Principles of Quantum Mechanics: Example Sheet 1

Copyright 2025: Faculty of Mathematics, University of Cambridge.

1. Let **n** be a unit vector with polar coordinates (θ, ϕ) and let $\boldsymbol{\sigma}$ denote the Pauli matrices. Find the eigenvectors of $\mathbf{n} \cdot \boldsymbol{\sigma}$. Hence show that the state of a spin- $\frac{1}{2}$ particle for which a measurement of spin along **n** yields $\hbar/2$ with certainty is

$$|\mathbf{n}\rangle = \sin\left(\frac{\theta}{2}\right)e^{i\phi/2}|\downarrow\rangle + \cos\left(\frac{\theta}{2}\right)e^{-i\phi/2}|\uparrow\rangle.$$

where $|\uparrow\rangle$ and $|\downarrow\rangle$ are the usual eigenstates of \hat{S}_z . Obtain the corresponding expression for the eigenstate of $\mathbf{n} \cdot \boldsymbol{\sigma}$ with eigenvalue $-\hbar/2$. Explain why $\langle\uparrow |\mathbf{n}\rangle = 0$ at $\theta = \pi$, and why both coefficients have modulus $1/\sqrt{2}$ when $\theta = \pi/2$.

2. Write the 3×3 matrix for \hat{S}_x in the basis where $\hat{S}_z = \text{diag}(\hbar, 0, -\hbar)$. An unpolarised spin-1 beam passes through:

- a Stern–Gerlach filter passing only $\hat{S}_z = \hbar$,
- then a filter for $\hat{S}_x = \hbar$,
- then one for $\hat{S}_z = -\hbar$.

What fraction of the initial particles emerge?

3. Consider a 1D quantum harmonic oscillator with classical frequency ω . Define the coherent state $|\alpha\rangle$ by

$$|\alpha\rangle = e^{\alpha \hat{a}^{\dagger} - \bar{\alpha}\hat{a}} |0\rangle,$$

where \hat{a}^{\dagger} , \hat{a} are the raising and lowering operators, $|0\rangle$ is the ground state, and $\alpha \in \mathbb{C}$.

- i) Show that $|\alpha\rangle$ is an eigenstate of \hat{a} and find its eigenvalue. Compute the inner product between two different coherent states $|\alpha\rangle$ and $|\beta\rangle$. [*Hint: You may find it helpful to use the results of question 2.*] Does the set of states $|\alpha\rangle$ for all $\alpha \in \mathbb{C}$ form a basis of the Hilbert space?
- ii) A quantum oscillator is prepared in state $|\alpha\rangle$ at t = 0. Show that it evolves to become a new coherent state $e^{-i\omega t/2}|e^{-i\omega t}\alpha\rangle$.
- iii) Suppose $\alpha \in \mathbb{R}$. By expressing \hat{a} and \hat{a}^{\dagger} in terms of \hat{x} and \hat{p} , sketch the position space wavefunction of $|\alpha\rangle$.

iv) Let $\alpha \in \mathbb{C}$ and compute $\langle \alpha | \hat{p} | \alpha \rangle$. Give a physical interpretation of the coherent state for general complex α . Without further calculation, describe the shape and motion of both the position space and momentum space wavefunctions as time passes.

4. In units where $\hbar = 2m = 1$, the relative motion of atoms in a diatomic molecule is modelled by the Hamiltonian

$$\hat{H}_{\nu} = \hat{p}^2 + \left(\nu + \frac{1}{2} - e^{-\hat{x}}\right)^2,$$

where ν is a real parameter.

- i) Sketch the potential. Explain why it models molecular vibrations better than a harmonic oscillator.
- ii) Find a non-Hermitian operator \hat{a}_{ν} such that

$$\hat{H}_{\nu} = \hat{a}_{\nu}^{\dagger} \hat{a}_{\nu} + \nu + \frac{1}{4} \; .$$

What is the ground state energy? Find the position-space wavefunction of the ground state. For what range of ν is this state normalizable?

iii) Let $|0,\nu\rangle$ be the ground state for parameter ν . Show that

$$\hat{a}_{\nu}\hat{a}_{\nu}^{\dagger} = \hat{a}_{\nu-1}^{\dagger}\hat{a}_{\nu-1} + 2\nu - 1,$$

and hence that $\hat{a}^{\dagger}_{\nu}|0,\nu-1\rangle$ is an (unnormalized) eigenstate of \hat{H}_{ν} .

iv) Deduce an expression for the unnormalized n^{th} eigenstate using raising operators. Find the bound state spectrum of \hat{H}_{ν} . Show that the number of bound states is $\lfloor \nu + 1 \rfloor$. Do these form a basis of the Hilbert space?