative of f with respect to the coordinate ωA for T. In particular

(5.2) ∇A
A′
ϕ̃A′B′(XCC′

) =

∮
iπA′πB′πA′

fA(iX
CC′

πC′ , πC′)πD′
dπD′ = 0

since πA′
πA′ = 0 (we are contracting over a pair of symmetric indices). So the spinor field

with components ϕ̃A′B′ over MI is a solution to the zero-rest-mass field equations. The
only input data was an unconstrained section of OP(−4) defined over an open set.

An identical argument shows that if we start with f of homogeneity −n− 2 then the
spinor with components

(5.3) ϕA′B′...C′(XDD′
) =

∮
πA′πB′ ...πC′f(iXDD′

πD′ , πD′)πE′
dπE′

is a solution to (3.4) with helicity n/2.
The effect of the choice of contour γx is hard to get a grip on in full generality. Vague

too is the relationship between the domain of f and the domain of ϕ̃. We can be more
precise if we calculate the solution generated by a specific twistor function:

Example 5.4 (Elementary states). An explicit solution to (1.2) is given by:

ϕ̃A′B′ = 2
oAX

A
(A′XB

B′)ιB
(det(XCC′))3

(5.5)

on a suitable region of MI , where oA has components o0 = 1, o1 = 0 and ιA has components
ι0 = 0, ι1 = 1 with respect to the preferred trivialisation for S∗ over MI .

Proof. Perhaps the simplest homogeneity −4 twistor function we can write down is:

f(ωC , πC′) =
1

2πi(ω0)2(ω1)2

This defines a section of OP(−4) away from the image under the projection T → P of the
closed set {ω0 = 0} ∪ {ω1 = 0}. We will consider

(5.6) f(XCC′
πC′ , πC′) =

1

2πi(X00′π0′ +X01′π1′)2(X10′π0′ +X11′π1′)2

for XCC′
non-degenerate. The problem with letting this matrix be degenerate is if we

vary XCC′
through a degenerate point then the two poles of the integrand (5.1) will pass

through each other. This is a problem since we want to avoid contours that enclose all
of the poles; such contours are homotopic to a point on a region where the integrand is
holomorphic, as illustrated in Figure 1. The integral therefore vanishes for such contours.
Accordingly, let N denote the subset of MI consisting of degenerate XCC′

and we will
calculate a solution ϕ̃A′B′ on MI \N .

We will calculate the contour integral by pushing down to CP1 and working in U0.
Substitute (5.6) into (5.1) to get:

ϕ̃0′0′ =

∮
− dZ0

2πi(X00′ +X01′Z0)2(X10′ +X11′Z0)2

ϕ̃0′1′ =

∮
− Z0 dZ0

2πi(X00′ +X01′Z0)2(X10′ +X11′Z0)2

ϕ̃1′1′ =

∮
− (Z0)2 dZ0

2πi(X00′ +X01′Z0)2(X10′ +X11′Z0)2
.

We calculate these contour integrals by the usual residue formula at the second order
pole Z0 = −X00′/X01′ . The orientation and winding number of γx have the effect of
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p1(X
CC′

)

p2(X
CC′

)

•

•γγ

p1(X
CC′

)

p2(X
CC′

)

•

•

γγ

Figure 1. An example of a trivial contour for the integrand on CP1 ∼= S2

(above) and a non-trivial contour (below). Here f is holomorphic on the
Riemann sphere except at the poles p1(XCC′

), p2(XCC′
) which depend on

the choice of point XCC′ ∈ MI .

multiplying the solution by a constant integer. Take the winding number to be 1. If
X01′ = 0, then the expression for the integrand in U0 has a pole “at infinity” so we
instead calculate the residue at the other pole for which the winding number −1. Since
the poles are second order we need to use the formula for the residue of a meromorphic
function f at a second order pole z0:

Res(f, z0) = lim
z→z0

d

dz

(
(z − z0)

2f(z)
)
.

The explicit calculations of the residues:

d

dZ0
− (Z0)n

(X01′)2(X10′ +X11′Z0)2
= − n(Z0)n−1

2πi(X01′)2(X10′ +X11′Z0)2
+

2X11′(Z0)n

2πi(X01′)2(X10′ +X11′Z0)3

Then the limit of the above as Z0 → −X00′/X01′ is:

(−1)n−1

(
n(X00′)n−1

2πi(X01′)n−1(X10′X01′ −X11′X00′)2
+

2X11′(X00′)n

2πi(X01′)n−1(X10′X01′ −X11′X00′)3

)
and taking n = 0, 1, 2 give the 0′0′, 0′1′, 1′1′ components of (5.5) respectively, remembering
that XA

0′ = −XA1′ and XA
1′ = XA0′ . □

The solution here is an example of what is called an elementary state [21].
Cauchy’s theorem tells us that if we modify f by adding a function g such that

g(iXCC′
πC′ , πC′) is holomorphic on a contractible region containing the contour then

the value of the integral will remain unchanged. The contour integral formulae (5.3)
therefore does not exhibit a bijective correspondence between sections of OP(−n−2) and

10



solutions to (3.4). For instance, if we replaced f in the previous example with:

f̃(ωC , πC) =
1

2πi(ω0)2(ω1)2
+

1

2πi(ω0)4
+

1

2πi(ω1)4

we obtain the same solution. The contour integrals resulting from the additional terms
vanish since the contour is homotopic to a point on regions “each side” of the contour
where the additional terms are each holomorphic. The reader familiar with Čech coho-
mology will find this reminiscent of a cohomology representative being defined up to a
coboundary. We will need this machinery of sheaf cohomology to obtain a true corre-
spondence.

6. Sheaf cohomology

We will give a brief introduction to sheaf cohomology.

Definition 6.1 (Sheaf). Let M be a smooth manifold. A sheaf S on M is a map from the
open sets τ = {Ui}i∈I of M to R-modules {S(U)} together with, for each U, V such that
V ⊆ U , associated restriction homomorphisms rUV : S(U) → S(V ) so that if W ⊆ V ⊆ U
then

rVW ◦ rUV = rUW
and with rUU = idS(U). We also insist on the ability to patch together local sections. That
is {Uα} is an open cover for U ⊆M then if there exists {sα} such that sα ∈ S(Uα) and

rUα
Uα∩Uβ

(sα) = r
Uβ

Uα∩Uβ
(sβ)∀α, β

then there exists s ∈ S(U) with rUUα
s = sα for each α. On the other hand we insist that

a section is determined by its local restrictions, that is, we require that if

rUUα
(s) = rUUα

(s′) ∀α
then s = s′.

Example 6.2 (Sheaf of a sections of a vector bundle). Let E → M be a smooth (resp.
holomorphic) vector bundle. For each open U ⊆ M define S(U) to be the C-module of
smooth (resp. holomorphic) sections of E|U , equipped with, for each pair U, V ∈ τ such
that V ⊆ U ⊆M the natural restriction maps

rUV : S(U) → S(V )

given by s 7→ s|V .

We will abuse notation slightly and sometimes not distinguish notationally between
a holomorphic vector bundle and its sheaf of holomorphic sections, with the context
making the distinction clear, as is standard practice [9]. We will however need notation
to distinguish between the sheaves of smooth and holomorphic sections. We will write
E(V ) for the sheaf of smooth sections of a vector bundle V .
An important special case is the sheaf of holomorphic functions on a complex manifold

M , denoted OM . This is the sheaf of holomorphic sections of the trivial bundle C ×M
over M . Recall these are the functions that are annihilated by the Dolbeault operator ∂̄.

An element s ∈ S(U) is called a section of the sheaf S over U .

Example 6.3 (Constant sheaf). Let M be a smooth manifold. The constant sheaf R̄ with
values in R on M is the sheaf where R̄(U) is defined to be the set of constant functions
on U in the ring R.

An important example for our purposes will be the following:

11



Example 6.4 (Topological pull-back). Let M,N be smooth manifolds and f : M → N
a smooth map. Let E be a smooth (resp. holomorphic) vector bundle over N . We get a
sheaf on M by the assignment, for each U ⊆M open:

U 7→ {smooth (resp. holomorphic) sections of (f ∗E)|U locally constant in the fibres of f}
equipped with the usual restriction maps.

Of course being constant ordinarily has no meaning for sections of a vector bundle, but
here makes sense since we may identify all of the fibres of f ∗E in a fibre of f with Ef(x).
By locally constant we then mean constant on connected components. Sections are then
locally pull-backs of sections of E.

The assumption that the sections are locally constant in the fibres is important. The
sections of the pull-back bundle which are constant in the fibres do not form a sheaf as it
is possible to imagine sections sα, sβ over Uα, Uβ respectively, constant in the fibres and
agreeing on Uα ∩Uβ but sα and sβ taking different values in U ∩ f−1(x) and V ∩ f−1(x),
respectively if U ∩ V ∩ f−1(x) = 0, for example.

