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1. By considering the forces acting on a small rectangular slab of incompressible,

viscous fluid undergoing an unsteady parallel shear flow u = (u(y, t), 0, 0), including a

body force F = (fx, fy, 0), show that

ρ
∂u

∂t
= µ

∂2u

∂y2
− ∂p

∂x
+ fx and 0 = −∂p

∂y
+ fy.

2. A film of viscous fluid of uniform thickness h flows steadily under the influence

of gravity down a rigid vertical wall. Assume that the surrounding air exerts only a

constant pressure on the fluid. Calculate the velocity profile and find the volume flux

(per unit width) of fluid down the wall.

3. A long, horizontal, two-dimensional container of uniform depth h, filled with viscous

fluid, has stationary, rigid bottom and end walls, and a rigid top that moves with

constant velocity (U, 0) in Cartesian coordinates (x, y). Assume that the flow far from

the end walls is parallel and steady with components (u(y), 0). Determine u(y) and

hence determine the tangential stress exerted by the fluid on each of the top and bottom

boundaries. Describe the overall force balance on a section x0 < x < x1 of the flow.

[Hint: No penetration through the end walls requires the volume flux across any vertical

cross-section of the flow to be zero, which determines the horizontal pressure gradient.]

4. A two-dimensional, semi-infinite layer of viscous fluid lies above a rigid boundary

at y = 0 that oscillates in its own plane with velocity (U0 cosωt, 0). There is no

applied pressure gradient and the fluid flows parallel to the boundary with velocity

(u(y, t), 0). By writing u(y, t) = Re [U0f(y)e
iωt] (where Re means “real part” not

“Reynolds number”!), show that

f(y) = exp

[
−(1 + i)

√
ω

2ν
y

]
and hence that the velocity decays away from the boundary over a characteristic length-

scale
√
ν/ω. Sketch the velocity profile at t = 0 and ωt = π/2.

Calculate the shear stress on the boundary and hence calculate the mean rate of

doing work (per unit area) by the boundary.
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5. An infinite layer of viscous fluid of depth h is initially stationary and has a stationary

rigid upper boundary, while its rigid lower boundary is set into parallel motion with

constant speed U at time t = 0. Write down the equation, the initial condition and the

boundary conditions satisfied by the subsequent flow (u(y, t), 0). What is the steady

flow u∞(y) that is established after a long time? By writing u(y, t) = u∞(y) − û(y, t)

and using separation of variables, determine a series solution for the transient flow û.

Show that the shear stress exerted by the fluid on the boundary at y = 0 is divergent

as t→ 0+ but that it is subsequently finite and tends to −µU/h as t→ ∞.

6. For a steady shear flow u = (γy, 0, 0), where γ is constant, show that the Navier-

Stokes equations are satisfied if the pressure is uniform and the body force vanishes.

If this shear is maintained in a fluid of dynamic viscosity µ flowing between two plates

at y = 0 and y = h, write down the full stress tensor and use it explicitly to find the

forces exerted by the fluid on each of the plates. Calculate the rate of work per unit

area needed to be exerted on the top plate to maintain the flow and show that it is

equal to the rate of dissipation per unit area internal to the flow.

[Pay close attention to the direction of the normal vectors on each plate.]

7. Show that, for the flow u of an incompressible, viscous fluid in a region V enclosed

by a stationary rigid boundary, ∫
V

∂ui
∂xj

∂uj
∂xi

dV = 0.

Hence show that the total rate of dissipation of energy D = 2µ
∫
V
EijEij dV can be

written as

D = µ

∫
V

ω2 dV, where ω = ∇× u.

Why does it follow that if the flow is irrotational then there is no dissipation?

8. A layer of incompressible fluid of density ρ and dynamic viscosity µ flows steadily

down a plane inclined at an angle θ to the horizontal, forming a uniform layer of

thickness h parallel to the plane. A second layer of fluid, of uniform thickness αh,

viscosity βµ and density ρ flows steadily on top of the first layer. Using Cartesian

coordinates perpendicular and parallel to the plane, write down the equations of motion

in each layer, the boundary conditions on the plane and on the top free surface, and

the boundary conditions at the interface between the two layers.

