
Quantum Computing: Example Sheets 3 and 4

Copyright 2025: Faculty of Mathematics, University of Cambridge.

1. For n-bit strings x = x1 . . . xn and a = a1 . . . an in Bn, we have the sum x⊕ a which

is an n-bit string and now introduce the 1-bit ”dot product”:

x · a = x1a1 ⊕ x2a2 ⊕ . . .⊕ xnan .

For any fixed n-bit string a = a1 . . . an, consider the function fa : Bn → B1 given by

fa(x1, . . . , xn) = x · a

(i) Show that for any a ̸= 00 . . . 0, fa is a balanced function (i.e., fa has value 0 on

exactly half the inputs x, and value 1 on the other half).

(ii) Given a classical black box that computes fa, describe a classical deterministic

algorithm that will identify a = a1 . . . an on which fa is based. Show that any

such classical algorithm has query complexity at least n.

Now define Hn = H ⊗ . . .⊗H as the application of Hadamard H to each qubit in a

row of n. Show that for x ∈ B and a ∈ Bn,

H|x⟩ = 1√
2

1∑
y=0

(−1)xy|y⟩, Hn|a⟩ =
1√
2n

∑
y∈Bn

(−1)a·y|y⟩

(iii) (The Bernstein-Vazirani algorithm.) For each a, consider the function fa which

is a balanced function if a ̸= 00 . . . 0. Show that the Deutsch-Jozsa algorithm will

perfectly distinguish and identify the 2n−1 balanced functions fa (for a ̸= 00 . . . 0)

with only one query to the quantum oracle for f . Show that the n-bit output

gives the string a with certainty for these special balanced functions.

2. Exponentiation of integers mod N is a basic arithmetic task. (It will be used

for example in Shor’s algorithm), and it is important to know that it can be done in

polynomial time poly(n), where n = logN is the number of digits for integers in ZN .
To compute, say, 3k mod N (for k ∈ ZN and N > 3), we could multiply 3 together

k times. Show that this is not a poly(n)-time computation.

Devise an algorithm that does run in poly(n) time. [Hint: consider repeated squar-

ing.]

1



You may assume that multiplication of integers in ZN can be done in O(n2) time.

Generalise to a polynomial-time computation of kk21 mod N for k1, k2 ∈ ZN , showing
that it may be computed in O(n3) time.

3. Simon’s decision problem is the following:

Input: An oracle for a function f : Bn → Bn,

Promise: f is either (a) a one-to-one function, or (b) a two-to-one function of the

following special form: there exists ξ ∈ Bn such that f(x) = f(y) iff y = x⊕ ξ ((i.e. ξ

is the period of f when its domain is viewed as the group (Z2)
n).

Problem: Determine whether (a) or (b) applies, with success probability at least

1− ε for any ε > 0.

It can be argued that, for classical computation, this requires at least O(2n/4) queries

to the oracle. The goal of this question is to develop a quantum algorithm that solves

the problem with quantum query complexity only O(n). Even more, the algorithm will

determine the period ξ if (b) holds. Thus (unlike the balanced vs. constant problem),

we’ll have a provable exponential separation between classical and quantum query

complexities, even in the presence of bounded error.

To begin, consider 2n qubits: the first n comprising the input register, and the last

n comprising the output register for a quantum oracle Uf computing f , i.e.,

Uf |x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩

for n-string qubits x and y.

(i) Let all qubits start in state |0⟩. Apply Hadamard H⊗n to the input register,

apply Uf , and then measure the output register (all measurements being in the

computational basis).

Write down the generic form of the n-qubit state |α⟩ of the input register after

the measurement. Suppose we then measure |α⟩. Would the result provide any

information about the period ξ?

(ii) Having obtained |α⟩ above, apply H⊗n to get a state denoted |β⟩. Show that if

we measure |β⟩, then the n-bit outcome is a uniformly random string y satisfying

ξ · y = 0 (so any such y is obtained with probability 1/2n−1.)