We will denote the topological pull-back by the same symbol as the pulled-back sheaf,
with the base space making the distinction clear.

To discuss the cohomology of sheaves we need a notion of morphisms between them.

Definition 6.5 (Morphism of sheaves). A morphism f of sheaves S and T of R-modules
is a collection of R-module homomorphisms {f |U}U∈τ

f |U : S(U) → T (U)

such that the following diagram commutes for all U, V ∈ τ with V ⊆ U

S(U) T (U)

S(V ) T (V ).

rUV

f |U

rUV

f |V

For example, the exterior derivative gives a homomorphism of sheaves d : Ωp → Ωp+1

of p-forms by its restriction to open sets on M .
A morphism of sheaves is called an isomorphism if each map of R-modules is an

isomorphism.

Example 6.6. There is an isomorphism of sheaves on CPn

O(m) ∼= {holomorphic functions on Cn+1 \ {0} with homogeneity m}.
Proof. The isomorphisms between C-modules of local sections constructed in proposition
4.1 obviously commute with the restriction maps. □

Definition 6.7 (Stalks of a sheaf). Let S be the sheaf. Then the stalk of S at x is

Sx :=
⋃

U, x∈U

S(U)
/

∼

where S(U) ∋ s1 ∼ s2 ∈ S(V ) if and only if there is an open set W ⊆ (U ∩ V ) such that
rUW (s1) = rVW (s2).

Note that Sx inherits a R-module structure and furthermore the definitions of stalk
and sheaf morphism are set up so that a morphism of sheaves T → S gives an induced
R-module morphism Sx → Tx for each x ∈ M . We say that a sequence of morphism of
sheaves

S → T → V

12



is exact at T if
Sx → Tx → Vx

is exact for each x ∈M . To check exactness of this sequence of morphisms of stalks it is
sufficient to check that one can find arbitrarily small neighbourhoods W of x such that:

S(W ) → T (W ) → V (W )

is exact.
It is important to note that a sequence of homomorphisms of global sections of a

vector bundle may not be exact even if the underlying sequence of homomorphisms of
the corresponding sheaves is. For example, the topology of M may mean that the de
Rham complex given by the exterior derivative d : Γ(∧pT ∗M) → Γ(∧p+1T ∗M) is not
exact as a sequence of homomorphisms of R-modules Γ(∧pT ∗M) but the sequence of
homomorphisms of sheaves d : Ωp → Ωp+1 is always exact as a consequence of the
Poincaré lemma. One might call the exactness of the de Rham complex at the level of
sheaves local exactness.

Example 6.8 (Euler exact sequence). Let V be an arbitrary complex vector space of
dimension n and P(V ) the corresponding projective space. There is an exact sequence of
sheaves of sections (the Euler sequence)

(6.9) 0 → OP(V ) → OP(V )(1)⊗ V → TP(V ) → 0.

Proof. From (4.1) the middle sheaf is the sheaf of holomorphic vectors fields on V which
are homogeneous of degree 1. There is a canonical such vector field on V , the Euler vector
field, defined by mapping to itself (that is, V ∋ v 7→ v ∈ V ) under the canonical identifi-
cation TvV ∼= V . A function on an open subset of P(V ) pulls back to a (homogeneity 0)
function on an open subset of V \ {0} simply by declaring the function be independent
of the radial coordinate on V \ {0}. Since the Euler vector field is radial, it annihilates
such a pull-back.

The first map in the above sequence is defined by sending a holomorphic function on
P(V ) to the Euler vector field multiplied by the holomorphic function pulled back to V .
That the pull-back is not defined at the origin is not a problem because the Euler vector
field vanishes here. The next thing to investigate is how a vector field of homogeneity 1 on
V naturally gives rise to a vector field on P(V ). A holomorphic vector field on P(V ) will
be a derivation of the holomorphic functions on P(V ), which is the same as a derivation of
homogeneity 0 functions on V \{0}. We can apply a vector field X = X i∂i of homogeneity
1 to a function f of homogeneity 0 to obtain X i∂if . If we define a function l on V \{0} by
l(z) = λz thenf ◦ l = f and differentiating both sides of this equation using the chain rule
we see that ∂if is of homogeneity −1 and hence that X i∂if is a homogeneity 0. Therefore
X i∂i defines a derivation of homogeneity 0 functions on V \ {0}. We can obtain n − 1
linearly independent derivations from vector fields of homogeneity 1 and so surjectivity
is immediate. A holomorphic vector field acts trivially on functions independent of the
radial coordinate if and only if it is equal to a holomorphic function multiplied by the
Euler vector field and so we have exactness of (6.9). □

We can dualise (6.9) to obtain

(6.10) 0 → Ω1 → OP(V )(−1)⊗ V ∗ → OP(V ) → 0.

and thinking about transposes of linear maps, the map OP(V )(−1) ⊗ V ∗ → OP(V ) must
be given by contraction with the Euler vector field. This dualised exact sequence will be
a prototype for important exact sequences in §10.
Next, we will formulate sheaf cohomology in terms of Čech cohomology.
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Definition 6.11 (p-cochains). Let M be a smooth manifold and let U = {Ui}i∈I be an
open cover. Let S be a sheaf. Denote the set of p + 1 tuples (i0, ..., ip) ∈ Ip+1 such that
∩p

k=0Uik ̸= ∅ by Np . A p-cochain c with respect to U with values in S is a function

c : Nk → S

c(i0, ..., ip) =: ci0...ip

such that ci0...ip ∈ S(∩p
k=0Uik) and c[i0...ip] = ci0...ip. We write

Cp(U , S) := {p-cochains with respect to U with values in S}.

We may add cochains and multiply them by elements of the ring so there is a R-module
structure on Cp(U , S).

Definition 6.12 (Coboundary operator). Define an operator δp : C
p(U , S) → Cp+1(U , S)

by

(δc)i0i1...ip+1 =

p+1∑
j=0

(−1)jci0i1...îj ...ip+1
(6.13)

where the îj denotes omission of the index and we are implicitly applying the restriction

map to restrict ci0i1...îj ...ip+1
from its domain of definition to ∩p+1

k=0Uik .

Lemma 6.14. δp+1 ◦ δp = 0 and so

0 C1(U , S) ... Cp(U , S) ...
δ1 δp−1 δp

is a complex of R-modules.

Proof. In the expansion for (δδc)i0i1...ip+2 , the term ci0i1...îj ...îk...ip+2
will appear exactly

twice, with opposite signs. □

Definition 6.15 (pth Čech cohomology with respect to U). Define Zp(U , S) := ker δp
and Bp(U , S) := im δp−1 which we call the set of p-cocyles and the set of p-coboundaries
respectively. Define

Ȟp(U , S) = Zp(U , S)/Bp(U , S)(6.16)

which we call the Čech cohomology of M with respect to U with values in the sheaf S.

For smooth sections of a vector bundle, the existence of partitions of unity means one
can “chop-up” a p-cocycle to exhibit it as a coboundary:

Proposition 6.17. Let S be the sheaf of smooth sections of a vector bundle over M .
Then given an open cover U = {Ui}i∈I for M

Ȟp(U , S) = 0, p > 0.

Proof. Take a (locally finite) smooth partition of unity {φi}i∈I subordinate to {Ui}i∈I .
Given a 1-cocycle c define a 0-cochain b by:

bi = −
∑
k

φkcik.

Then
(δb)ij =

∑
k

φkcik −
∑
k

φkcjk =
∑
k

φk(cik − cjk)

but since c is a cocycle cik − cjk = cij so in fact (δb)ij = cij. The proof is the same for
higher cohomology, but with more indices. □
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Since analytic partitions of unity do not exist in general, the Čech cohomology with
values in holomorphic sections of a vector bundle is more interesting.

Given complexes of R-modules A = {Ai}∞i=1, B = {Bi}∞i=1 with differentials δAi : Ai →
Ai+1, δ

B
i : Bi → Bi+1, a map of complexes f : A → B is a collection of homomorphisms

fi : Ai → Bi which commute with the differentials. These maps descend to cohomology.
Note there is a dependence of the Čech cohomology groups constructed above on the

open cover U . We want to somehow construct an invariant that is independent of the
open cover U = {Ui}i∈I . We will outline this procedure here and for full details see, for
example [11]. The first thing to note is that there is a partial ordering on open covers
of M given by V < U if V = {Vj}j∈J is a refinement of U . By refinement we mean that
∀V ∈ V , V ⊆ U for some U ∈ U . Pick a map τ : J → I such that Vj ⊆ Uτ(j) ∀j ∈ J and
define τ ∗ : Cp(U , S) → Cp(V , S) by

(τ ∗c)α0α1...αp = cτ(α0)τ(α1)...τ(αp).(6.18)

We get a map of complexes ofR-modules and hence we get an induced map on cohomology
hUV : Ȟp(U , S) → Ȟp(V , S), but a priori this depends on τ . Given another τ ′ : J → I, a
simple combinatorial argument shows that one can construct a cochain homotopy between
τ ∗ and (τ ′)∗, that is, the induced maps on cohomology are the same as for τ .

