
Electromagnetism: Example Sheet 2

Professor David Tong, February 2015

1. A constant magnetic field points along the z-axis: B = Bẑ. Verify that each of the

following vector potentials satisfies B = ∇×A:

• A = xBŷ

• A = 1
2
(xBŷ − yBx̂)

• In cylindrical polar coordinates, A = 1
2
rBφ̂, with r2 = x2 + y2

• In spherical polar coordinates, A = 1
2
r sin θ Bφ̂, with r2 = x2 + y2 + z2.

2. A cylindrical conductor of radius a, with axis along the z-axis, carries a uniform

current density J = J ẑ. Use Ampère’s law to show that the magnetic field within the

conductor is given, in cylindrical polar coordinates, by

B =
1

2
µ0Jrφ̂

with r2 = x2 + y2. [In this question, and the following question, you may assume that

the magnetic field inside a conductor is the same as in a vacuum.]

3. A steady current I flows in the z-direction uniformly in the the region between the

cylinders x2 + y2 = a2 and (x + d)2 + y2 = b2, where 0 < d < (b − a). Show that the

associated magnetic field B throughout the region x2 + y2 < a2 is given by

B =
µ0Id

2π(b2 − a2)
ŷ

4. Use the Biot-Savart law to determine the magnetic field:

• Around an infinite, straight wire carrying current I.

• At the centre of a square loop of wire, with sides of length a, carrying current I.

• At the point (0, 0, z) above a loop of wire of radius a, lying in the (x, y) plane,

with centre at the origin, carrying current I.
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5. Explain why the force F and torque τ experienced by a loop of wire C carrying

current I are given by

F = I

∮

C

dr×B and τ = I

∮

C

r× (dr×B)

A loop of wire lies in a plane whose normal makes an angle θ with a uniform magnetic

field. The loop of wire encloses a planar area A and carries current I. Compute the

torque.

6. What boundary conditions apply on either side of a surface current K?

A surface current experiences a Lorentz force from the average magnetic field on

either side of the surface. A wire carrying current I winds N times per unit length to

form a cylindrical solenoid. Show that there is a force per unit area on the cylinder

given by

f =
µ0I

2N2

2
n̂

where n̂ is the outward normal.

7⋆. A steady current I1 flows around a closed loop C1. Use the Biot-Savart law to

show that this exerts a force on a second loop C2 carrying current I2, given by

F12 =
µ0

4π
I1I2

∮

C2

∮

C1

dr2 ×

(

dr1 ×
r2 − r1

|r2 − r1|3

)

Write this in a form which exhibits anti-symmetry, F12 = −F21, in agreement with

Newton’s third law.

8. A current creates a time-dependent electric and magnetic field given, in cylindrical

polar coordinates, by

E = e−tφ̂ , B =
e−t

r
ẑ

(Here r2 = x2 + y2). Verify that these are consistent with the remaining Maxwell

equations ∇ · E = ∇ ·B = 0 and ∇×E+ ∂B/∂t = 0.

The emf around a moving circuit C(t) is given by
∮

C(t)

(E+ v×B) · dr = −
d

dt

∫

S(t)

B · dS

where S(t) is the surface spanning C(t) and v is the velocity of a point on the circuit.

Verify this equation by explicitly evaluating the integrals for a circle C(t) lying in the

plane z = 0 with radius R(t) = 1 + t in the electric and magnetic fields given above.
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9. A horizontal, rectangular circuit, shown in the figure, has a sliding bar of mass m

and length L which moves, without friction, in the x-direction. The bar and all the

wires in the circuit have resistance R per unit length.

B

x

A uniform vertical magnetic field B = (α/t)ẑ is applied for time t > 0, with α

constant. Derive the differential equation satisfied by the position x for t > 0. Find a

solution.

[In this question, and the following question, you may assume that the effect on the

magnetic field due to any current flow is negligible compared to the background B.]

10. A vector potential is given, in cylindrical polar coordinates, by Aφ = 1
2
Brz

where B is constant (and, again, r2 = x2 + y2). Compute the magnetic field B.

A conducting loop of radius a and resistance R lies in the (x, y) plane at position

z(t), its centre on the axis. Find the induced current in the loop.

Compute the force exerted on the loop by the magnetic field. To overcome this, an

equal and opposite force is applied to the loop. Show that the work done per unit time

by this force is equal to the rate of dissipation of energy due to the resistance in the

loop.
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