Find the pressure, shear-stress and velocity fields in each layer. Why does the velocity

profile in the bottom layer depend on α but not β?
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Show that the volume flux (per unit cross-slope width) is

ρgh3 sin θ

3µ

(
1 +

3α

2

)
and

ρg(αh)3 sin θ

3βµ

(
1 +

3β

2

1 + 2α

α2

)
in the lower and upper layers respectively. Discuss the limits (a) α ≪ 1, (b) β ≪ 1.

[Recall that the flux for a single layer of thickness h is ρgh3 sin θ/3µ.]

9. An incompressible fluid of dynamic viscosity µ flows steadily through a cylindrical

tube parallel to the z-axis with velocity u = (0, 0, w(x, y)), under a uniform pressure

gradient G = −dP/dz. Show that the Navier-Stokes equations with no body force are

satisfied provided

∇2w = −G/µ,
and state the appropriate boundary conditions.

Find w for a tube with an elliptical cross-section with semi-axes a and b. [Hint:

consider the function f(x, y) = (1− x2/a2 − y2/b2) and recall the uniqueness of the

solution to Poisson’s equation with Dirichlet boundary conditions.] Show that the

volume flux (i.e. the volume of fluid passing through any section of the tube per unit

time) is given by

Q =
πa3b3G

4(a2 + b2)µ
·

Now consider the circular case with a = b (so-called Poiseuille flow). Show that the

viscous stress on the boundary, σrz = µ∂w/∂r, exerts a force that exactly balances the

pressure difference exerted across the ends. Further, calculate the dissipation within

the tube and show that it is equal to the rate of working against the pressure difference

across the ends.

10. Viscous fluid flows with steady velocity u = (0, v(r), 0) between two infinitely-long,

coaxial cylinders r = a and b (> a). The inner cylinder rotates with steady angular

velocity Ω about its axis, while the outer cylinder is at rest. The pressure varies only in

the radial direction. Using the Navier-Stokes equations in cylindrical polar coordinates,

show that

v(r) = Ar +B/r,

where the constants A and B are to be determined. Calculate the torque per unit

length that must be applied to the inner cylinder to maintain the motion; check the

dimensions and the sign of your result. [In polar coordinates (r, ϕ), the component Erϕ

of the strain-rate tensor is given by 2Erϕ = r∂(v/r)/∂r for this flow.]

11. The plane rigid boundary of a semi-infinite domain of a viscous fluid oscillates in

its own plane with velocity U0 cosωt. The fluid is at rest at infinity. Find the velocity
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field. [Hint: use complex notation by writing cosωt as the real part of eiωt.] Show that

the time-averaged rate of dissipation of energy in the fluid is

1

2
ρU2

0

(
1

2
νω

)1/2

per unit area of the boundary. Verify that this is equal to the time average of the rate

of work of the boundary on the fluid (per unit area).

12. A viscous fluid of kinematic viscosity ν and density ρ is confined between a fixed

plate at y = h and a plate at y = 0 whose velocity is (U0 cosωt, 0, 0), where U0 is a

constant. There is no body force and the pressure is independent of x. Explain the

physical significance of the dimensionless number S = ωh2/ν.

Assuming that the flow remains time-periodic and unidirectional, find expressions

for the flow profile and the time-average rate of working Φ per unit area by the plates

on the fluid. [Hint: use complex notation and the functions sinh and cosh].

Sketch the velocity profile and evaluate Φ in the limits S ≪ 1 and S → ∞, and

explain why in these limits Φ becomes independent of ω and h respectively.

13. Suppose that the tube in Question 9 has as its cross-section the sector of a circle

r < a, |θ| < β in plane polar coordinates (r, θ). Show that the momentum equation

has solution

w(r, θ) =
Gr2

4µ

(
cos 2θ

cos 2β
− 1

)
+

∞∑
n=0

Anr
λn cosλnθ,

where λn = (2n + 1)π/2β and the coefficients An are to be found. Determine the

asymptotic behaviour of the flow near r = 0 [Hint: distinguish the cases β < π/4

and β > π/4.] Under what circumstances is the flow near r = 0 independent of the

boundary r = a?