Definition 6.19 (pth Čech cohomology). Define Ȟp(M,S), the pth Čech cohomology
group of M with values in S as follows:

Ȟp(M,S) =
⋃
U

Ȟp(U , S)
/

∼

taking the union across open covers U , and where the equivalence relation is defined by
[c] ∋ Ȟp(U , S) ∼ [c′] ∋ Ȟp(V , S) if and only if there is a common refinement W of U and
V such that hUW [c] = hVW [c′].

The good news is that we will never need to construct a Čech cohomology group this
way. We have the following theorems:

Theorem 6.20 (Leray). If U = {Ui}i∈I is an open cover such that for all non-empty
finite intersections σ = Ui0 ∩ ... ∩ Uiq we have

Ȟp(σ, S) = 0, ∀p > 0

then
Ȟp(M,S) ∼= Ȟp(U , S), ∀p > 0.

Such a cover is called a Leray cover.

For a proof see Hirzebruch [14, p. 26].
This is particularly useful in combination with:

Theorem 6.21 (Cartan’s Theorem B). Let S be the sheaf of holomorphic sections of a
holomorphic vector bundle over M where M is a domain of holomorphy in Cn, in the
sense M is an open set and there exists a holomorphic function on M which cannot be
extended to a larger domain. Then

Ȟp(M,S) = 0, ∀p > 0

For a proof see Gunning and Rossi [12, p. 243]. In particular, if we can find a cover of
a complex manifold with non-empty intersections which are domains of holomorphy (we
can do this, as polydiscs and their intersections are domains of holomorphy [15, p. 39,40]),
then this is a Leray cover and we may compute Čech cohomology cover.
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Example 6.22 (Vanishing theorem for CP1).

Ȟ0(CP1,O(−1)) = 0

Ȟ1(CP1,O(−1)) = 0

Proof. We have Ȟ0(CP1,O(−1)) = Γ(CP1,O(−1)) since a 0-cocycle is precisely a global
section since it agrees on overlaps. Γ(CP1,O(−1)) = 0 is precisely corollary 4.2.

Next, consider the usual cover {U0, U1}. We have Ui
∼= C and U0 ∩ U1

∼= C \ {0}
biholomorphically so this is a Leray cover. With respect to this cover every 1-cochain
is a cocycle since there are no triple intersections. We therefore need to show that a
holomorphic section of O(−1) defined over U0 ∩U1 is a coboundary. Now by proposition
4.1 a holomorphic section of O(−1) over U0 ∩ U1 corresponds to a holomorphic function
of homogeneity −1 on C2 \ ({z0 = 0} ∪ {z1 = 0}). We can write f as a Laurent series
about z0 = 0 with coefficients that are holomorphic functions on C \ {z1 = 0} and then
expand these holomorphic functions as Laurent series about z1 = 0 to obtain:

f =
∑

i,j>−K

fij(z
0)i(z1)j

where K is some positive integer. The homogeneity condition on f forces i+ j = −1 and
so it follows

f =
K+2∑
n=1

f−n−1,n(z
0)−n−1(z1)n︸ ︷︷ ︸

=:F0

+
K+2∑
n=1

fn,−n−1(z
0)n(z1)−n−1

︸ ︷︷ ︸
=:−F1

.

Now F0 extends holomorphically to π−1(U0) and F1 extends holomorphically to π−1(U1)
so that f = F0|π−1(U0) − F1|π−1(U1) which exhibits f as a coboundary. □

We will need a standard fact from homological algebra. A sequence of maps of com-

plexes A
f−→ B

g−→ C is called exact at B if each Ai
fi−→ Bi

gi−→ Ci is exact at Bi. The
following can be proved from the famous snake lemma:

Lemma 6.23 (Long exact sequence of cohomology). Let

0 → A
f−→ B

g−→ C → 0

be a short exact sequence of complexes of R-modules, then there is an exact sequence:

0 H0(A) H0(B) H0(C)

H1(A) H1(B) H1(C)

H2(A) H2(B) H2(C) · · ·

δ∗

δ∗

Furthermore the map δ∗ : Hk(C) → Hk+1(A) is given by

[ϕ] 7→ [δBk ϕ̃]

where ϕ̃ ∈ Bk satisfies gk(ϕ̃) = ϕ.

To see that δBk ϕ̃ can be identified as a cocycle in Ak+1 use the fact the homomorphisms

commute with the coboundary operator so (δCk ◦ gk)(ϕ̃) = (gk+1 ◦ δBk )(ϕ̃) = 0 and use
exactness of

0 → Ak+1
fk+1−−→ Bk+1

gk+1−−→ Ck+1 → 0.
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Let V be a holomorphic vector bundle and Ep,q(V ) denote the bundle of (smooth)
(p, q)-forms with values in V . Take local trivialising sections {si} for V . We may locally
write any section of Ep,q(V ) as si ⊗ ωi for (p, q)-forms ωi. There is a canonical operator
∂̄ : Ep,q(V ) → Ep,q+1(V ) given by

si ⊗ ωi 7→ si ⊗ ∂̄ωi

This is well-defined as the transition functions are holomorphic and so annihilated by ∂̄.
The long exact sequence lemma combined with the ∂̄-Poincaré lemma (see [12]) can be

used to prove the following standard theorem:

Theorem 6.24 (Dolbeault’s theorem). The following complex

0 O(V ) E(V ) E0,1(V ) · · ·∂̄ ∂̄ ∂̄

is exact on the level of sheaves and for U an open set

Ȟp(U,O(V )) ∼= Hp(Γ(U, E(V )) ∀p

where Hp(Γ(U, E(V )) is the pth cohomology of the complex

0 Γ(U, E(V )) Γ(U, E0,1(V )) · · ·∂̄ ∂̄

Details of the proof are omitted as we will see similar calculations using long exact
sequences in the next sections.

7. The relative de Rham sequence

Let Ω1
F and Ω1

P denote the sheaves of holomorphic forms of degree p on F and P
respectively.

Define Ωk
µ := ∧k(kerDµ)∗ where Dµ : T 0,1F → T 0,1P is the push-forward of holomor-

phic tangent vectors. In other words, Ω1
µ is dual to the vertical bundle of the fibration µ.

We can canonically identify µ∗Ω1
P as the sheaf of sections of the holomorphic subbundle of

Ω1
F generated by pull-backs of holomorphic 1-forms on P. There is a surjective mapping

Ωk
F → Ωk

µ given by restriction to vertical tangent vectors. Define µ∗Ω1
P ∧ Ω1

F to be the

sheaf of holomorphic 2-forms on F generated by elements of the form ψ ∧ω for ψ ∈ µ∗Ω1
P

and ω ∈ Ω1
F. Consider the diagram of holomorphic sheaves:

Ω1
µ Ω2

µ

OF Ω1
F Ω2

F ...

µ∗Ω1
P µ∗Ω1

P ∧ Ω1
F

The horizontal mappings give the usual holomorphic de Rham complex on F and the
columns are exact.

This gives rise to the relative de Rham sequence

(7.1) 0 OP OF Ω1
µ Ω2

µ 0
dµ dµ
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as follows: There is a canonical inclusion of OP (the topological pull-back of holomorphic
functions on P) as a sheaf on F into OF as holomorphic functions on F locally constant in
fibres. Define dµ : OF → Ω1

µ simply as the composition OF → Ω1
F → Ω1

µ. One should think
of this as differentiating holomorphic functions on F in the fibres of µ : F → P. Next define
dµ : Ω1

µ → Ω2
µ on some element of Ω1

µ by picking an element in its preimage under the

surjection Ω1
F → Ω1

µ, applying the exterior derivative, and restricting to get an element of

Ω2
µ. This is well-defined since we claim the composition µ∗Ω1

P → Ω1
F → Ω2

F → Ω2
µ vanishes

and hence this is independent of the choice of preimage, since any two preimages will
differ by an element in µ∗Ω1

P. To see that the composition vanishes note that µ∗Ω1
P is

generated by elements of the form fµ∗ω. Then:

d(fµ∗ω) = fd(µ∗ω) + df ∧ µ∗ω = fµ∗dω + df ∧ µ∗ω

and the right hand side vanishes when restricted to vertical tangent vectors.
That (7.1) is a complex can be deduced from the fact the de Rham sequence is a

complex. In particular

(dµ ◦ dµ)f = (d ◦ d)f |kerDµ = 0.