Now we run this algorithm repeatedly, each time independently obtaining another

string y satisfying ξ · y = 0. Recall that Bn = (Z2)
n is a vector space over the

field Z2. If y1, . . . , ys are s linearly independent bit strings, then their linear

span contains 2s of the 2n vectors in Bn. Furthermore, solving systems of linear

equations over Bn can be done via Gaussian elimination in poly(n) time.

2



(iii) Show that if n−1 bit strings yi are chosen uniformly at random and independently,

satisfying ξ · yi = 0, then they will be linearly independent (and not include the

all-zero string 00 . . . 0) with probability

n−1∏
k=1

(
1− 2k−1

2n−1

)
=

1

2

n−2∏
k=1

(
1− 2k−1

2n−1

)

Show that this is at least 1/4.

[Hint: Use the inequality (1− a)(1− b) ≥ 1− (a+ b) for a, b ∈ [0, 1].]

(iv) Explain how this process may be used to solve Simon’s problem with O(n) quan-

tum query complexity for any desired success probability 1− ε.

4. Let Bn denote the set of all n-bit strings. The Hamming distance between two n-bit

strings a = a1 . . . an and x = x1 . . . xn is the number of places j where aj and xj differ.

Let Ha : Bn → B2 be the function

Ha(x) = Hamming distance between a and x) mod 4 .

Here we are identifying B2 with Z4 via the usual binary representations of 0,1,2,3. (For

example if a = 101110000 and x = 001001110 then Ha(x) = 6 mod 4 = 2.)

Now consider the promise problem HAM-mod4:

Input: A black-box function f : Bn → B2

Promise: f = Ha for some N -bit string a.

Goal: Determine a with certainty

In the quantum context, the black box is a unitary operation on n+ 2 qubits given

by:

Uf |x⟩|y⟩ = |x⟩|y + f(x)⟩ .

Here the x register is n qubits, and in the y register we’ll write the basis states

{|0⟩, |1⟩, |2⟩, |3⟩} with additin in the expression y + f(x) being addition in Z4.

(i) Show that classically, the query complexity of HAM-mod4 is at least n/2.

We will now show that the problem can be solved quantumly with just one query.

Let M be the unitary matrix

M =
1√
2

(
1 i

i 1

)
. (1)

3



Introduce the 1-bit functions h0, h1 : B1 → B1 where:

h0(0) = 0, h0(1) = 1; h1(0) = 1, h1(1) = 0

i.e., ha is just Ha for a 1-bit string a.

(ii) For a1 = 0 or 1, show that

M |a1⟩ =
1√
2

1∑
x1=0

iha1 (x1)|x1⟩

(iii) For n-bit strings a = a1 . . . an and x = x1 . . . xn, show that

Ha(x) = ha1(x1) + · · ·+ han(xn) mod 4

Hence, describe how to prepare the state

|Ha⟩ =
1√
2n

∑
x∈Bn

iHa(x)|x⟩

starting from |a⟩.

(iv) Let S denote the 2-qubit “shift” operation

S|y⟩ = |y + 1 mod 4⟩, y ∈ Z4

Let QFT denote the quantum Fourier transform mod 4. Calculate |ψ3⟩ =

QFT |3⟩ and show S|ψ3⟩ = i|ψ3⟩.

(v) Use the above results to design a quantum algorithm that solves HAM-mod4 with

certainty using just one query to Uf and poly(n) total time complexity. [Hint: it

may be useful to note that UHa |x⟩|y⟩ = |x⟩SHa(x)|y⟩. Draw a circuit diagram to

represent your quantum algorithm.

Comment: This algorithm is structurally similar to the Bernstein–Vazirani algorithm.

Compare the corresponding ingredients and their functionality. What corresponds to

QFT , |ψ3⟩, M , ha, and Ha?

