Electrodynamics: Example Sheet 1

Copyright 2025: Faculty of Mathematics, University of Cambridge.

1 Show that the Lagrangian density \mathcal{L} , where $S = \int \mathcal{L} dt d^3x$, for the electromagnetic action

 $S = -\frac{1}{4\mu_0 c} \int d^4x \ F^{\mu\nu} F_{\mu\nu} + \frac{1}{c} \int d^4x \ A^{\mu} J_{\mu}$

can be written as

$$\mathcal{L} = \frac{\varepsilon_0}{2} |\nabla \phi + \partial \mathbf{A} / \partial t|^2 - \frac{1}{2\mu_0} |\nabla \times \mathbf{A}|^2 - \rho \phi + \mathbf{J} \cdot \mathbf{A},$$

where $A^{\mu} = (\phi/c, \mathbf{A})$ and $J^{\mu} = (\rho c, \mathbf{J})$. Vary the action with respect to ϕ and \mathbf{A} directly to obtain the sourced Maxwell equations

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}, \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}.$$

2. Consider the action

$$S = \frac{1}{c} \int d^4x \, \left(-\frac{1}{4\mu_0} F^{\mu\nu} F_{\mu\nu} + J^{\mu} A_{\mu} \right)$$

for a prescribed 4-current J^{μ} with $\partial_{\mu}J^{\mu}=0$. Assuming

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}.$$

show that requiring $\delta S = 0$ for arbitrary variations δA^{μ} that vanish at infinity implies one half of the Maxwell equations

$$\partial_{\mu}F^{\mu\nu} = -\mu_0 J^{\nu}.$$

Show also that S is gauge-invariant.

Now consider

$$S_P = \frac{1}{c} \int d^4x \, \left(\frac{1}{4\mu_0} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2\mu_0} F^{\mu\nu} (\partial_\mu A_\nu - \partial_\nu A_\mu) + J^\mu A_\mu \right)$$

which reduces to S if $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$. Regarding A^{μ} and $F^{\mu\nu}$ as independent quantities, show that requiring $\delta S_P = 0$ for arbitrary variations δA^{μ} that vanish at infinity gives the same Maxwell equations as before. Show also that $\delta S_P = 0$ for arbitrary $\delta F^{\mu\nu}$ implies $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$, and hence gives the other half of the Maxwell equations.

3. A particle of rest mass m and charge q moves in constant uniform fields $\mathbf{E} = (0, E, 0)$ and $\mathbf{B} = (0, 0, E/c)$, starting from rest at the origin. Show that

$$\frac{dt}{d\tau} - \frac{1}{c}\frac{dx}{d\tau} = 1,$$

and that

$$t = \tau + \frac{1}{6c^2}\alpha^2\tau^3$$
, $x = \frac{1}{6c}\alpha^2\tau^3$, $y = \frac{1}{2}\alpha\tau^2$, $z = 0$,

where $\alpha = qE/m$. By projecting the orbit in the (t, x), (t, y), and (x, y)-planes, give a qualitative description of the motion.

4. The fields on either side of a physical boundary S with unit normal \hat{n} (pointing from region 1 to 2 are $(\mathbf{E}_1, \mathbf{B}_1)$ and $(\mathbf{E}_2, \mathbf{B}_2)$. The discontinuities across S of the electromagnetic fields are

$$\mathbf{B}_2 - \mathbf{B}_1 = \mu_0 \mathbf{J}_S \times \hat{n}$$
 and $\mathbf{E}_2 - \mathbf{E}_1 = \frac{\sigma_S \hat{n}}{\varepsilon_0}$,

where \mathbf{J}_S is the surface current density and σ_S is the surface charge density. Verify that the net rate at which electromagnetic momentum flows into the discontinuity per unit area, $f_{S,i} = \sigma_{ij}^1 \hat{n}_j - \sigma_{ij}^2 \hat{n}_j$, is given by

$$\mathbf{f}_S = \frac{1}{2} \left[\mathbf{J}_S \times (\mathbf{B}_1 + \mathbf{B}_2) + \sigma_S (\mathbf{E}_1 + \mathbf{E}_2) \right],$$

so that \mathbf{f}_S is the force per area acting on the surface.