Proposition 7.2 (Local exactness of the relative de Rham complex). The complex (7.1)
is an exact sequence of sheaves.

Proof. Exactness at OF: dµf = 0 is precisely to say f is locally constant in the fibres of
µ : F → P.

Exactness at Ω1
µ: dµω = 0 implies there is a ω̃ ∈ Ω1

F such that dω̃|kerDµ = 0. Since µ

is a holomorphic submersion, about any point p ∈ F and complex coordinates (z1, z2, z3)
for P about µ(p) we may take complex coordinates (z1, z2, z3, w1, w2) for F about p such
that the coordinate representation of µ is simply

(7.3) (z1, z2, z3, w1, w2) 7→ (z1, z2, z3).

We will show there exists a holomorphic function η such that dµη = ω on a polydisc cen-
tred at (z10 , z

2
0 , z

3
0 , w

1
0, w

2
0). In our preferred coordinates the vertical bundle is spanned by

the w1 and w2 coordinate fields so we can identify Ω1
µ with the subbundle span{dw1, dw2}

and write

ω = fi(z
1, z3, z3, w1, w2)dwi

where fi is a holomorphic function of (z1, z3, z3, w1, w2). With this identification dµ simply
corresponds to taking the exterior derivative and projecting onto span{dw1∧dw2}. Taking
the exterior derivative and restricting we see that the dµ closed condition is equivalent to

∂f1
∂w2

=
∂f2
∂w1

.

On a sufficiently small polydisc about (z10 , z
2
0 , z

3
0 , w

1
0, w

2
0) we get a well-defined holomorphic

function

F1(z
1, z3, z3, w1, w2) =

∫
γ1

f1(z
1, z2, z3, w̃1, w2)dw̃1

where γ1 is any contour from w1
0 to w1. This satisfies

∂F1

∂w1
(z) = f1(z)
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where z := (z1, z2, z3, w1, w2) and differentiating under the integral

∂F1

∂w2
(z) =

∫
γ1

∂f1
∂w2

(z1, z2, z3, w̃1, w2)dw̃1 =

∫
γ1

∂f2
∂w̃1

(z1, z2, z3, w̃1, w2)dw̃1

= f2(z)− f2(z0)

where z0 := (z1, z2, z3, w1
0, w

2). Now

dµF1(z) = f1(z)dw
1 + (f2(z) + f2(z0))dw

2 = ω(z) + f2(z0)dw
2.

Lastly the function

F2(z
1, z2, z3, w1, w2) =

∫
γ2

f2(z
1, z2, z3, w1

0, w̃
2)dw̃2

where γ2 is any contour from w2
0 to w

2, satisfies dµF2 = f2(z0)dw
2 so that dµ(F1−F2) = ω

as required for exactness.
Exactness at Ω2

µ: Every section of Ω2
µ is automatically dµ closed and takes the form

f(z1, z2, z3, w1, w2)dw1 ∧ dw2 in our preferred coordinates. Similarly to before define a
holomorphic function

F =

∫
γ1

f(z1, z2, z3, w̃1, w2)dw̃1

then dµ(Fdw
2) = fdw1 ∧ dw2 by construction. □

Again we should stress that this is exact on the level of sheaves and the corresponding
complex of global sections may possess cohomology.

The complex (7.1) is only a special case of the general complex we will need. We will
need to couple this complex to powers of the tautological bundle O(n) pulled back over
F. Specifically we will make use of:

0 OP(n) µ∗OP(n) Ω1
µ ⊗ µ∗OP(n) Ω2

µ ⊗ µ∗OP(n) 0
dµ dµ

We can write any section of Ωk
µ ⊗ µ∗OP(n) like ω ⊗ µ∗ψ for ψ a section of OP(n) over P.

We define

dµ(ω ⊗ µ∗ψ) := dµω ⊗ µ∗ψ

from which we see the exactness is preserved.
We can repeat the whole argument in the smooth category to instead obtain the locally

exact sequence of sheaves

(7.4) 0 EP EF E1
µ E2

µ · · ·dµ dµ

noting that the sequence does not terminate after forms of degree two since the vertical
bundle is a real vector bundle of rank four. For V a smooth vector bundle on P the
coupled version is:

(7.5) 0 E(V ) E(µ∗V ) E1
µ ⊗ E(µ∗V ) E2

µ ⊗ E(µ∗V ) · · ·
dµ dµ

again locally exact. We need to think about the cohomology of (7.5) on the level of
sections over an open set U ⊆ F. Define Hp(Γ(U, E(µ∗V ))) to be the pth cohomology of
the complex:

0 Γ(U, E(µ∗V )) Γ(U, E1
µ ⊗ E(µ∗V )) Γ(U, E2

µ ⊗ E(µ∗V )) · · ·dµ dµ

.
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Theorem 7.6 (Abstract de Rham theorem for the relative de Rham sequence). Let U
be a connected open set. There is an isomorphism of cohomology groups

Hp(Γ(U, E(µ∗V ))) ∼= Ȟp(U, E(V )) ∀p

Proof. We will only need the result in the case of first cohomology groups so we will only
prove that here. We calculate Čech cohomology with respect to a Leray cover. Consider
the following diagram:

...
...

...

0 C1(U, E(V )) C1(U, E(µ∗V )) C1(U,Z1
µ(V )) 0

0 C0(U, E(V )) C0(U, E(µ∗V )) C0(U,Z1
µ(V )) 0

dµ

dµ

where Z1
µ(V ) := ker dµ : E1

µ ⊗ E(µ∗V ) → E2
µ ⊗ E(µ∗V ) and the horizontal maps are given

by applying dµ to each cochain in the natural way. The horizontal maps give short exact
sequences by the local exactness of the relative de Rham complex. This induces a long
exact sequence on Čech cohomology:

0 → Γ(U, E(V ))
dµ−→ Γ(U, E(µ∗V ))

dµ−→ Γ(U,Z1
µ(V )) → Ȟ1(U, E(V )) → 0

where the Čech cohomology in degree zero is just sections over U since U is connected
and we have used the fact Ȟ1(U, E(µ∗V )) = 0 since E(µ∗V ) admits partitions of unity.
The map with codomain Ȟ1(U, E(V )) must be a surjection by exactness and so the first
isomorphism theorem says Ȟ1(U, E(V )) must be the quotient of Γ(U,Z1

µ(V )) by the image

of Γ(U, E(µ∗V )) which is precisely H1(Γ(U, E(µ∗V )). The general case can be obtained
by breaking the double complex up into more exact sequences. □

Later we will need a technical lemma that depends on this theorem:

Lemma 7.7. Suppose that the fibres of U → µ(U) are all simply connected. Then

Ȟ1(U, E(V )) = 0.

Proof. By theorem 7.6 we need only check the sequence

(7.8) Γ(U, E(µ∗V )) Γ(U, E1
µ ⊗ E(µ∗V )) Γ(U, E2

µ ⊗ E(µ∗V ))
dµ dµ

is exact.
By (2.3) we can think of F as a CP2 bundle over P so given any p ∈ µ(U) (and using

the fact µ is an open mapping) we can find a neighbourhood N ⊆ µ(U) of p such that
µ−1(N) ∼= N × CP2. Shrinking N further if necessary we can also assume V is trivial
over N . Let k = rank(V ) and N ′ = µ−1(N) ∩ U . Since the vector bundle is trivial we
can think of sections as Rk-valued functions and hence

(7.9) Ȟ1(N ′, E(µ∗V )) ∼= Ȟ1(N ′, EF)k.
So to calculate the cohomology on the left we only need to calculate the first Čech
cohomology with values in pull-backs of smooth functions on N . Again by theorem 7.6
the cohomology on the right vanishes if and only if

(7.10) Γ(N ′, EF) Γ(N ′, E1
µ) Γ(N ′, E2

µ)
dµ dµ
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is exact. We can interpret any relative 1-form ω ∈ Γ(N ′, E1
µ) as a family of genuine one

forms on open subsets CP2 varying as we move around the base. Write ω(q) for the
1-form defined on the submanifold ({q} × CP2) ∩ U this way. Suppose that dµω = 0.
Then ω(q) corresponds to a closed 1-form on CP2.

Define a smooth function on N ′ by

f(q, s) =

∫ (q,s)

(q,s0(q))

w(q)

where we are identifying a point in N ′ ⊆ µ−1(N) with (q, s) ∈ N×CP2. Here the integral
is taken along any oriented curve with endpoints (q, q(s0)) and (q, s) lying in N ′ with fixed
q (so this makes sense as a line integral in CP2) and s0 varies with q smoothly in such a
way that (q, s0(q)) lies in N

′. This last fact depends on µ : N ′ → N admitting a smooth
section but this is a surjective submersion and so we can find one, shrinkingN if necessary.
Lastly, this function is well-defined since the preimage of q under U → µ(U) is simply
connected by assumption and ω(p) is a closed 1-form; the integral is path independent.