4



5a. Let U1, V1, U2, V2 be unitary gates. Show that if ∥U1−V1∥ ≤ ε1 and ∥U2−V2∥ ≤ ε2
(i.e. the V ’s are “approximate versions” of the U ’s), then

∥U2U1 − V2V1∥ ≤ ε1 + ε2 .

That is, errors in using approximate versions at most add when gates are composed.

(Recall that ∥U − V ∥ is defined as the maximum length of the vector (U − V )|ψ⟩ over
all normalised |ψ⟩.)

Deduce that if ∥Ui − Vi∥ ≤ ε for i = 1, . . . , n, then Un · · ·U1 − Vn · · ·V1∥ ≤ nε.

b. For the purposes of this question, assume the following: if a gate set is approximately

universal, then any one- or two-qubit gate U may be approximated to within ε by a

circuit composed of gates from the set, with size poly(1/ε). (In fact, the Solovay–Kitaev

theorem says even poly(log(1/ε)) gates suffice, but you do not need this here.)

Let G and H be two approximately universal gate sets, each consisting of one- and

two-qubit gates. Suppose a decision problem D is in the class BQP with all gates from

the set G. Show that D is also in BQP when using only gates from the set H. (That

is, the definition of BQP does not depend on the particular approximately universal

gate set used.)

6. Consider the function f(x) = 5x mod 39. on the domain x ∈ Z2m with m = 11.

(i) Show that f is periodic, and determine its period r. (You may need a calculator!)

(ii) Suppose we construct the equal superposition state over pairs |f⟩ of (x, f(x))

values over the domain Z2m , measure the second register, perform the quantum

Fourier transform mod 2m on the post-measurement state of the first register, and

finally measure it. What is the probability for each possible outcome 0 ≤ c < 2m

in the final measurement? (Note: this should require very little calculation!)

What is the probability that we successfully determine the period r from this

measurement result, using the standard process of the quantum period-finding

algorithm?

7. Consider a quantum computation given by a family of polynomial-size quantum

circuits {C1, C2, . . . , Cn, . . .} where each Cn comprises gates from a universal set G

consisting of only one- and two-qubit gates. Suppose this quantum computation solves

a decision problem A in BQP.

Further, assume that for any input x ∈ Bn to the circuit Cn (for any n), the quan-

tum state remains unentangled at every stage of the computation – that is, the state is

5



always a product state over all the qubits involved. Show that in this case, the problem

A is also in BPP. (That is, if no entanglement is ever present in a quantum compu-

tation, then it cannot provide any computational benefit over classical computation

beyond at most a polynomial overhead in time). [Hint: Consider simulating the entire

quantum process step-by-step on a classical computer.]

8. For the plane P (x0) spanned by |x0⟩ and |ψ0⟩ = 1√
N

∑
x∈Bn

|x⟩. set up an or-

thonormal basis in the plane. Then, using this basis, show algebraically (rather than

geometrically as in lectures) that the Grover iteration operator Q is a rotation in the

plane, and derive the angle of rotation.

9. Consider Grover’s algorithm for a unique good item x0 in a search space of size

N = 2n. Suppose that instead of the usual uniform superposition state |ψ0⟩, we start

with an arbitrary state |η0⟩ of n qubits and conduct the algorithm just as before – i.e.,

apply
⌊
π
4

√
N
⌋
iterations of Q and measure.

When |η0⟩ = |ψ0⟩, the final measurement yields x0 with probability 1, up to terms

of order 1/N . If instead we begin with some other starting state |η0⟩, describe geomet-

rically how |η0⟩ evolves during the computation. Give an expression (up to terms of

order 1/N) for the probability of obtaining x0 in the final measurement. Show that this

probability may generally be improved by changing the number of Grover iterations.

