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1. Consider a system with n dynamical degrees of freedom qa, a = 1, . . . , n. The most

general form for a purely kinetic Lagrangian is

L = 1
2
gab(qc) q̇

aq̇b (1)

where we use the summation convention in which all repeated indices are summed

over. The functions gab = gba depend on all the generalised coordinates. Assume that

det(gab) ̸= 0 so that the inverse matrix gab exists (gabgbc = δac). Show that Lagrange’s

equations for this system are given by,

q̈a + Γa
bcq̇

bq̇c = 0 (2)

where

Γa
bc =

1
2
gad

(
∂gbd
∂qc

+
∂gcd
∂qb

− ∂gbc
∂qd

)
Side Remark: The functions gab define a metric on the configuration space, and the

equations (2) are known as the geodesic equations. They appear naturally in general

relativity where they describe a particle moving in curved spacetime. Lagrangians of

the form (1) also appear in many other areas of physics, including the study of solids,

the theory of nuclear forces and string theory. In these contexts, the systems are re-

ferred to as sigma models.

2. A particle moves in one-dimension with position x and potential V (x), governed by

the Lagrangian,

L =
1

12
m2ẋ4 +mẋ2V − V 2

Show that the resulting equation of motion is identical to that arising from the more

traditional L = 1
2
mẋ2 − V .

3. The Lagrangian for a relativistic point particle of mass m is,

L = −mc2
√

1− (ṙ · ṙ)/c2 − V (r)

where c is the speed of light. Derive the equation of motion. Show that it reduces to

Newton’s equation in the limit |ṙ| ≪ c.
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4. A double pendulum is drawn below. Two light rods of lengths l1 and l2 oscil-

late in the same plane. Attached to them are masses m1 and m2. How many degrees of

freedom does the system have? Write down the Lagrangian describing its dynamics.

5. The pivot of a simple pendulum is attached to a disc of radius R, which rotates in

the plane of the pendulum with angular velocity ω. (See the diagram below). Write

down the Lagrangian and derive the equations of motion for dynamical variable θ.

θ

m

l

R

ω

6. The motion of an electron of mass m and charge (−e) moving in a magnetic field

B = ∇×A(r) is described by the Lagrangian

L = 1
2
mṙ · ṙ− eṙ ·A(r)

Show that Lagrange’s equation reproduces the Lorentz force law on the electron.

i) Work in cylindrical polar coordinates (r, θ, z) and consider the vector potential

A = (0, f(r)/r, 0)

At some initial time the electron is a distance r0 from the z-axis and has velocity in

the (r, z)-plane. Show that its angular velocity about the z-axis is given by,

θ̇ =
e

mr2
[f(r)− f(r0)]
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ii) Again working in cylindrical polar coordinates, consider the vector potential

A = (0, rg(z), 0)

where g(z) > 0. Obtain two constants of motion. Show that if the electron is pro-

jected from a point (r0, θ0, z0) with velocity ṙ = ż = 0 and θ̇ = 2eg(z0)/m, then it will

describe a circular orbit provided that g′(z0) = 0. Show that these orbits are stable to

shifts along the z axis if tg′′ > 0.

7. A particle of mass m1 is restricted to move on a circle of radius R1 in the plane

z = 0, with center at (x, y) = (0, 0). A second particle of mass m2 is restricted to

move on a circle of radius R2 in the plane z = c with center at (x, y) = (0, a). The two

particles are connected by a spring resulting in the potential

V = 1
2
ω2d2

where d is the distance between the particles. Identify the two generalised coordinates

and write down the Lagrangian of the system. Show that when the circles lie directly

beneath each other, a = 0, then there is an extra conserved quantity.

8. Two particles of mass m are connected by a light rope of length l. One parti-

cle sits on a smooth horizontal table at a distance r from a hole through which the

rope is threaded. The second particle hangs straight beneath the hole.

i) Assume the second particle hangs straight beneath the hole. Write down the

Lagrangian of the system in terms of r and an angle ψ that the first particle makes

with respect to a fixed axis. Identify the ignorable coordinate. Write down the equation

of motion for the remaining coordinate assuming the rope remains taught.

ii) Now let the second particle oscillate beneath the table as a spherical pendulum.

How many degrees of freedom does the system now have? Write down the Lagrangian

describing the motion assuming the rope remains taught at all times. How many

ignorable coordinates are there?

9. The linear triatomic molecule drawn in figure 1 consists of two identical outer

atoms of mass m and a middle atom of mass M . It is a rough approximation to

CO2. The interactions between neighbouring atoms are governed by a complicated

potential V (xi − xi+1). If we restrict attention to motion in the x direction parallel to

the molecule, the Lagrangian is

L = 1
2
mẋ21 +

1
2
Mẋ22 +

1
2
mẋ23 − V (x1 − x2)− V (x2 − x3) (3)

3



Figure 1: The linear triatomic molecule

where xi is the position of the ith particle. Define the equilibrium separation r0 =

|xi − xi+1| of this system. Write down the equation describing small deviations from

equilibrium in terms of the masses and the quantity

k =
∂2V (r)

∂r2

∣∣∣∣
r=r0

(4)

Show that the system has three normal modes and calculate the frequencies of oscil-

lation of the system. One of these frequencies vanishes: what is the interpretation of

this?

10. A pendulum consists of a mass m at the end of light rod of length l. The pivot of

the pendulum is attached to a mass M which is free to slide without friction along a

horizontal rail. Take the generalised coordinates to be the position x of the pivot and

the angle θ that the pendulum makes with the vertical.

a. Write down the Lagrangian and derive the equations of motion.

b. Find the non-zero frequency of small oscillations around the stable equillibrium.

c. Now suppose a force acts on the the mass M causing it to travel with constant

acceleration a in the positive x direction. Find the equilibrium angle θ of the pendu-

lum.

11. Two equal masses m are connected to each other and to fixed points by three

identical springs of force constant k as shown in figure 2. Write down the equations

describing motion of the system in the direction parallel to the springs. Find the

normal modes and their frequencies.

Suppose now that there are N equal masses joined by N + 1 springs with fixed end

points. Write down the equations of motion in matrix form. Find the normal mode
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mass mmass m

spring constant k spring constant k spring constant k

Figure 2: It’s remarkably hard to draw curly springs on a computer.

frequencies. (Hint: To find the normal mode frequencies, you could first try the easier

problem with “periodic boundary conditions” in which all masses lie on a circle with

the first and last masses are identified)
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