By construction (noting that dµ differentiates only in the fibre) we have

dµf = ω

and hence (7.11) is exact and both sides of (7.9) vanish. This time applying theorem 7.6
to the left hand side of (7.9) we see that

(7.11) Γ(N ′, E(µ∗V )) Γ(N ′, E1
µ ⊗ E(µ∗V )) Γ(N ′, E2

µ ⊗ E(µ∗V ))
dµ dµ

is exact, which is reminiscent of what we are looking for in the exactness of (7.8) except
only locally.

We have just shown there exists an open covering {Nα} of µ(U) such that (7.11) is
exact with N ′ = N ′

α for each α. Take ω ∈ Γ(U, E1
µ ⊗ E(µ∗V )) such that dµω = 0.

Exactness means we can find fα ∈ Γ(N ′
α, E1

µ ⊗ E(µ∗V )) satisfying dµfα = ω in N ′
α. We

have
⋃

αN
′
α = U . Define a partition of unity {ρα} with respect to the open cover {Nα}

then {µ∗φα} is a partition of with respect to the open cover {N ′
α} for U . Note that

dµµ
∗φα = 0 since the pull-back is constant in the fibres. Then

dµ

(∑
α

(µ∗φα)fα

)
=
∑
α

µ∗φαdµfα = ω.

and so (7.8) is exact as desired. □

Note that this was really a general statement about surjective submersions between
smooth manifolds rather than the particular complex manifolds we are concerned with.
[5] has a generalisation for higher cohomology groups, given higher cohomology groups
of the fibres vanish.

8. Pulling back cohomology

Retain our hypothesis on U ⊆ F, namely that the mapping µ : U → µ(U) has simply
connected fibres.

Let us pull the (exact) Dolbeault sequence of sheaves on µ(U) with values in a holo-
morphic vector bundle V → P back over U by taking the topological pull-backs of the
sheaves. We claim we get the sequence of sheaves

(8.1) 0 OP(V ) E0,0(V ) E0,1(V ) · · ·∂̄ ∂̄ ∂̄
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over U . Here ∂̄ makes sense for sections of the topological-bull pack since the sections are
locally pull-backs of sections of V , which agree on overlaps; ∂̄ is defined by applying it
to these local sections and then pulling-back. For any open W ⊆ U , there is a canonical
homomorphism of OP-modules

µ∗ : Γ(µ(W ), E0,k(V )) → Γ(W, E0,k(V ))

given by pulling back sections. From the definition of topological pull-back, if the fibres
of µ : W → µ(W ) are connected, then this gives an isomorphism. In particular since we
can find an arbitrarily small neighbourhood of any point in U with connected fibres we
see that (8.1) inherits the local exactness of the Dolbeault complex on µ(U).

Now since µ : U → µ(U) has connected fibres, there is an induced isomorphism on
cohomology at the level of sections:

(8.2) µ∗ : Hp(Γ(µ(U), E(V ))) → Hp(Γ(U, E(V ))).

Similar to the proof of the abstract de Rham theorem we consider the diagram:

...
...

...

0 C1(U,OP(V )) C1(U, E(V )) C1(U,Z0,1(V )) 0

0 C0(U,OP(V )) C0(U, E(V )) C0(U,Z0,1(V )) 0

∂̄ ∂̄

∂̄ ∂̄

where Z0,1(V ) := ker ∂̄ : E0,1(V ) → E0,2(V ). The exactness of the pull-back complex
of sheaves (8.1) implies that the rows are exact. This induces a long exact sequence on
cohomology:

0 → Γ(U,OP(V )) → Γ(U, E(V )) → Γ(U,Z0,1(V )) → Ȟ1(U,OP(V )) → 0

where the Čech cohomology in degree zero is just sections over U since U is connected and
we have set Ȟ1(U, E(V )) = 0 by lemma 7.7 since U is simply connected. We immediately
obtain:

H1(Γ(U, E(V ))) ∼= Ȟ1(U,OP(V )).

Putting this and (8.2) together with the Dolbeault theorem 6.24 we have constructed the
“cohomological pull-back” part of the Penrose transform, the following composition of
isomorphisms:

Ȟ1(µ(U),OP(V )) → H1(Γ(µ(U), E(V )))
µ∗
−→ H1(Γ(U, E(V ))) → Ȟ1(U,OP(V ))

We therefore have Ȟ1(µ(U),OP(V )) ∼= Ȟ1(U,OP(V )) and can calculate the Čech coho-
mology of the sheaf on the base as the Čech cohomology of the topological pull-back.

See [5] for a generalisation of this isomorphism for higher cohomology (with further
hypotheses on the fibres µ : U → µ(U)).

9. The Penrose transform

We have established a relation between the OP(V ) valued Čech cohomology on P and
the OP(V ) valued Čech cohomology on F. In some sense the final step in constructing
the Penrose transform at a theoretical level (before thinking about interpretations from
physics) is to relate this latter cohomology Ȟp(U,OP(V )) to solutions of differential equa-
tions on M. This will involve the holomorphic relative de Rham sequence constructed in
§7. Here V will be one of the canonical-line bundles on P introduced in section §4.
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From now on we will take U = FI ∼= MI ×CP1. In this case the fibres of the projection
µ are simply connected and so this open set meets the hypotheses of §8.
In what follows n > 0 is a positive integer that will have a natural interpretation in

the next section. The first thing to note is that since the following diagram commutes

...
...

...

C1(FI ,OP(−n− 2)) C1(FI , µ∗OP(−n− 2)) C1(FI ,Ω1
µ ⊗ µ∗OP(−n− 2))

C0(FI ,OP(−n− 2)) C0(FI , µ∗OP(−n− 2)) C0(FI ,Ω1
µ ⊗ µ∗OP(−n− 2))

dµ dµ

dµ dµ

the relative de Rham operator

dµ : µ∗OP(−n− 2) → Ω1
µ ⊗ µ∗OP(−n− 2)

induces

dµ : Ȟ1(FI , µ∗OP(−n− 2)) → Ȟ1(FI ,Ω1
µ ⊗ µ∗OP(−n− 2))

by applying dµ to cocycles. Furthermore, the rows of the double complex are exact
(choose a Leray cover and use local exactness of the relative de Rham complex to see
this). Taking the corresponding long exact sequence of cohomology, the following is exact:

· · · Γ(FI , Z) Ȟ1(FI ,OP(−n− 2)) Ȟ1(FI , µ∗OP(−n− 2)) ...
dµ

Where Z is the sheaf of dµ closed sections of Ω1
µ ⊗ µ∗OP(−n− 2). So by exactness there

is a canonical homomorphism

Ȟ1(FI ,OP(−n− 2)) → ker{dµ : Ȟ1(FI , µ∗OP(−n− 2)) → Ȟ1(FI ,Ω1
µ ⊗ µ∗OP(−n− 2))}.

In the next section we will show that Γ(FI ,Ω1
µ⊗µ∗OP(−n−2)) = 0 and hence Γ(FI , Z) = 0

so, this map is in fact an isomorphism. Let us take this as a given for now.
We define a vector bundle Vn → MI as follows, we define the fibre at x ∈ MI to be

(Vn)x := Ȟ1(ν−1(x), µ∗OP(−n− 2))

that this is a well-defined holomorphic vector bundle follows from the construction of
direct images of sheaves [24]. Recall that each fibre ν−1(x) ∼= CP1.

Proposition 9.1. There is an isomorphism

Ȟ1(FI , µ∗OP(−n− 2)) → Γ(MI , Vn)

Proof. Consider the cover for FI ∼= MI × CP1, namely MI × U0, M− × U1. Each of
these sets is biholomorphic to C4 so this gives a Leray cover as per theorem 6.21 and
we can calculate Čech cohomology using this. A 1-cocyle c01 ∈ Ȟ1(F1, µ∗OP(−n− 2)) is
simply a section of µ∗OP(−n − 2) defined over MI × (U0 ∩ U1). So the way to define a
section s ∈ Γ(MI , Vn) is to define the value of s at x to be the cocycle c01 restricted to
ν−1(x) ∼= {x}× (U0∩U1). That this map descends to cohomology comes about because a
coboundary b0−b1 ∈ Ȟ1(F1, µ∗OP(−n−2)) defines a coboundary in each {x}×(U0∩U1),
again by restriction. The inverse of this construction is to patch a section of µ∗OP(−n−2)
over MI × (U0 ∩ U1) together from cocycles in each ν−1(x). □

Define V α
n by

(V α
n )x = Ȟ1(ν−1(x),Ω1

µ ⊗ µ∗OP(−n− 2))
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an analogous argument shows there is an isomorphism

Ȟ1(FI ,Ω1
µ ⊗ µ∗OP(−n− 2)) → Γ(MI , V α

n ).