10a. Consider the operator −I|ψ0⟩ = 2|ψ0⟩⟨ψ0|−I, where |ψ0⟩ = 1√
N

∑
x∈Bn

|x⟩, N =

2n. Show that:

−I|ψ0⟩ =
2

N

∑
x,y

|x⟩⟨y| − I.

b. Let |α⟩ =
∑

x ax|x⟩ be any n-qubit state. Define the average amplitude as ā =
1
N

∑
x ax. Define the operation R of inversion in the average as follows: R|α⟩ =∑

x a
′
x|x⟩ where a′x = ax−2(ax−ā). Using the formula in part (a), show that−I|ψ0⟩|α⟩ =

R|α⟩.

c. Hence, Grover’s algorithm may be described as follows: start with the state |ψ0⟩;
then flip the sign of the x0 amplitude; then apply R, the inversion about the average;

then Iterate the last two steps alternately.

Represent states with real amplitudes as a graph where the x-axis labels basis states

x, and the amplitude for each state is drawn as a (positive or negative) vertical bar.

Using this pictorial representation, starting with |ψ0⟩, carry out one or two iterations of

the “flip x0 and then do R” operation to observe how the initial amplitude distribution,

uniform over all x, begins to concentrate on x0.

6



d. Consider the definite case of N = 4 (i.e. x ∈ {0, 1, 2, 3}), and take x0 = 3. Draw

the pictorial graph representation of |ψ0⟩ and carry out one Grover iteration as a flip

followed by inversion in the average. Show that as a result, the amplitude becomes

exactly zero at x ̸= x0 and 1 at x = x0.

11. For any prime p, consider the set Z∗
p = {1, 2, . . . , p − 1} ⊂ Zp of nonzero integers

modulo p, with multiplication modulo p as the group operation. A generator g for Z∗
p

is an element such that its powers generate all of Z∗
p, i.e. for every x ∈ Z∗

p, there exists

y ∈ Zp−1 such that x = gy mod p. This y is called the discrete logarithm of x to the

base g.

Assume that Z∗
p always has a generator g, and that gp−1 ≡ 1 mod p. Suppose we

are given a generator g and an element x ∈ Zp, and we wish to compute its discrete

logarithm y

(i) Consider the function f : Zp−1 × Zp−1 → Z∗
p defined by:

f(a, b) = gax−b mod p.

Show that for each fixed c ∈ Z∗
p, there exists a fixed k ∈ Zp−1 such that

f(a, b) = c ⇐⇒ a = by + k mod (p− 1).

(ii) Suppose we prepare the quantum state

|φ⟩ = 1

p− 1

∑
a,b∈Zp−1

|a⟩|b⟩|f(a, b)⟩

in the Hilbert space Hp−1 ⊗Hp−1 ⊗Hp, where Hn denotes a space of dimension

n with orthonormal basis {|k⟩ : k ∈ Zn}. Measure the third register and obtain

some value c0. Determine the post-measurement state of the first two registers.

(iii) Apply the quantum Fourier transform mod (p−1) to both of the first two registers

and then measure them. Which output pairs (c1, c2) ∈ Zp−1 × Zp−1 can be

obtained with non-zero probability?

Can y be determined from any such pair?

Hence, outline a quantum algorithm for computing discrete logarithms that runs

in time O(poly(log p)) for large p and succeeds with probability at least 1 − ε,

for any constant ε > 0. [You may assume that both f and the quantum Fourier

transform mod p− 1 can be implemented in O(poly(log p)) time.]

7



12. We wish to factor N = 21 using Shor’s algorithm, and we have chosen a = 2 so

that we aim to determine the period of the function f(x) = 2x mod 21. We proceed

through the quantum part of the algorithm and finally measure the x-register. Suppose

we obtain measurement result c = 427.

(i) What is the number m of qubits used for the x-register?

(ii) Use the continued fraction method to find a fraction j/r with denominator less

than 21 that is within 1/2m+1 of the ration c/2m.

