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1. A quantum system has Hamiltonian Ĥ with normalised eigenstates χn and cor-

responding energies En (n = 1, 2, 3, . . .) . A linear operator Q̂ associated with the

quantity Q is defined by its action on these states:

Q̂χ1 = χ2 , Q̂χ2 = χ1 , Q̂χn = 0 n > 2 .

Show that Q̂ has eigenvalues ±1 (in addition to zero) and find the corresponding

normalised eigenstates χ±, in terms of energy eigenstates. Calculate ⟨Ĥ⟩ in each of the

states χ±.

A measurement of Q is made at time zero, and the result +1 is obtained. The

system is then left undisturbed for a time t, at which instant another measurement

of Q is made. What is the probability that the result will again be +1? Show that

the probability is zero if the measurement is made when a time T = πℏ/(E2−E1) has

elapsed (assume E2−E1 > 0).

2. In the previous example, suppose that an experimenter makes n successive mea-

surements of Q at regular time intervals T/n. If the result +1 is obtained for one

measurement, show that the amplitude for the next measurement to give +1 is

An = 1 − iT (E1+E2)

2ℏn
+ O

( 1

n2

)
.

The probability that all n measurements give the result +1 is then Pn = (|An|2)n.
Show that

lim
n→∞

Pn = 1 .

Interpreting χ± as the ‘not-boiling’ and ‘boiling’ states of a two-state ‘quantum pot’, this

shows that a watched quantum pot never boils (also called the Quantum Zeno Paradox).

3. Write down the Hamiltonian H for a harmonic oscillator of mass m and frequency

ω. Express ⟨H⟩ in terms of ⟨x̂⟩, ⟨p̂⟩, ∆x and ∆p, all defined for some normalised state

ψ. Use the Uncertainty Relation to deduce that E ≥ 1
2
ℏω for any energy eigenvalue E.
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4. The energy levels of the harmonic oscillator are En = (n+1
2
)ℏω for n = 0, 1, 2, . . .

and the corresponding stationary state wavefunctions are

χn(x) = hn(y)e
−y2/2 where y = (mω/ℏ)1/2x

and hn is a polynomial of degree n with hn(−y) = (−1)nhn(y). Using only the orthog-

onality relations

(χm, χn) = δmn ,

determine χ2 and χ3 up to an overall constant in each case.

Give an expression for the quantum state of the oscillator ψ(x, t) if the initial state

is ψ(x, 0) =
∑∞

n=0 cnχn(x), where cn are complex constants. Deduce that

|ψ(x, 2pπ/ω ) |2 = |ψ(−x, (2q+1)π/ω ) |2

for any integers p, q ≥ 0. Comment on this result, considering the particular case in

which ψ(x, 0) is sharply peaked around position x = a.

5. A particle of mass m is in a one-dimensional infinite square well (a potential box)

with U = 0 for 0 < x < a and U = ∞ otherwise. The normalised wavefunction for the

particle at time t = 0 is

ψ(x, 0) = Cx(a− x) .

(i) Determine the real constant C.

(ii) By expanding ψ(x, 0) as a linear combination of energy eigenfunctions (found in

Example 1 above), obtain an expression for ψ(x, t), the wavefunction at time t.

(iii) A measurement of the energy is made at time t > 0. Show that the probability

that this yields the result En = ℏ2π2n2/2ma2 is 960/π6n6 if n is odd, and zero if n is

even. Why should the result for n even be expected? Which value of the energy is

most likely, and why is its probability so close to unity?

6. Let Ĥ be a Hamiltonian and χ(x) any normalised eigenstate with energy E. Show

that, for any operator Â,

⟨ [Ĥ, Â] ⟩χ = 0 .

For a particle in one dimension, let Ĥ = T̂ + Û where T̂ = p̂2/2m is the kinetic energy

and U(x̂) is any (real) potential. By setting Â = x̂ in the result above and using the

canonical commutation relation between position and momentum, show that ⟨p̂⟩ψ = 0.

Now assume further that U(x̂) = kx̂n (with k and n constants). By taking Â = x̂p̂,

show that

⟨T̂ ⟩χ =
n

n+ 2
E and ⟨Û⟩χ =

2

n+ 2
E .
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7. Suppose Q is an observable that does not depend explicitly on time. Show that

iℏ
d

dt
⟨Q̂⟩ψ = ⟨ [Q̂, Ĥ] ⟩ψ

where ψ(x, t) obeys the Schrödinger Equation. Apply this to the position and momen-

tum of a particle in three dimensions, with Hamiltonian

Ĥ =
1

2m
p̂2 + U(x̂) ,

by calculating the commutator of Ĥ with each component of x̂ and p̂. Compare the

results with the classical equations of motion.

8. Let Â and B̂ be hermitian operators. Show that i[Â, B̂] is hermitian.

Given a normalised state ψ, consider ∥ (Â + iλB̂)ψ ∥2 with λ a real variable and

deduce that

⟨Â2⟩⟨B̂2⟩ ≥ 1
4
| ⟨ i[Â, B̂] ⟩ |2 ,

with all expectation values taken in the state ψ. Hence derive the generalised uncer-

tainty relation:

∆A∆B ≥ 1
2
| ⟨ [Â, B̂] ⟩ | .
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