We put this together in a diagram

Ȟ1(FI ,OP(−n− 2)) Ȟ1(FI , µ∗OP(−n− 2)) Ȟ1(FI ,Ω1
µ ⊗ µ∗OP(−n− 2))

Γ(MI , Vn) Γ(MI , V α
n )

dµ

∇(9.2)

where the vertical maps are the isomorphisms given by restricting cocycles. The dotted
line is the differential operator induced by dµ and we will make sense of the suggestive
notation in the next section. Nonetheless since we know

Ȟ1(FI ,OP(−n− 2)) = ker dµ

we have an isomorphism

Ȟ1(FI ,OP(−n− 2)) ∼= ker∇ : Γ(MI , Vn) → Γ(MI , V α
n )

and using the results of §8 can identify the left hand side with the cohomology on P:
Ȟ1(PI ,OP(−n− 2)) ∼= ker∇ : Γ(MI , Vn) → Γ(MI , V α

n ).

We have achieved in finding a correspondence between cohomology on P and solutions
of certain differential equations defined on vector bundles over M. The problem is these
bundles: Vn, V

α
n as of yet do not have an obvious description in terms of the geometry on

M. Their interpretation will be the subject of the next section.

10. Massless fields

It is time to remedy the conspicuous absence of spinors in our discussion about coho-
mology. We will interpret the “differential equations on M” of the previous section in
terms of spinors.

First let us interpret the sheaf of relative 1-forms on F as a pull-back of a sheaf on M.

Proposition 10.1. There is a canonical isomorphism of sheaves

Ω1
µ
∼= ν∗S∗[−1]′ ⊗ µ∗OP(1).

Proof. Recall Ω1
µ was defined as the dual of kerDµ. Using our preferred trivialisation (2.4)

the tangent bundle of FI splits TFI ∼= ν∗TMI⊕pr2
∗ TCP1. From (2.5) we see the kernel of

Dµ is contained in the ν∗TMI ∼= ν∗(S ′⊗S) summand and (V AA′
, 0) ∈ TFI is annihilated

by Dµ if and only if V AA′
πA′ = 0 where V AA′

is a tangent vector at (XAA′
, [πA′ ]) ∈ FI .

One may readily check a degenerate 2×2 matrix is a decomposable element of the tensor
product. We therefore have an identification of kerDµ at (XAA′

, [πA′ ]) with spinors of
the form ϕAπA′

where ϕA ∈ ν∗S[1]′ ⊗ µ∗OP(−1) (having raised an index on πA′ using the
canonical skew-form introduced in §3). Taking the inverse transpose of V AA′ 7→ ϕA gives
the desired isomorphism over FI (where we will need it). This isomorphism is in fact
well-defined over all of F, see [22]. □

This proposition means we can prove a statement we used without proof in the previous
section.
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Corollary 10.2. Γ(FI ,Ω1
µ ⊗ µ∗OP(−n− 2)) = 0.

Proof. By the above proposition

Γ(FI ,Ω1
µ ⊗ µ∗OP(−n− 2)) ∼= Γ(FI , ν∗S∗[−1]′ ⊗ µ∗OP(−n− 1)).

Suppose there is a non-vanishing section of ν∗S∗[−1]′ ⊗ µ∗OP(−n − 1) over FI . For
some x ∈ M the restriction to the fibre ν−1(x) is therefore non-vanishing. The spin
bundle factor is obviously trivial when restricted ν−1(x) since it is a pull-back by ν while
µ∗OP(−n − 1) restricted to ν−1(x) ∼= CP1 can be canonically identified with the bundle
Oν−1(x)(−n− 1), (to see this note that µ∗OP(−1) has fibres over ν−1(x) which are the 1-
dimensional subspaces of ν−1(x)). The spin bundle factor being trivial implies we obtain
a non-vanishing section of Oν−1(x)(−n−1). Corollary 4.2 is precisely the statement there
are no global sections of this bundle (recall n is non-negative.) We therefore have a
contradiction. □

Theorem 10.3. There are vector bundle isomorphisms for n > 0:

Vn ∼= ⊙nS ′∗[−1]′

and
V α
n
∼= S ′∗ ⊗⊙n−1S ′∗[−2]′.

Proof. Recall the dualised Euler exact sequence (6.10) of sheaves. Also recall from the
discussion in §2 that for each x ∈ M we have ν−1(x) = PS ′∗

x . It turns out the correct
thing to do is rewrite (6.10) with V = S ′∗

x and taking the tensor product with the trivial
line bundle ∧2S ′∗

x over PS ′∗
x :

(10.4) 0 → Ω1
PS′∗

x
⊗∧2S ′∗

x → OPS′∗
x
(−1)⊗ S ′∗

x → ∧2S ′∗
x → 0.

Here we have paired indices to effect an isomorphism:

OPS′∗
x
(−1)⊗ S ′

x ⊗∧2S ′∗
x → OPS′∗

x
(−1)⊗ S ′∗

x .

With this identification the map OPS′∗
x
(−1)⊗ S ′∗

x → ∧2S ′∗
x is given by wedging with the

Euler vector field πA′ . Rather than try to directly interpret Ω1
PS′∗

x
⊗∧2S ′∗

x it is best to think

along similar lines to four discussion of the Euler sequence (6.9). We think of sections
of the sheaf OPS′∗

x
(−1)⊗ S ′∗

x as vector fields on S ′∗
x of homogeneity −1 and wedging with

the Euler vector field πA′ produces a bivector field of homogeneity 0. The kernel of this
map is precisely homogeneity −1 vector fields which are holomorphic multiplies of πA′ .
We have an obvious map from functions on S ′∗

x of homogeneity −2 to vector fields on S ′∗
x

of homogeneity −1 given by multiplication with the Euler vector field. This means we
have an exact sequence of sheaves over PS ′∗

x :

(10.5) 0 → OPS′∗
x
(−2) → OPS′∗

x
(−1)⊗ S ′∗

x → ∧2S ′∗
x → 0.

More generally we will need the exact sequence of sheaves over PS ′∗
x for n ≥ 0

(10.6) 0 → OPS′∗
x
(−n− 2) → OPS′∗

x
(−1)⊗⊙n+1S ′∗

x → ⊙nS ′∗
x [−1]′ → 0.

The surjective map is given by contraction with πC′
:= ϵC

′B′
πB′ . In abstract indices:

ϕA′...B′C′ 7→ ϕA′...B′C′πC′

To see this is a surjective morphism of sheaves we need only to check this locally. Since
πA′

is non-vanishing, locally we can find τA′ such that τA′πA′
= 1. We claim that given

the symmetric spinor ψA′
1A

′
2...A

′
n
there exists ϕA′

1A
′
2...A

′
n+1

such that ϕA′
1A

′
2...A

′
n+1
πA′

n+1 =
ψA′

1A
′
2...A

′
n
. First note that this is true for ψA′

1A
′
2...A

′
n
= τA′

1
τA′

2
...τA′

n
since

τA′
1
τA′

2
...τA′

n
τA′

n+1
πA′

n+1 = τA′
1
τA′

2
...τA′

n
.
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Then calculate
n+ 1

n− k + 1
χ(A′

1A
′
2...A

′
k
τA′

k+1
...τA′

n+1)
πA′

n+1

= χ(A′
1A

′
2...A

′
k
τA′

k+1
...τA′

n) +
k

n− k + 1
πA′

n+1χA′
n+1(A

′
1...A

′
k−1
τA′

k
...τA′

n)

Now the term on the right contains n − k + 1 factors of τA′ and so by induction is
ϕA′

1...A
′
n+1
πA′

n+1 for some symmetric spinor ϕA′
1...A

′
n+1

from which we may write(
n+ 1

n− k + 1
χ(A′

1A
′
2...A

′
k
τA′

k+1
...τA′

n+1)
+ ϕA′

1...A
′
n+1

)
πA′

n+1 = χ(A′
1A

′
2...A

′
k
τA′

k+1
...τA′

n)

and so terms with n− k factors of τA′ are in the range, showing the result by descending
induction on k.

The injective map from functions of homogeneity −n− 2 is given by multiplication by
the (n+ 1)th symmetric power of πA. Exactness follows immediately because the image
of this map is clearly annihilated by contracting with πA and the kernel must be rank 1,
since OPS′∗

x
(−1)⊗⊙n+1S ′∗

x and ⊙nS ′∗
x [−1]′ are of rank n+ 2 and n+ 1 respectively.

