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1. By applying the divergence theorem to the vector field a×A, where a is an arbitrary

constant vector and A(x) is a vector field, show that∫
V

∇×A dV =

∫
S

dS×A

where S = ∂V . Verify this result when V = {(x, y, z) : 0 < x < a, 0 < y < b, 0 < z < c}
and A(x) = (z, 0, 0).

2. Let F(x) = (x3 + 3y + z2, y3, x2 + y2 + 3z2) and let S be the open surface

1− z = x2 + y2, 0 ≤ z ≤ 1.

Use the divergence theorem and cylindrical polar coordinates to evaluate
∫
S
F · dS.

Verify your result by calculating the area integral directly.

[Hint: you should find that dS = (2ρ cosϕ, 2ρ sinϕ, 1) ρ dρ dϕ.]

3. Consider the line integral

I =

∮
C

−x2y dx+ xy2 dy

for C a closed curve traversed anti-clockwise in the (x, y)-plane.

(i) Evaluate I when C is a circle of radius R centred at the origin. Use Green’s theorem

to relate the results for R = b and R = a to an area integral over an appropriate region,

and calculate the area integral directly.

(ii) Now suppose C is the boundary of a square centred at the origin with sides of

length ℓ. Show that I does not change if the square is rotated in the (x, y)-plane.

4. Verify Stokes’ theorem for the hemispherical shell S = {x2 + y2 + z2 = 1, z ≥ 0},
and the vector field

F(x) = (y,−x, z).

5. By applying Stokes’ theorem to the vector field a× F for a constant, or otherwise,

show that for a vector field F(x)∮
C

dx× F =

∫
S

(dS×∇)× F
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where C = ∂S. Verify this result when C is the boundary of a unit square lying in the

(x, y)-plane, with opposite vertices at (0, 0, 0) and (1, 1, 0), and F(x) = x.

6. Let S = {x : |x| = 1} be the surface of a unit sphere. For the vector field

F(x) =
x

r3

where r = |x|, compute the integral
∫
S
F · dS. Deduce that there does not exist a

vector potential for F, i.e. there can be no A for which F = ∇×A. Compute ∇ · F
and comment on your result.

7. Consider the following vector field

A(x) =
1

(x2 + y2)r
(yz,−xz, 0)

where r = |x|. Compute ∇×A. Does this contradict the result of Question 4? Apply

Stokes’ theorem to ∇×A on the open surface

Sϵ = {x : |x| = 1, x2 + y2 ≥ ϵ2}

How does this help reconcile the existence of A with the result of Question 4?

8. Use Gauss’ flux method to find the electric field E = E(x) due to a spherically

symmetric charge density

ρ(r) =


0 0 ≤ r ≤ a

ρ0r/a a < r < b

0 r ≥ b

Now find the electric potential ϕ = ϕ(r) directly from Poisson’s equation by writing

down the general, spherically symmetric solution to Laplace’s equation in each of the

intervals 0 < r < a, a < r < b and r > b, and adding a particular integral where

necessary. You should assume that ϕ and ϕ′ are continuous at r = a and r = b. Check

this solution gives rise to the same electric field using E = −∇ϕ.

9. The scalar field ψ(r) only depends on r = |x|. Use Cartesian coordinates and suffix

notation to show

∇ψ = ψ′(r)
x

r
and ∇2ψ = ψ′′(r) +

2

r
ψ′(r).

Verify this result using your expression for the Laplacian in spherical polar coordinates.

Find a non-singular, spherically symmetric solution to the equation ∇2ψ = 1 for r < R

subject to the requirement that ψ(R) = 1.
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10. Consider a complex valued function f = ϕ(x, y) + iψ(x, y), with ϕ and ψ real,

satisfying ∂f/∂z̄ = 0, where ∂/∂z̄ = 1
2
(∂/∂x + i∂/∂y). Show that ∇2ϕ = ∇2ψ = 0.

Show also that a curve on which ϕ is constant is orthogonal to a curve on which ψ is

constant, at a point where they intersect. Find ϕ and ψ when f = zez, z = x+ iy, and

compare with Question 5 on Examples Sheet 2.

11a. Using Cartesian coordinates (x, y), find all solutions of Laplace’s equation ∇2ψ =

0 in two dimensions of the form ψ(x, y) = f(x)eαy, with α constant. Hence find a

solution on the region 0 < x < a and y > 0 with boundary conditions:

ψ(0, y) = ψ(a, y) = 0 and ψ(x, 0) = λ sin(πx/a)

and ψ(x, y) → 0 as y → ∞.

b. Using the formula for the 2d Laplacian in plane polar coordinates (r, θ), verify that

Laplace’s equation in the plane has solutions of the form ψ(r, θ) = Arα cos βθ, if α and

β are related appropriately. Hence find solutions on the following regions, with the

given boundary conditions (λ a constant):

(i) r < R with ψ(R, θ) = λ cos θ,

(ii) r > R with ψ(R, θ) = λ cos θ and ψ(r, θ) → 0 as r → ∞,

(iii) a < r < b with n · ∇ψ(a, θ) = 0 and ψ(b, θ) = λ cos 2θ.

12. Let ψ and ϕ be scalar functions. Using an integral theorem, establish Green’s

second identity ∫
V

(
ϕ∇2ψ − ψ∇2ϕ

)
dV =

∫
∂V

(ϕ∇ψ − ψ∇ϕ) · dS

13. Show that if the following boundary value problem has a solution on V , then that

solution is unique:

−∇2ψ + ψ = ρ(x)

with n · ∇ψ = f(x) on ∂V .

14. Consider the Laplace equation ∇2ψ = 0 on V , subject to the boundary condition

on ∂V

(n · ∇ψ)g(x) + ψ = f(x)

where g(x) ≥ 0 on ∂V . Show that, if a solution exists, then it is unique. Find a non-

zero solution to Laplace’s equation on |x| ≤ 1 which satisfies the boundary conditions

above with f = 0 and g = −1 on |x| = 1.
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13. Let u be harmonic on V and v a smooth function that satisfies v = 0 on ∂V . Show

that ∫
V

∇u · ∇v dV = 0.

Now if w is any function on V with w = u on ∂V , show, by considering v = w − u,

that ∫
V

|∇w|2 dV ≥
∫
V

|∇u|2 dV.

15. Show that a harmonic function ψ at the point a is equal to the average of its values

on the interior of the ball Br(a) = {x : |x − a| < r}, for any r > 0. Using this result

for large r and considering ∇ψ, or otherwise, prove that if ψ is bounded and harmonic

on R3 then it is constant.

15. Consider a time-dependent volume V = V (t). The velocity of a point x ∈ V is

v(x). Show that
d

dt
vol(V ) =

∫
S

v · dS.

Show that, for a scalar function ρ(x, t),

d

dt

∫
V (t)

ρ dV =

∫
V (t)

∂ρ

∂t
dV +

∫
S(t)

ρv · dS .

This is Reynold’s Transport Theorem. What is the physical interpretation?

[Hint: it is better to think physically about this problem rather than simply trying

to manipulate equations. You might first try constructing a 1d version of the result.]
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