(iii) We hope that the denominator r of j/r (when the fraction is in lowest terms) is

the period of f(x). Check whether this is indeed the case in this example. Then,

using your value of r, complete the classical post-processing to find nontrivial

factors of 21 following the standard method used in Shor’s algorithm.

13a. Let N = 2n, and let f : Bn → B1 be a function that takes the value 1 exactly

K times, with f(x) = 1 iff x ∈ G = {x1, . . . , xK}. The Grover operator is defined as:

Q = −HnI0HnIG, where Hn = H⊗n is the Hadamard transform on n qubits and, for

all x ∈ Bn, the phase inversion operators I0 and IG are defined by:

I0|x⟩ =

{
−|x⟩ if x = 00 . . . 0

|x⟩ otherwise
and IG|x⟩ =

{
−|x⟩ if x ∈ G

|x⟩ otherwise

Let |ψ0⟩ = 1√
N

∑
x∈Bn

|x⟩ and |ψG⟩ = 1√
K

∑
x∈G |x⟩. Derive a geometric interpretation

of the action of Q in the 2d subspace of the n-qubit Hilbert space spanned by |ψ0⟩ and
|ψG⟩.

Using this interpretation, show that if IG is given as a black box, then an x ∈ G may

be found with high probability (say, greater than 1/2) using O(
√
N/K) applications

of IG, assuming N is large and K ≪ N .

b. Let g : Bn → Bn be a 2-to-1 function: for every y in the range of g, there

exist exactly two strings x ∈ Bn such that g(x) = y. A collision is a pair of strings

x1, x2 ∈ Bn such that g(x1) = g(x2). The standard quantum oracle Ug for g is defined

on 2n qubits by

Ug|x⟩|y⟩ = |x⟩|y ⊕ g(x)⟩ x, y ∈ Bn,

where ⊕ denotes bitwise addition of n-bit strings.

Suppose that we are given Ug as a black-box operation. Using the result of (a), or

otherwise, show that a collision may be found with high probability (say, greater than

1/2) using O(N1/3) queries to Ug. [Hint: Start by partitioning the domain of g into

8



two sets A and B of sizes N1/3 and N − N1/3 respectively. List all values of g(x) for

x ∈ A. If a collision is not found there, what should we do next with B? ]

Comment: The classical query complexity for collision finding is O(
√
N). The

O(N1/3) upper bound on quantum query complexity shown here is known to be opti-

mal.

14a. For the state space HN with orthonormal basis {|k⟩ : k ∈ ZN}, consider the

unitary shift operator S defined by S|k⟩ = |k + 1 mod N⟩ for all k ∈ ZN . Also define

the states: |χk⟩ = QFTN |k⟩ called shift-invariant states.

Show that each |χk⟩ is an eigenstate of S, and determine the corresponding eigen-

value.

Let |ψ⟩ be any state in HN . Show that for any m ∈ ZN , the outcome probabilities

of measuring Sm|ψ⟩ in the {|χk⟩} basis are independent of the shift m. (This gives an

alternative explanation for the efficacy of the QFT in the period-finding algorithm.)

b. Let x,N be two positive integers with x < N . Define the operator Ux on HN by:

Ux|y⟩ = |xy mod N⟩ for all y ∈ ZN .

(i) Show that Ux is unitary if and only if x and N are coprime.

Assume now that x and N are coprime. Let r be the order of x mod N , i.e. the

smallest t > 0 such that xt ≡ 1 mod N . For 0 ≤ s ≤ r − 1, define:

|ψs⟩ =
1√
r

r−1∑
k=0

e−2πisk/r|xk mod N⟩.

(ii) Show that each state |ψs⟩ is an eigenvector of Ux with eigenvalue e2πis/r.