We now take the long exact sequence of Čech cohomology associated with (10.6). Part
of this is:

· · · Γ(PS ′∗
x ,OPS′∗

x
(−1)⊗⊙n+1S ′∗

x )) Γ(PS ′∗
x ,⊙nS ′∗

x [−1]′)

Ȟ1(PS ′∗
x ,OPS′∗

x
(−n− 2)) Ȟ1(PS ′∗

x ,OPS′∗
x
(−1)⊗⊙n+1S ′∗

x ) · · ·
δ∗

(10.7)

Now since the bundle ⊙nS ′∗
x is trivial over PS ′∗

x we have

Γ(PS ′∗
x ,OPS′∗

x
(−1)⊗⊙n+1S ′∗

x ))
∼= Γ(PS ′∗

x ,OPS′∗
x
(−1))n+2

and similarly

Ȟ1(PS ′∗
x ,OPS′∗

x
(−1)⊗⊙nS ′∗

x )
∼= Ȟ1(PS ′∗

x ,OPS′∗
x
(−1))n+1

and from example 6.22 the modules on the right vanish and so we obtain for n ≥ 0

(10.8) (δ∗)−1 : Ȟ1(PS ′∗
x ,OPS′∗

x
(−n− 2)) ∼= Γ(PS ′∗

x ,⊙nS ′∗
x [−1]′).

Now global sections of the trivial bundle ⊙nS ′∗
x [−1]′ over PS ′∗

x are necessarily constant
by Liouville’s theorem and so Γ(PS ′∗

x ,⊙nS ′∗
x [−1]′) can be canonically identified with the

fibre of the bundle ⊙nS ′∗[−1]′ over M at x. The left hand side of (10.8) is the fibre of Vn
at x. This implies applying (δ∗)−1 fibrewise gives an isomorphism of vector bundles:

Vn ∼= ⊙nS ′∗[−1]′.

Next, proposition (10.1) shows

Ȟ1(ν−1(x),Ω1
µ ⊗ µ∗OP(−n− 2)) ∼= Ȟ1(PS ′∗

x , S
∗
x[−1]′ ⊗OPS′∗

x
(−n− 1))

and since S∗
x[−1]′ is a trivial bundle over PS ′∗

x we may simply couple it with (10.8) for
n > 0 which yields

(δ∗)−1 : Ȟ1(PS ′∗
x , S

∗
x[−1]′ ⊗OPS′∗

x
(−n− 1)) ∼= Γ(PS ′∗

x , S
∗
x ⊗⊙n−1S ′∗

x [−2]′)

and hence there is a vector bundle isomorphism

V α
n
∼= S∗ ⊗⊙n−1S ′∗[−2]′

which completes the proof of the theorem. □
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Recall from (9.2) that dµ induced a differential operator

∇ : Γ(MI , Vn) → Γ(MI , V α
n )

and hence using (δ∗)−1 to make the identifications as above, a differential operator on
spinors

∇ : Γ(MI ,⊙nS ′∗[−1]′) → Γ(MI , S∗ ⊗⊙n−1S ′∗[−2]′).

We will interpret this in terms of the flat connection ∇AA′ over MI induced by our
preferred trivialisations for the spin bundles over MI (see §2, §3). This pulls back to a
differential operator on the pull-back of spin bundles to FI given by differentiation in the
base direction with respect to the trivialisation FI ∼= MI × CP1.

Proposition 10.9. Let f ∈ Γ(U, µ∗OP(−n − 2)) where U ⊆ FI . Then (in components
with respect to our identification in proposition 10.1)

(dµf)A = πA′∇AA′f.

Proof. Recall from the proof of (10.1) that kerDµ is a subbundle of the pull-back of
ν∗TMI consisting of elements of the form ϕAπA′

for ϕA ∈ ν∗S∗[−1]′ ⊗ µ∗OP(1). Now
dµf(v) for v ∈ kerDµ may be calculated by taking the derivative of f in the base
direction then contracting with v. So in indices this means:

(dµf)Aϕ
A = ϕAπA′∇AA′f

according to our identification (10.1). □

Theorem 10.10.

∇ : Γ(MI ,⊙nS ′∗[−1]′) → Γ(MI , S∗ ⊗⊙n−1S ′∗[−2]′).

is given by
ϕA′B′...C′ 7→ ∇A

A′
ϕA′...C′ .

Proof. We compute Čech cohomology using the standard Leray cover MI ×U0, MI ×U1.
From (9.2) ∇ may be computed as (δ∗)−1 ◦ dµ ◦ δ∗ so we need to make sense of the
connecting homomorphism δ∗ that comes from the long exact sequence. Translating 6.23
into our setting, (10.7) this is given by (applying δ∗ fibrewise):

δ∗ : ϕA′B′...C′ 7→ [f ] ∈ Ȟ1(FI , µ∗OP(−n− 2))

where f πA′πB′ ...πC′πD′︸ ︷︷ ︸
n+1 factors

= ψ
(1)
A′B′...C′D′ − ψ

(0)
A′B′...C′D′ with ψ

(i)
A′B′...C′D′πD′

= ϕA′B′...C′ on

MI × Ui.
Now dµ in (9.2) is given by applying dµ on cocycles and we know how to write dµ in

terms of spinor indices from proposition 10.9:

dµ : [f ] 7→ [πA′∇AA′f ] ∈ Ȟ1(FI , S∗[−1]′ ⊗ µ∗OP(−n− 1))

So we want to undo the steps and obtain (δ∗)−1([πA′∇AA′f ]) in terms of a differential op-
erator acting on ϕA′B′...C′ . Well since Ȟ1(FI , S∗⊗⊙nS ′∗[−1]′⊗OP(−1)) vanishes (example
6.22 applied fibrewise) we may write

(10.11) (πA′∇AA′f) πB′ ...πC′πD′︸ ︷︷ ︸
n factors

= τ
(0)
AB′C′...D′ − τ

(1)
AB′C′...D′

and by the definition of the connecting homomorphism, (δ∗)−1([πA′∇AA′f ]) will be given
by

τ
(i)
AB′...C′D′π

A′
,
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on MI × Ui, so we need to solve for these. Start by rewriting the left hand side

(πA′∇AA′f)πB′ ...πC′πD′ = −∇A
A′
(fπA′πB′ ...πC′πD)

= −∇A
A′
(ψ

(1)
A′B′...C′D′ − ψ

(0)
A′B′...C′D′)(10.12)

where we have used the fact the Euler vector field is parallel with respect to ∇AA′ (its
components do not depend on the base coordinates in the trivialisation FI ∼= MI ×CP1).
Then comparing (10.11) and (10.12):

(∇A
A′
ψ

(1)
A′B′...C′D′ − τ

(1)
AB′...C′D′)− (∇A

A′
ψ

(0)
A′B′...C′D′ − τ

(0)
AB′...C′D′) = 0

so we have agreement on overlaps: a global section defined on FI given by

∇A
A′
ψ

(i)
A′B′...C′D′ − τ

(i)
AB′...C′D′

on MI ×Ui. However as we have used before, there are no-global sections of homogeneity

−1 which implies ∇A
A′
ψ

(i)
A′B′...C′D′ − τ

(i)
AB′...C′D′ = 0. Lastly we contract with πA′

:

τ
(i)
AB′...C′D′π

A′
= ∇A

A′
(ψ

(i)
A′B′...C′D′)π

A′
= ∇A

A′
(ψ

(i)
A′B′...C′D′π

A′
) = ∇A

A′
ϕA′B′...C′ .

on MI × Ui, which shows (δ∗)−1([πA′∇AA′f ]) = ∇A
A′
ϕA′B′...C′ . □

Corollary 10.13. There is an isomorphism:

(10.14) Ȟ1(PI ,OP(−n− 2)) ∼= {ϕA′...B′ ∈ Γ(MI ,⊙nS ′∗[−1]′) | ∇A
A′
ϕA′...B′ = 0}

The module on the right is interpreted as the space of zero-rest-mass fields of helicity
n/2 holomorphic on MI . Solutions to the obvious analogue:

∇A
A′ϕA...B = 0

(n-indices) are called zero-rest-mass fields of helicity −n/2. There is a similar procedure
for obtaining the correspondence for these fields, with some modifications to be made:
One works with potentials for fields instead of the fields themselves. See [22] or [16] for
the construction.