[Hint: You may find it easier to consider the electric and magnetic parts, and the parallel and perpendicular components, separately.]

5. Show that the equation $\varepsilon^{\mu\nu\rho\sigma}\partial_{\nu}F_{\rho\sigma}=0$ is equivalent to

$$\partial_{\nu}F_{\rho\sigma} + \partial_{\rho}F_{\sigma\nu} + \partial_{\sigma}F_{\nu\rho} = 0.$$

Using this and $\partial_{\mu}F^{\mu\nu} = -\mu_0 J^{\nu}$, show that the electromagnetic stress-energy tensor

$$T^{\mu\nu} = \frac{1}{\mu_0} \left(F^{\mu}_{\ \rho} F^{\nu\rho} - \frac{1}{4} \eta^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} \right)$$

satisfies $\eta_{\mu\nu}T^{\mu\nu}=0$ and $\partial_{\mu}T^{\mu\nu}=-F^{\nu}_{\ \rho}J^{\rho}$. Verify that

$$T^{00} = \frac{1}{2\mu_0} \left(\frac{|\mathbf{E}|^2}{c^2} + |\mathbf{B}|^2 \right)$$
 and $T^{0i} = \frac{1}{\mu_0 c} (\mathbf{E} \times \mathbf{B})_i$

and construct the components of the Maxwell stress tensor σ_{ij} .

[Hint: You may wish to use $\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\alpha\beta\gamma\sigma} = -6\delta_{\alpha}^{\ [\mu}\delta_{\beta}^{\ \nu}\delta_{\gamma}^{\ \rho]}$ where square brackets denote antisymmetrisation on the enclosed indices.]

6. If J^{μ} is a conserved current (i.e. $\partial_{\mu}J^{\mu}=0$), verify that the corresponding charge $Q=\int d^3x (J^0/c)$ is conserved.

If $T^{\mu\nu}=T^{\nu\mu}$ is a conserved stress-energy tensor (i.e. $\partial_{\nu}T^{\mu\nu}=0$), verify, by considering $S^{\mu\nu\rho}=T^{\mu\rho}x^{\nu}-T^{\mu\nu}x^{\rho}$ or otherwise, that

$$M^{\mu\nu} = \int d^3x \ (x^{\mu}T^{0\nu} - x^{\nu}T^{0\mu})$$

is conserved.

Let $M^{ij} = c\varepsilon^{ijk}J_{\text{em},k}$. Show that for the electromagnetic field

$$\mathbf{J}_{\mathrm{em}} = \varepsilon_0 \int d^3 x \ \mathbf{x} \times (\mathbf{E} \times \mathbf{B}) \ .$$

By expressing the rate of change of $J_{\rm em}$ in terms of the charge and current densities, show that $J_{\rm em}$ may be interpreted as the angular momentum of the electromagnetic field.

7. A hypothetical magnetic monopole is fixed at the origin and has a magnetic field:

$$\mathbf{B}(\mathbf{x}) = \frac{g\mu_0 \mathbf{x}}{4\pi |\mathbf{x}|^3}.$$

A particle of charge q is situated at position \mathbf{r} . Show that the angular momentum of the electromagnetic field can be written as

$$\mathbf{J}_{\mathrm{em}} = \int d^3 x \ \mathbf{x} \times \left(\frac{g\mu_0 \mathbf{x}}{4\pi |\mathbf{x}|^3} \times \nabla \frac{q}{4\pi |\mathbf{x} - \mathbf{r}|} \right) = -\frac{gq\mu_0}{4\pi} \frac{\mathbf{r}}{|\mathbf{r}|},$$

after integrating by parts and neglecting a surface integral.

For non-relativistic motion of the electric charge, treat its electric field as due to a static charge at its location and ignore its magnetic field. Show directly that the total angular momentum $\mathbf{J} = \mathbf{r} \times \mathbf{p} + \mathbf{J}_{em}$ is constant, using $\dot{\mathbf{p}} = q\dot{\mathbf{r}} \times \mathbf{B}(\mathbf{r})$.