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1. Let Â and B̂ be any operators that commute with [Â, B̂], and let λ ∈ C.

i) Prove that [Â, B̂n] = nB̂n−1[Â, B̂] for all n ∈ Z+, and that [Â, eB̂] = eB̂[Â, B̂].

ii) Define F (λ) = eλÂeλB̂e−λ(Â+B̂). Show that F ′(λ) = λ[Â, B̂]F (λ). Hence deduce

that

eÂeB̂ = eÂ+B̂+ 1
2
[Â,B̂] = eB̂eÂe[Â,B̂] .

iii) Now let Â and B̂ be any operators (not necessarily commuting with [Â, B̂]. Prove

that
d

dλ

(
eλÂB̂e−λÂ

)
= eλÂ[Â, B̂]e−λÂ.

Hence deduce that

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2
[Â, [Â, B̂]] + · · · .

2. Let x̂(t) = eiĤt/ℏx̂e−iĤt/ℏ and p̂(t) = eiĤt/ℏp̂e−iĤt/ℏ, where x̂ and p̂ are the usual

position and momentum operators, and Ĥ is the Hamiltonian of the 1D harmonic

oscillator. Show that

x̂(t) = x̂ cos(ωt) +
1

mω
p̂ sin(ωt), p̂(t) = p̂ cos(ωt)−mωx̂ sin(ωt).

Interpret this result. Evaluate [x̂(t), p̂(t)].

3. A Fermi oscillator has Hilbert space H = C2 and Hamiltonian Ĥ = B̂†B̂, where

B̂2 = 0 and B̂†B̂ + B̂B̂† = 1.

Find the eigenvalues of Ĥ. If |0⟩ satisfies Ĥ|0⟩ = 0 and ⟨0|0⟩ = 1, find B̂|0⟩ and

B̂†|0⟩. Obtain a matrix representation of B̂, B̂† and Ĥ.

4. Let p̂/ℏ and L̂/ℏ be the generators of translations and rotations. By considering

the effect of a rotation and translation on v ∈ R3, show that [Ĵi, p̂j] = iℏϵijkp̂k.

5. A quantum particle in H = L∈(R∋) has Hamiltonian Ĥ = p̂2/2m. Galilean boosts

of velocity v act on H through a a time-independent unitary operator Û(v) such that

Û †(v)x̂(t)Û(v) = x̂(t) + vt .
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i) Show that Û(v1)Û(v2) = Û(v1 + v2) and Û
†(v)p̂Û(v) = p̂+mv. Express Û(v)

in terms of x̂, p̂, and v.

ii) Let T̂ (a) = e−ia·p̂/ℏ be the translation operator. Evaluate T̂ †(a)Û †(v)T̂ (a)Û(v).

Is this compatible with classical expectations for a corresponding sequence of

boosts and translations?

6. For a spin-1
2
particle, the spin operator is Ŝ = ℏσ/2.

i) Using the commutation and anti-commutation relations, but without matrix mul-

tiplication, explain why the Pauli matrices obey

σiσj = δij1+ iϵijkσk .

Hence that for any a,b ∈ R3

(a · σ)(b · σ) = (a · b)1+ i(a× b) · σ.

ii) Hence show that

e−iα·Ŝ/ℏ = cos
(α
2

)
1− i sin

(α
2

)
α̂ · σ.

iii) A spin-1
2
particle in a magnetic field B has Hamiltonian H = −µB · Ŝ, where µ is

constant. If the particle’s spin is initially prepared to be in some state |χ⟩, show
that the probability the spin is found to be in an orthogonal state |χ′⟩ at a time

t later is

|⟨χ′|B̂ · σ|χ⟩|2 sin2 ωt,

where ω is a frequency you should specify.

iv) Obtain the Heisenberg equation of motion for Ŝ(t) with this Hamiltonian.

v) Show that the spin operator in the Heisenberg picture is

Ŝ(t) = cos(2ωt)Ŝ+ (1− cos(2ωt))B̂(B̂ · Ŝ)− sin(2ωt)B̂× Ŝ .

7. A spin-1
2
particle interacts with a time-varying magnetic field such that

H = −γB(t) · Ŝ with B(t) = B0ẑ+ b(x̂ cosω1t+ ŷ sinω1t) .

Let |ψ(t)⟩ be the state of the particle at time t and let Û(ω1tẑ) be the rotation operator

around the z-axis by the time-dependent angle ω1t.
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i) Define |χ(t)⟩ via |ψ(t)⟩ = Û(ω1tẑ)|χ(t)⟩. Show that |χ(t)⟩ satisfies the time-

dependent Schrödinger equation with Hamiltonian Ĥeff = −µBeff · Ŝ, where Beff

is a time-independent magnetic field that you should specify.

ii) Hence show that

⟨Ŝ⟩ψ(t) = R(ω1tẑ)R(−µtBeff)⟨Ŝ⟩ψ(0),

where R(α) is a rotation matrix in R3.

iii) Sketch the motion of ⟨Ŝ⟩ψ(t) over time.

