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1. An infinite straight wire lies along the z-axis, and for t < 0 there is no current or

field. For t > 0 a uniform current I flows in the wire. Show that for t > 0 the vector

potential A(t, x, y) = Aẑ in the Lorentz gauge is

A =

{
µ0I
2π

log(θ +
√
θ2 − 1) for θ > 1,

0 for θ ≤ 1

where θ = ct/r and r =
√

x2 + y2. Obtain E and B and discuss the behaviour of the

fields as t → ∞.

2. For a localised charge density ρ(x)e−iωt and current density J(x)e−iωt, use current

conservation to show that ∫
d3x xiJj(x) = ϵijkmk −

iω

6
Q′

ij,

where

m =
1

2

∫
d3x x× J(x) and Q′

ij = 3

∫
xixjρ(x) d

3x.

Hence show that if ∫
d3x ρ(x) =

∫
d3x xρ(x) = 0

then at distances r ≫ c/ω ≫ a, where a is the extent of the charge and current

distribution, the leading contributions to the scalar ϕ(x)e−iωt and vector potentials

A(x)e−iωt are

ϕ(x) ≈ −1

6

1

4πε0r
eikrk2x̂ix̂jQ

′
ij

and

Ai(x) ≈
µ0k

4πr
eikr

[
i(x̂×m)i −

ω

6
x̂jQ

′
ij

]
.

where r = |x| and x̂ = x/r and k = ω/c.

Writing Q′
ij = Qij + Pδij, where Qii = 0, show that the terms involving P may be

removed by a gauge transformation at large distances. These results represent magnetic

dipole and electric quadrupole radiation.
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3. A small loop of wire lies in a plane with unit normal N̂, and encloses an area S.

A current I0 cos(ωt) flows around the loop, with c/ω much larger than the size of the

loop. Using results from Question 2, show that in the far-field at displacement x from

the centre of the loop, the magnetic vector potential is

A(t,x) = x̂× N̂
µ0I0Sω

4πrc
sin(ωt− kr) +O

( ∞
∇∈

)
,

where k = ω/c and r = |x|.
[You may use the result

∮
xidxj = SϵijkNk.]

Find the leading-order magnetic field in the far-field and show that the average

radiated power dE/dt is
dE

dt
=

µ0

12π

S2I20ω
4

c3
.

4. Let ϕ be the retarded scalar potential given by

ϕ(t,x) =
1

4πε0

∫
d3y

ρ(tret,y)

R

where R = |x− y|, tret = t−R/c, and set R̂ = (x− y)/R. Show that

∂

∂t
ϕ(t,x) =

1

4πε0

∫
d3y

ρ̇(tret,y)

R

where ρ̇(tret,y) is ∂ρ(t,y)/∂t evaluated at tret. Show further that

∇ϕ(t,x) = − 1

4πε0

∫
d3y R̂

(
1

R2
ρ(tret,y) +

1

cR
ρ̇(tret,y)

)
.

Hence verify, using ∇2(1/R) = −4πδ(3)(x− y), that ϕ satisfies the wave equation:

□ϕ(t,x) = − 1

ε0
ρ(t,x).

Write down a similar retarded solution for the vector potentialA in terms of the current

density J.

Now assume that ρ and J are non-zero only in a finite region. Setting x̂ = x/|x|,
show that the leading terms in the far-field expansion are

E(t,x) ≈ µ0

4π|x|

∫
d3y

(
x̂cρ̇(tret,y)− J̇(tret,y)

)
=

µ0

4π|x|
x̂×

(
x̂×

∫
d3y J̇(tret,y)

)
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where conservation of current, integration by parts, and discarding of a surface integral

have all been used, and

B(t,x) ≈ − µ0

4πc|x|
x̂×

∫
d3y J̇(tret,y) =

1

c
x̂× E(t,x).

(Note that these results do not assume the dipole approximation.) Determine the

Poynting vector.

[Hint: when using current conservation, and integration by parts, be careful with the

y-dependence of tret.)

5. Starting from the power radiated in the electric-dipole approximation, derive Lar-

mor’s formula for the rate at which radiation is produced by a non-relativistic particle

of charge q moving along a trajectory x(t).

A non-relativistic particle of mass m, charge q, and energy E is incident along a

radial line in a central potential V (r). The potential is vanishingly small for large

r, but increases without bound as r → 0. Show that the total amount of energy E
radiated by the particle is

E =
µ0q

2

3πcm2

√
m

2

∫ r0

∞

1√
E − V (r)

(
dV

dr

)2

dr,

where V (r0) = E, assuming E ≪ V .

Suppose V is a Coulomb potential V (r) = C/r. Evaluate E .

6. For a relativistic particle of charge q on a trajectory yµ(τ), where τ is proper time,

the current density 4-vector is

Jµ(x) = qc

∫
dτ δ(4)(x− y(τ))ẏµ(τ)

with ẏµẏµ = −c2 and ẏ0 > 0. Show that the 4-vector potential is given by

Aµ(x) =
µ0

2π

∫
d4z Θ(x0 − z0)δ(ηαβ(x

α − zα)(xβ − zβ))Jµ(z)

= −µ0qc

4π

ẏµ(τ ∗)

Rν(τ ∗)ẏν(τ ∗)

where Rν(τ) = xν − yν(τ) and τ ∗ is determined by Rµ(τ ∗)Rµ(τ
∗) = 0 and R0(τ ∗) > 0.
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Verify that the Lorenz gauge condition ∂µA
µ = 0 holds and show that

F µν = −µ0qc

4π

1

(Rρẏρ)2
(RµSν −RνSµ),

where

Sν = ÿν − ẏν

Rρẏρ
(c2 +Rτ ÿτ )

and all quantities on the right are evaluated at τ⋆. Check this result for the case of a

stationary charge at the origin.
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