
6 Turbulence

When the speed of fluid flows increases beyond some critical value, things have a

tendency to go a bit squirly. The calm, serene laminar flows that we’ve seen in earlier

chapters become unstable and are replaced by something messy and dirty, with the

fluid moving in seemingly random directions, eddies forming and stretching, before

disintegrating into smaller eddies. This is turbulent flow.

There is every reason to believe that turbulent flow is correctly described by the

Navier-Stokes equation, not least computer simulations which, in this context, go by

the name of ‘DNS, standing for “direct numerical simulation”. But understanding the

full details of turbulent flow remains, to put it mildly, a formidable problem. Turbulence

kicks in when the Reynolds number is greater than some critical value Re > Recrit. The

exact number depends on the kind of flow we’re looking at, but a ballpark figure is

Recrit ⇠ 103

At these speeds, the advective term (u·r)u in the Navier-Stokes equation is important.

This is the only non-linear term in the equation and it drives the system to a chaotic

state, with the motion wildly dependent on the initial conditions. The challenge is to

understand this motion.

This challenge is, it turns out, hard. Despite many decades of study, turbulence

remains poorly understood. It is clear that it is not feasible to find explicit solutions

exhibiting turbulence. Instead, we will retreat and look at averaged properties of flows.

This might seem like a strange thing to do. After all, the Navier-Stokes equation is,

at the end of a day, just a di↵erential equation and, as such, its behaviour is entirely

deterministic. Nonetheless, turbulent motion appears to be random. This can be traced

to the sensitive dependence on initial conditions that characterises chaotic systems. To

proceed, we will embrace this randomness and work in a statistical sense. Rather than

trying to analyse any specific solution, we will instead try to extract properties of

appropriately averaged solutions.

Our goals in this section will be limited. We won’t look at any specific turbulent

flows, such as boundary layers or wakes. Instead, we will just try to understand some

very general properties that are shared by all turbulent flows, at least in some regime.

Nor will we study the interesting behaviour that happens for flows around the critical

Reynolds number Recrit, where instabilities develop. Instead we focus on what happens

with Re � Recrit, a regime known as fully developed turbulence.
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6.1 Mean Flow

As we mentioned above, to understand turbulence it’s necessary to think on a more

probabilistic level about the Navier-Stokes equation. But given that the Navier-Stokes

equation is purely deterministic, it’s not obvious what this means. If we’re going to

think about averaged properties, the first question we should ask is: what are we

actually averaging over?

There are di↵erent answers that we could give to this. One way to proceed is to

average over di↵erent initial conditions to the Navier-Stokes equation. We could pick

some collection of initial conditions, all of which look similar. Because of the chaotic

nature of the equation, each will give rise to very di↵erent solutions. We could then

try to figure out average properties of these solutions. This is known as the ensemble

average and is similar to the philosophy underlying Kinetic Theory and Statistical

Mechanics.

Alternatively, we could do something that feels more physical. A turbulent velocity

field u(x, t) varies rapidly in both space and time and we could choose to average over

either of these. There is a general expectation (although no proof) that, for a typical

flow, it doesn’t matter which average we choose: all should give the same answer. This

goes by the name of the ergodic hypothesis.

Here we will average over time (because it turns out to be the simplest). We de-

compose the complicated turbulent flow u(x, t) into an averaged, mean flow U(x, t)

together with some fluctuations �u(x, t),

u = U+ �u (6.1)

where to define the mean flow we average over some time scale T ,

U(x, t) = hu(x, t)i :=
1

T

Z
t+T

t

dt0 u(x, t0)

This is called Reynolds averaging. There are two options for how to think about the

time scale T ,

• We could simply take T ! 1. In this case, we have a steady mean flow U(x).

• Alternatively, we may have a situation in which there are two di↵erent time scales

in the flow. The turbulent fluctuations occur over some short time scale ⌧short,

which is superimposed on some averaged flow which takes place over some much

longer time scale ⌧long. In this case we could take ⌧short ⌧ T ⌧ ⌧long to get a

mean velocity field U(x, t) which varies only over the long time scale.
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In what follows, we’ll adopt the second of these. This isn’t for any particularly well-

motivated physical reason, but simply because it’s not much more e↵ort to do this and

it obviously includes the T ! 1 situation as a special case in which U(x) is stationary.