(iii) Show that 1√
r

∑r−1
s=0 |ψs⟩ = |1⟩.

c. Suppose we have a quantum process A with the following property: for any unitary

V , and for any eigenstate |ξλ⟩ of V with eigenvalue e2πiλ, the process A is a unitary

operation such that A (|ξλ⟩ ⊗ |0⟩) = |ξλ⟩ ⊗ |λ⟩ where the second register (initially |0⟩)
is of suitable size to hold the value λ (we ignore precision issues here). This process

is known as the phase estimation algorithm. Assume that A is available for the case

V = Ux, and that in this case it runs in poly(logN) time (which is true).

Show how the results of (b) together with the phase estimation algorithm for V = Ux
can be used to provide a poly(logN)-time quantum algorithm for factoring N (called

9



Kitaev’s factoring algorithm). [Hint: start with the reduction of factoring to order

finding, as done in Shor’s algorithm.]

15. Let x = x0x1 . . . xN−1 be an N -bit string. We can think of x as specifying the

values of a function from ZN to {0, 1}. A quantum oracle Ox for x is a unitary operator

acting on a state space of dimension 2N , defined by Ox|i⟩|y⟩ = |i⟩|y ⊕ xi⟩ for i ∈ ZN
and y ∈ {0, 1} where ⊕ denotes addition modulo 2. [Note: This generalises the notion

of an oracle for f : Bn → B1, corresponding to domain size N = 2n, to arbitrary

domain sizes not necessarily powers of 2.]

Consider the following oracle problem BAL

Input: Oracle Ox for some N -bit string x, where N = 2K is even.

Goal: Decide with certainty whether x is (i) balanced or (ii) not balanced. (Here

“balanced” means that exactly half of the bits are 0, half are 1).

We know that with the promise that x is either balanced or constant, the Deutsch–

Jozsa algorithm solves the problem with just one query. However, in the absence of

such a promise, it can be shown that any quantum algorithm solving the problem

requires at least Ω(N1/6) queries (i.e. exponential in n when N = 2n). The exact

optimal quantum query complexity is not known.

(a) Show that any classical deterministic algorithm that solves problem BAL for all

possible inputs must make at least N = 2K queries to the oracle in the worst

case.

We now develop a quantum algorithm that solves BAL with at most K = N/2

queries, thus improving (modestly) on any classical algorithm.

(b) Begin by writing x̂i = (−1)xi , and work in a state space of dimension N2 with

orthonormal basis states |i⟩|j⟩ for i, j ∈ ZN . Consider the following three com-

putational steps:

• Step 1: Prepare the state |ψ0⟩ = 1√
N

∑N−1
i=0 |i⟩|0⟩ and, together with a qubit

state in |−⟩, use one query of the oracle to produce

|ψ1⟩ =
1√
N

N−1∑
i=0

x̂i|i⟩|0⟩.

• Step 2: Define a transformation U whose action on states |i⟩|0⟩ is

U : |i⟩|0⟩ 7→ 1√
N

(∑
k>i

|i⟩|k⟩ −
∑
k<i

|k⟩|i⟩+ |0⟩|0⟩

)
.

10



By linearity, the state after applying U to |ψ1⟩ becomes

|ψ2⟩ = U |ψ1⟩ =

(
1

N

N−1∑
i=0

x̂i

)
|0⟩|0⟩+

∑
i<j

x̂i − x̂j
N

|i⟩|j⟩.

• Step 3: Measure |ψ2⟩ in the standard basis to obtain an outcome (k, ℓ)

with k, ℓ ∈ ZN .

(i) Show that there exists a unitary transformation Ũ acting on the full state

space whose action on states |i⟩|0⟩ agrees with U .

(ii) Suppose we now impose a promise that x is either balanced or constant.

What can we conclude from seeing (0, 0) or some (i, j) ̸= (0, 0) as the mea-

surement outcome?

(iii) Now return to the general case. Considering the possible measurement out-

comes (k, l), show that problem BAL may still be solved with certainty using

at most K = N/2 queries to the oracle, by repeating or adapting the steps

above appropriately.

11