14. Starting from the Navier-Stokes equations for incompressible viscous flow with

conservative forces, obtain the vorticity equation

Dω

Dt
= ω · ∇u+ ν∇2ω.

Interpret the terms in the equation.

At time t = 0 a line vortex is created along the z-axis, with the same circulation

Γ around the axis at each z. The fluid is viscous and incompressible, and for t > 0

has only an azimuthal velocity denoted v. Show that there is a similarity solution of

the form vr/Γ = f(η), where r = (x2 + y2)1/2 and η is a suitable similarity variable.
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Furthermore, show that all conditions are satisfied by

f(η) =
1

2π
(1− e−η2) and η = r/2

√
νt.

Show also that the flux of vorticity across any plane z = constant remains constant at

Γ for all t > 0. Sketch v as a function of r.

15. Calculate the vorticity ω associated with the velocity field

u = (−αx− yf(r, t), −αy + xf(r, t), 2αz) ,

where α is a positive constant, and f(r, t) depends on r = (x2 + y2)1/2 and time t.

Show that the velocity field represents a dynamically possible motion if f(r, t) satisfies

2f + r
∂f

∂r
= Aγ(t)e−γ(t)r2 ,

where

γ(t) =
α

2ν

(
1± e−2α(t−t0)

)−1
,

and A and t0 are constants.

Show that, in the case where the minus sign is taken, γ is approximately 1/4ν(t− t0)
when t only just exceeds t0. Which terms in the vorticity equation dominate when this

approximation holds?

16. From the vorticity equation, derive the equation satisfied by the streamfunction

ψ(r, θ) for a steady two-dimensional flow in polar coordinates. Show further that this

equation has solutions of the form ψ = Qf(θ), with Q constant if f satisfies an ordinary

differential equation which you should determine.

17. Write down the equation satisfied by the vorticity ω(x, y, t) in a two-dimensional

flow in Cartesian coordinates. Introduce a streamfunction ψ and show that ω = −∇2ψ.

Show that the vorticity equation has a time-dependent similarity solution of the form

ψ = CxH(t)−1ϕ(η), ω = −CxH(t)−3ϕηη(η), for η = yH(t)−1,

if H(t) = (2Ct)1/2 and if ϕ satisfies an ordinary differential equation which you should

determine involving an effective Reynolds number, R = C/ν.
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18. Show that in an unbounded Stokes flow at rest at infinity, two identical spheres,

arbitrarily aligned, fall under gravity at constant separation, i.e. neither separating

nor coming closer together.

19. An external force is applied at the centre of a cube in a direction normal to one

flat surface. Show that in an unbounded Stokes flow, the cube moves in the direction

of the applied force without rotating. Using linearity and rotational symmetry, deduce

that, in all orientations, the terminal velocity of a cube of uniform density sedimenting

in a fluid is vertical. Furthermore, using reflectional symmetry, show that it falls with

no rotation. Using similar arguments, show that when the cube simply rotates about

an axis through its centre, the resisting hydrodynamic torque is parallel to the angular

velocity and the hydrodynamic force is zero.

Show that the same applies to a regular tetrahedron. How about an ellipsoid?

20. If the strain-rate tensor Eij(x) vanishes throughout a connected region, show that

the flow is rigid body motion. [Hint: take the curl of Eij(x) to show that the vorticity

tensor is uniform (constant) throughout the region.]

Show that if the surface stress is specified on a bounding surface then the Stokes

flow in the interior is unique to within the addition of a rigid body motion. What

condition(s) must the prescribed surface stress satisfy for there to be a Stokes flow in

the interior?

[Hint: in the absence of body forces the Stokes equation can be written ∂σij/∂xj = 0.]

21. If A(x) is a vector harmonic function, i.e. ∇2A = 0, show that the flow

u = 2A−∇(A · x) and P = −2µ∇ ·A

is incompressible and satisfies the Stokes equation with no body force. Calculate the

stress tensor.

For a sphere of radius a translating at velocity V through a fluid that is otherwise

at rest, explain why the harmonic function takes the form

A = αaV
1

r
+ βa3(V · ∇)∇1

r
.

[Hint: How many vector harmonic functions that are linear in V can you construct

using the fundamental harmonic solution 1/r and its derivatives?]