Since our mean flow is U = hui, the complicated velocity fluctuations are �u =

u� hui. By construction, this means that the average of the fluctuations vanishes:

h�ui = 0 (6.2)

Importantly the Reynolds averaging commutes with spatial di↵erentiation so if our

fluid is incompressible then both the mean flow and the fluctuations must be separately

incompressible,

r · u = 0 ) hr · ui = 0 ) r ·U = 0 ) r · �u = 0

We do a similar averaging for other fields, including the pressure which we write as

P = hP i+ �P (6.3)

with hP i defined by a time-average in the same way as (6.1). Again, we have designed

things so that the average fluctuation necessarily vanishes: h�P i = 0.

We will actually explore the averaged properties of the Navier-Stokes equation twice

in these lectures. Our focus in this section will on deriving an equation for the mean

flow U after integrating out the fluctuations. This won’t take us particularly far, not

least because it feels like we’re throwing out the baby and keeping the bath water

since, for many situations, the fluctuations are much more interesting than the mean

flow! Nonetheless, we include this approach because it gives some intuition for the

di�culties involved. Moreover, this is a popular approach when modelling turbulence in

situations where there is clearly some overarching mean flow, with turbulence bubbling

away underneath (it turns out that this takes often place in a regime of Reynolds

numbers 103 . Re . 105) and will allow us to define some commonly used concepts

such as “Reynolds stress” and “eddy viscosity”. Then, in Section 6.3, we will retrace

the same steps, this time focussing on the fluctuations themselves. It’s only in this

second approach that we’ll start to make some real progress.

6.1.1 The Reynolds Averaged Navier-Stokes Equation

If we substitute the decomposition (6.1) and (6.3) into the Navier-Stokes equation, we

have

⇢

✓
@(U+ �u)

@t
+ (U+ �u) ·r(U+ �u)

◆
= �r(hP i+ �P ) + µr2(U+ �u) (6.4)
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We’ve neglected any further forces acting on the fluid, such as the forcing term needed

to drive turbulence, but they can be added as needed. Now we average this equation

and use the fact that h�ui = hP̃ i = 0. We need to be a little careful with the time

derivative term: we have
⌧
@(�u)

@t

�
=

1

T

Z
t+T

t

dt0
@(�u)

@t0
=

1

T
[�u(x, t+ T )� �u(x, t)]

=
1

T

@

@t

Z
t+T

t

dt0 �u(x, t0) =
@h�ui

@t
= 0

where, again, we’ve used the fact that h�ui = 0. We’re then left with

⇢

✓
@U

@t
+U ·rU+ h�u ·r�ui

◆
= �rhP i+ µr2U

This is almost the Navier-Stokes equation for the averaged velocity U. The only di↵er-

ence is the term �u ·r�u, quadratic in the fluctuations, that wasn’t killed by averaging.

We take this over to the right-hand side and treat it as part of the stress tensor, writing

the Navier-Stokes equation for the averaged flow in the form (3.7)

⇢

✓
@Ui

@t
+ Uj

@Ui

@xj

◆
=

@�ij

@xj
(6.5)

This is the Reynolds’ averaged Navier-Stokes equation. The stress tensor on the right-

hand side is

�ij = �hP i�ij + µ

✓
@Ui

@xj
+

@Uj

@xi

◆
� ⇢h�ui�uji (6.6)

where we’ve used the fact that r · �u = 0 in writing it in this form. We see that, in

this approximation, the role of the fluctuations is to guide the mean flow through the

additional term

Rij = ⇢h�ui�uji

in the stress tensor. This is known as the Reynolds stress or, sometimes, the turbulent

stress. (Actually, more often the Reynolds stress is defined without the factor of ⇢,

even though that isn’t, strictly, a stress.) So if we want to understand how the mean

flow flows, we need to understand something about the variance of the fluctuations

h�ui�uji.