There are distinguished subsets of MI that are of particular interest. There is a her-
mitian metric Φ on T given by

Φ :

[
ωA

πA′

]
⊗
[
τA

κA′

]
7→
[
ω̄A′

π̄A
] [ 0 δA′B

′

δA
B 0

] [
τB

κB′

]
where ω̄A′

:= ωA and π̄A := πA′ . We define M+,M−,M0 to be the space of planes on
which the Hermitian metric is positive definite, negative definite, and null respectively
(x ∈ M is null to say Φ(Z,Z) = 0 ∀Z ∈ x). That M+,M− are open subsets of MI can be
seen by noting that MI consists precisely of subspaces with no non-vanishing vectors of
the form:

X =

[
ωA

0

]
and every x /∈ MI therefore contains a non-vanishing vector of this form but Φ(X,X) = 0.
To interpret M0 ∩MI we compute Φ on MI as follows:

Φ :

[
XAA′

πA′

πA′

]
⊗
[
XAA′

πA′

πA′

]
7→
[
−iπ̄AX̄AA′

π̄A
] [ 0 δA′B

′

δA
B 0

] [
iXBB′

πB′

πB′

]
= π̄AY

AA′
πA′ .

where Y AA′
is the anti-hermitian part of XAA′

. Noting that the identification (2.1)
identifies R4 ↪→ C4 with the set of Hermitian matrices, we see that Φ vanishes on the
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image of R4 under our parametrisation (2.2) for MI and so can identify M0 ∩MI as real
Minkowski space.

Given a holomorphic solution on MI produced by (10.13) we can restrict it toM0∩MI

to obtain a real analytic solution of the zero-rest-mass field equations on a region of real
Minkowski space. M0 ∩MI forms part of the boundary of both M+ and M−. Solutions
on M0 ∩MI that are boundary values of solutions on M+ and M− have interpretations
in physics as positive and negative frequency fields respectively.

Obtaining just real analytic solutions is unsatisfactory from the point of view of physics.
Certainly not all physical solutions of the zero-rest-mass equations, a hyperbolic PDE, are
real analytic, let alone smooth. The equations make sense for a broad class of generalised
functions, like distributions. In [25] the author constructs the Penrose transform for a
broad class of generalised functions, and this construction agrees with the transform as
constructed in §9 and §10. All this involves machinery from analysis (e.g. distribution
theory) which is certainly beyond the scope of this essay.

11. A historical note and further directions

The notion that massless fields could be represented by sheaf cohomology classes on
P with values in OP(n) first appears (in handwritten notes) by Penrose [19]. This link
was further developed in Eastwood et. al. [9] in which the authors present the Pen-
rose transform as a purely sheaf-theoretic construction without explicit reference to any
contour integral formulae. Generalisations of the Penrose transform to settings in which
the correspondence space F = F1,2(C4) is replaced by a different flag or indeed, where
F is replaced by the quotient G/(P ∩ Q) of a semi-simple complex Lie group G by the
intersection of two parabolic subgroups P,Q was the subject of Baston and Eastwood
[4] and this work leant heavily into representation theory. In particular, to obtain cor-
respondences between higher cohomology on G/P (standing in for P) and solutions to
differential equations on G/Q (standing in for M) the relative de Rham sequence (§7) is
replaced by Bernstein-Gelfand-Gelfand sequences. These sequences are differential com-
plexes that turn out to correspond to Bernstein-Gelfand-Gelfand sequences of quotients
of Verma modules from Lie algebra representation theory. The generalisation of the var-
ious canonical vector bundles are homogeneous vector bundles on G/P and G/Q. If at
times the treatment of the Penrose transform is this essay is a little ad-hoc, this text is
highly systematic.

Throughout this essay we computed using the flat Levi-Civita connection on open
subsets of M. One may ask what occurs if we replaced M with an arbitrary complex
4-manifoldM with a conformal class of holomorphic metrics (that is, a metric defined up
to holomorphic rescaling). The Penrose transform can be recovered in this setting, for
example in [8], with the space of null-geodesics on M playing the role of P.

Simultaneously taking both avenues for generalising the Penrose transform leads into
the field of parabolic geometry, surveyed in [6] which is the study of spaces which are
curved analogues of homogeneous spaces G/P where G is a semi-simple Lie group and P
is a parabolic subgroup.

Penrose’s twistor programme had its sights set on a complete geometric reformulation
of fundamental physics that would assist in unifying general relativity and quantum
mechanics. Proponents of twistor theory agree it is, thus far, a long way off achieving
this lofty goal [2]. Successes of twistor theory in mathematics have been found in the
study of the integrability approach to solving non-linear partial differential equations.
See [7] for an account. More recently, successes in physics have come from applications
to calculating scattering amplitudes in string theory [1].
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Appendix A. Proof of conformal change of scale formulae

Proof (of proposition 3.1). Pick connections ∇AA′ on S∗, S ′∗ over U that annihilate the
scales. By using the Leibniz rule, we calculate the freedom to change the connection on
T ∗M ∼= S ′∗ ⊗ S∗ by changing the two connections on S∗, S ′∗ in such a way that the new
pair of connections on the spin bundles still annihilate the scales. The new connection is
given by

∇̂AA′VBB′ = ∇AA′VBB′ +∆AA′B
CVCB′ + ΓAA′B′

C′
VBC′ .

where ∆AA′(BC) = ∆AA′BC and ΓAA′(B′C′) = ΓAA′B′C′ . The change in torsion is calcu-
lated by anti-symmetrising over the interchange of pairs AA′, BB′ (equivalent to anti-
symmetrising over spatial indices). The torsion τ̂AA′BB′CC′

of the induced connection is
given by:

τ̂AA′BB′
CC′

= τAA′BB′
CC′

+∆AA′B
CδC

′

B′ + ΓAA′B′
C′
δCB −∆BB′A

CδC
′

A′ − ΓBB′A′
C′
δCA .

Now consider the bundle homomorphism: (T ∗M⊗⊙2S∗)⊕(T ∗M⊗⊙2S ′∗) → ∧2T ∗M⊗TM
given by:

(∆AA′BC ,ΓAAB′C′) 7→ ∆AA′B
CδC

′

B′ + ΓAA′B′
C′
δCB −∆BB′A

CδC
′

A′ − ΓBB′A′
C′
δCA .

We claim this is an isomorphism and hence there is a unique choice of ∆AA′BC and
ΓAAB′C′ such that the torsion of the new connection vanishes. The rank of the domain
and codomain are both 24 and so it is sufficient to show this is injective (the dimension
of the nth-symmetric power of the spin bundle is n+ 1).

∆AA′B
CδC

′

B′ + ΓAA′B′
C′
δCB −∆BB′A

CδC
′

A′ − ΓBB′A′
C′
δCA = 0

⇐⇒ ∆AA′BCϵC′B′ + ΓAA′B′C′ϵCB −∆BB′ACϵC′A′ − ΓBB′A′C′ϵCA = 0(A.1)

Given this, symmetrising on ABC then contracting with ϵB
′C′

yields:

∆(A|A′|BC) = 0.

On the other hand symmetrising (A.1) on BC then contracting with ϵB
′C′

yields:

2∆AA′BC −∆(B|A′A|C) = 0

and anti-symmetrising on AB we obtain:

∆[A|A′|B]C = 0.

We have shown the irreducible components of ∆AA′BC are vanishing. More specifically
we can decompose:

∆AA′BC = ∆(A|A′|BC) +
2

3
∆[A|A′|B]C +

2

3
∆[A|A′|C]B = 0.

Similarly we can show ΓAAB′C′ = 0 and so the map is injective. This completes the part
of the proof showing existence and uniqueness.

It is left to show that the formulae (3.2), (3.3) define connections which annihilate
ϵAB, ϵA′B′ and furthermore induce a torsion-free connection on TM. We have, from the
Leibniz rule:

∇̂AA′ ϵ̂BC = ∇AA′ ϵ̂BC −Υ[B|A′ ϵ̂A|C] − Υ̃[B|A′ ϵ̂A|C] −
1

2
ΥAA′ϵBC +

1

2
Υ̃AA′ϵBC

= (∇AA′Ω)ϵBC − (∇[B|A′Ω)ϵA|C] − (∇[B|A′Ω̃)ϵA|C] −
1

2
(∇AA′Ω)ϵBC +

1

2
(∇AA′Ω̃)ϵBC

= 0
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where in the last line we have used the fact the second last line vanishes after contracting
with ϵBC and contracting with ϵBC gives an isomorphism T ∗M⊗∧2S∗ → T ∗M. Similarly
one can show the connection on S ′∗ defined by (3.3) annihilates ϵB′C′ .
Lastly, using the Leibniz rule we calculate the induced connection on T ∗M:

∇̂AA′VBB′ = ∇AA′VBB′ − 1

2
ΥAB′VBA′ − 1

2
Υ̃AB′VBA′ − 1

2
ΥBA′VAB′ − 1

2
Υ̃BA′VAB′ .

The change in connection is evidently symmetric under interchange of AA′ and BB′ and
therefore ∇AA′ is torsion-free. □
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