Find the values of the constants α and β.
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22. Consider an unbounded Stokes flow outside a rigid sphere of radius a rotating with

angular velocity Ω. Show that the pressure gradient is zero. Then derive the velocity

field as

u(x) = Ω× x
a3

r3
·

[Hint: How many true vector harmonic functions, u, can you construct using the

fundamental harmonic solution 1/r and its derivatives that are linear in the pseudo

vector Ω?]

Show that the torque exerted on the sphere by the flow is −8πµa3Ω.

23. Consider a spherical bubble of radius a in a uniform flow U. The Stokes flow

outside a sphere is of the form

u(x) = Uf(r) + x(U · x)g(r).

Applying boundary conditions on r = a of no normal component of velocity and no

tangential component of surface traction (i.e. no tangential stress), find the flow u(x).

Show that the drag force is 4πµaU.

24. Using the minimum dissipation theorem by stating carefully the flows you are

comparing and exploiting the result from Question 222, find upper and lower bounds

for the hydrodynamic torque on a regular tetrahedron rotating about its centre in a

viscous fluid.

[Hint: the radius of the inscribed sphere for a regular tetrahedron of edge length a is

a/
√
24 while that of the circumscribed sphere is

√
6a/4.]

25. An incompressible, viscous fluid is contained in the two-dimensional region −α <
θ < α between two rigid hinged plates rotating with equal and opposite angular velocity

of magnitude ω. Therefore, in plane polar coordinates, the velocity components on the

hinged plates satisfy

ur = 0 and uθ = ∓ωr on θ = ±α.

Neglecting all inertial forces, show that a solution to the Stokes problem is of the form

ψ =
1

2
ωr2g(θ)

(why?) and find the function g(θ). Deduce the pressure field P (r, θ). Is the logarith-

mic divergence of the pressure an issue? What is the physical interpretation of the

singularity in g?
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26. An incompressible, viscous fluid occupies the region 0 < θ < α, 0 < r < ∞ in

plane-polar coordinates (r, θ). It is bounded by a stationary, rigid plate at θ = α and

a rigid plate at θ = 0 that translates with constant velocity U in its own plane in the

negative r direction. Calculate the resulting Stokes flow of the fluid. Calculate the

stresses on each of the plates and comment on the external forces required to sustain

the flow.

27. A spherical annulus of incompressible viscous liquid of volume V occupies the

region R1(t) < r < R2(t) between two free surfaces on the outside of which pressures

(i.e. normal stresses) P1(t) and P2(t) are applied. The resulting flow is spherically

symmetric. Neglecting inertia, gravity and surface tension, show that

d

dt

(
R3

1

)
=

π(P1 − P2)

µV
R3

1

(
R3

1 +
3V

4π

)
.

[Hints: ur = f(t)/r2 (why?) and σrr = −p+2µ∂ur/∂r in this flow. Also, be careful to

distinguish between pressure and normal stresses.]

Show that if P1 − P2 is maintained positive and constant, then R1 becomes infinite

in a finite time. What happens if P1 − P2 is maintained negative and constant?

28. The concept of a boundary layer can be illustrated by ordinary differential equa-

tions. Consider the equation satisfied on the interval [0, 1] by the function f(x)

ϵf ′ + f = 1

with f(0) = 0. Find the exact solution and plot it for small values of ϵ. Formally

take ϵ = 0 in the differential equation and find its solution, f0(x). Is f0(x) compatible

with the boundary condition? Compare the exact solution to f0(x) and explain what

happens. What is the “size” of the boundary layer at x = 0?

29. Wind blowing over a deep reservoir exerts at the water surface a uniform tangential

stress, S, which is normal to, and away from, a straight side of the reservoir. Use

dimensional analysis, based on (a) balancing the inertial and viscous forces in a thin

boundary layer and (b) on the imposed boundary condition, to find order-of-magnitude

estimates δ(x) for the boundary-layer thickness and U(x) for the surface velocity as

functions of distance x from the shore. Using the boundary-layer equations, find the

ordinary differential equation governing the non-dimensional function f defined by

ψ(x, y) = U(x)δ(x)f(η) where η = y/δ(x).

What are the boundary conditions on f?
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