– 222 –



Finding Closure

Our next task is to get an expression for this extra contribution to the stress tensor

Rij. To this end, if we subtract the averaged Navier-Stokes equation (6.5) from our

starting point (6.4), we have

⇢

✓
@(�u)

@t
+ (U ·r)�u+ (�u ·r)U+ (�u ·r)�u� h�u ·r�ui

◆
= �r�P + µr2�u

If we multiply this by �u, we get the following expression for the tensor �ui�uj

⇢

✓
@(�ui�uj)

@t
+ Ul

@(�ui�uj)

@xl
+ �ui�ul

@Uj

@xl
+ �uj�ul

@Ui

@xl
+

@

@xl
(�ul�ui�uj)

+ �ui

@Rlj

@xl
+ �uj

@Rli

@xl

◆
= ��ui

@(�P )

@xj
� �uj

@(�P )

@xi
+ µ2

�
�uir

2�uj + �ujr
2�ui

�

We now take the average to get an equation for the Reynolds’ stress tensor that,

schematically, takes the form

@Rij

@t
+ (U ·r)Rij = �⇢

@

@xl
h�ul�ui�uji+ other stu↵

where the other stu↵ includes other averages such as h�P �ui. The key point is that we

can get ourselves an equation for Rij, but it involves a 3-point average h�u3
i. And if we

try to get an equation for h�u3
i then you probably won’t be surprised to hear that it

involves h�u4
i, and so on. We find that we have an infinite hierarchy of equations. This

is not unusual in physics when doing this kind of analysis. (An analogous situation

arises in Kinetic Theory when deriving the Boltzmann equation where it is called the

BBGKY hierarchy.) Within the context of turbulence, this is known as the closure

problem: the set of equations don’t close and keep forcing you to look at the next order

in fluctuations.

What to do about it? Well, there is no mathematically well-defined way to truncate

this infinite series of equations. Nor is there a physical reason to expect some simpli-

fication to occur. Turbulence is a strongly coupled problem and to do things properly,

you really need to worry about this infinite series of equations. Of course, that’s not

particularly practical. So to proceed, the usual strategy is just to make something up.

This made-up thing is unlikely to have any real justification behind it for the simple

reason that no such justification exists. But these made-up approaches to have a name:

they are collectively called “closure models”. There are many.
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Here’s the simplest example of a made-up thing, due to Boussinesq. Suppose that,

for some reason, the three-point averages h�u3
i and higher are actually unimportant.

Then we can look for an expression for the Reynolds’ stress Rij that depends only on

the mean flow U. One, particularly simple option is to postulate that it takes the form

Rij = �µT

✓
@Ui

@xj
+

@Uj

@xi

◆
+

2

3
K�ij (6.7)

which depends on two, unknown constant µT and K. The latter has a nice physical

interpretation: it is the kinetic energy in the fluctuations K = 1
2⇢h�u · �ui. The former

has a nice name: it is called the turbulent viscosity, or sometimes the eddy viscosity.

This guess for the Reynolds’ stress has the nice e↵ect of simply renormalising the stress

tensor �ij on the right-hand side of the averaged Navier-Stokes equation which, from

(6.6), becomes

�ij = �

✓
hP i+

2

3
K

◆
�ij + (µ+ µT )

✓
@Ui

@xj
+

@Uj

@xi

◆

This takes the same form as the usual stress tensor, but with an e↵ective pressure

Pe↵ = hP i + 2
3K and an e↵ective viscosity µe↵ = µ + µT . The end result is that

this guess has led us back to the original Navier-Stokes equation, but with an extra

contribution to the pressure and a shifted value of the viscosity.

There are many other, more sophisticated closure models, in which one tries to

incorporate h�u3
i corrections and so on, and then gives up at some higher order. They

may be more sophisticated, but it’s not obvious that they are more right and we won’t

discuss them here. Instead, we will reset and go in a di↵erent direction.

6.2 Some Dimensional Analysis

“Big whorls have little whorls

Which feed on their velocity,

And little whorls have lesser whorls

And so on to viscosity.”

Lewis Fry Richardson

Turbulence is one of the great problems in physics. To make progress it’s clear that

we’re going to have to break out some pretty powerful machinery. And things don’t

get more powerful than dimensional analysis. In this section, we will use dimensional

analysis to get a handle on one very specific property of turbulence: what happens to

the energy?
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The set of ideas described here is due to Richardson, Taylor and Kolmogorov. These

ideas culminated in a series of papers by Kolmogorov in 1941 and fluid dynamicists

often refer to this argument, rather elliptically, as K41. It is, I think, one of the greatest

applications of dimensional analysis in all of physics.