8. Consider a 2d isotropic harmonic oscillator of frequency ω.

i) Construct combinations of the raising/lowering operators for the 2d oscillator

that satisfy the so(3) algebra.

ii) Show how all oscillator states fit into representations of so(3).

9. Let Ĵ = (Ĵ1, Ĵ2, Ĵ3) and |j m⟩ denote the standard angular momentum operators

and states, so that, using units in which ℏ = 1,

Ĵ2 |j m⟩ = j(j + 1)|j m⟩, Ĵ3|j m⟩ = m|j m⟩.

Show that Û(θ) = exp(−iθĴ2) is unitary and define

Ĵi(θ) = Û(θ) Ĵi Û(θ)
−1 for i = 1, 3 .

Using the commutation relations for angular momentum show that

d2Ĵi(θ)

dθ2
+ Ĵi(θ) = 0 for i = 1, 3 .

Hence show that

Ĵ1(θ) = Ĵ1 cosθ − Ĵ3 sinθ , Ĵ3(θ) = Ĵ1 sinθ + Ĵ3 cosθ .

Deduce that Û(π
2
) |j m⟩ are eigenstates of Ĵ1.

For j = 1
2
, use the Pauli representation of operators and states to show that

Û(θ)|↑⟩ = cos 1
2
θ |↑⟩ + sin 1

2
θ |↓⟩ , Û(θ)|↓⟩ = − sin 1

2
θ |↑⟩ + cos 1

2
θ |↓⟩

where | ↑⟩ = |1
2

1
2
⟩ and | ↓⟩ = |1

2
− 1

2
⟩. Verify in this representation that Û(π

2
)| ↑⟩ and

Û(π
2
)|↓⟩ are eigenstates of J1.
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10. Show that for two spin-1
2
particles the composite state

1√
2
( |↑⟩|↓⟩ − |↓⟩|↑⟩ )

is unchanged by a transformation | ↑⟩ 7→ Û(θ)| ↑ ⟩ and | ↓⟩ 7→ Û(θ)| ↓⟩ applied to all

one-particle states. How does this relate to the angular momentum properties of the

two-particle state?

11. What is the unitary operator Û(α) corresponding to translation through α for

a one-dimensional quantum system with position x̂ and momentum p̂? Calculate

[x̂, Û(α)] and show that the result is consistent with the assumption that position

eigenstates obey |x+α⟩ = Û(α)|x⟩. Given this assumption, express the wavefunction

for Û(α)|ψ⟩ in terms of the wavefunction ψ(x) for |ψ⟩.

If the system is a one-dimensional harmonic oscillator of mass m and frequency ω,

show that

Û(α) = e−
1
2
γ2eγâ

†
e−γâ where γ = α(mω/2ℏ)

1
2 .

Deduce that if ψn(x) are wavefunctions for the usual normalised states with energies

ℏω(n+1
2
), then

ψ0(x−α) = e−
1
2
γ2

∞∑
n=0

1√
n!
γnψn(x) .

[Recall that [Â, eB̂] = [Â, B̂]eB̂ and eÂeB̂ = eÂ+B̂e
1
2
[Â,B̂] provided [Â, B̂] commutes

with Â and B̂.]

12. Write down the commutation relations for the components of a vector operator

V̂ = (V̂1, V̂2, V̂3) and the angular momentum operator Ĵ = (Ĵ1, Ĵ2, Ĵ3). Use these to

show that

V̂(θ) = exp(iθn·Ĵ/ℏ) V̂ exp(−iθn·Ĵ/ℏ)

satisfies

V̂′(θ) = n×V̂(θ)

where n is a unit vector and θ a real parameter. Deduce that n·V̂(θ) = n·V̂ and hence

that

V̂′′(θ) + V̂(θ) = (n·V̂)n .

Solve this equation to find V̂(θ) in terms of V̂ and interpret your result.
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13. Two identical spin-1 particles, whose centre of mass is at rest, have combined spin

Ŝ, relative orbital angular momentum L̂ and total angular momentum Ĵ = L̂+ Ŝ, with

corresponding quantum numbers S, L and J . Show that L+S must be even. If J = 1,

what are the possible values of L and S?

14. Show that a particle of spin 1 cannot decay into two identical particles of spin

0. The ρ-meson has spin 1 and can decay into two spinless π-mesons, or pions, with

different charges. If the intrinsic parity of any π is negative, what is the intrinsic parity

of the ρ?

15. A particle X is observed to undergo the decays X → ρ+ + π− and X → K +K,

where K is a particle of spin 0. What is the lowest value for the spin of X that is

consistent with this, and what is the corresponding intrinsic parity of X? [Assume

that total angular momentum and parity are conserved is all these processes.]
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