To get started, we need a few facts about turbulent flows. First is the observation

that turbulence is very much a dissipative phenomenon: if you leave a turbulent fluid

alone, it will quickly relax back to equilibrium with the turbulent properties dying away.

This means that something must be feeding the turbulence to keep it alive. In other

words, there has to be some injection of energy into the system. This could be due to

some external pressure di↵erence, some shear e↵ect due to gravity, or some teaspoon

stirring the fluid. The details won’t concern us and we’ll model this energy injection

by some external force density f(x, t), as in our original Navier-Stokes equation (3.2).

The work done by this force is

Work Done =

Z
d3x f · u

Although we’re doing work on the system, the turbulent flow doesn’t speed up over time.

Or, said more precisely, we’re not interested in situations where the fluid speeds up over

time. Instead, this energy drains away through dissipation. We’ve already seen that

dissipation occurs due to viscosity. The kinetic energy of the fluid is K.E. = 1
2⇢

R
d3xu2

and, from (3.8), the energy lost is

@(K.E.)

@t
= �⇢⌫

Z
d3x

����
@ui

@xj

����
2

In a steady state, we simply equate the work done with the lost energy

Work Done = ⇢⌫

Z
d3x

����
@ui

@xj

����
2

(6.8)

The key to understanding the physics is to appreciate that the processes on either side of

this equation take place at very di↵erent scales. On the left-hand side, the driving force

is a macroscopic phenomenon, typically comparable to the size of the entire system.

Meanwhile, on the right-hand side dissipation is a phenomenon that occurs at a much

smaller level. This shows up in the equation above because dissipation is greatest when

there are large gradients in velocity. So energy goes in at the largest scale, and out at

the smallest. We would like to put some equations to these words to make them more

concrete.
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We start by quantifying the work done. Suppose that the driving force takes place

over some large length scale L. This is sometimes called the outer scale. Over this scale,

the mean velocity field will vary with some magnitude �U . The Reynolds number

(3.17) for the flow is roughly

Re ⇠
�U L

⌫
and, by assumption, we have Re � 1.

The turbulent flow is not laminar, but swirling in many directions. It’s useful to

think of this in terms of vorticity, with the di↵erent swirling referred to as eddies. In

this somewhat cartoon picture, the flow on the large, outer scale consists of eddies of

size L.

Now our first stab at some dimensional analysis. We will focus our attention on ✏,

the work done per unit mass, defined by

✏ =
Work Done

⇢V
(6.9)

where V is the volume of the system. This has dimension [✏] = L2T�3. Since this energy

is injected on the large outer scale L, we expect that it manifests itself in terms of the

macroscopic quantities �U and L that we introduced above. Dimensional analysis

means that there is a unique possibility, namely

✏ ⇠
(�U)3

L
(6.10)

What about the energy dissipated? The relation (6.8) equates the work done with the

energy lost, so

(�U)3

L
⇠

⌫

V

Z
d3x |ru|2 (6.11)

Suppose that the dissipation also comes from these same, macroscopically large velocity

gradients. Then we would have |ru| ⇠ �U/L, which would give a dissipation rate

|ru| ⇠
�U

L
)

⌫

V

Z
d3x |ru|2 ⇠

⌫(�U)2

L2
⇠

1

Re

(�U)3

L
(6.12)

But that’s nowhere near enough! It’s less dissipation than we need by a factor of Re

and, as we have stressed, turbulent flow takes place at values of the Reynolds number

Re � 1. It must be the case that dissipation takes place with a larger |ru| than that

caused by the driving force. Which means that there must larger gradients of u and so

physics taking place on some smaller scale. That, of course, agrees with experimental

observations of turbulence, where there are features on many di↵erent scales. We would

like to construct a simple model of this.
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6.2.1 Scale Invariance

Energy is injected at some length scale L where it causes eddies of size L. But, as we

have seen, these eddies don’t dissipate enough energy and structures on smaller scales

must form. It’s useful to think of these new length scales emerging as the original, large

eddies break up into smaller ones.

There’s nothing clean and simple going on here where, for example, the initial eddy

neatly splits in two. Instead, as we have stressed, turbulence is a messy and complicated

phenomenon and it consists of eddies of all possible sizes, at least within a range,

bounded above by the outer scale L and, as we will see shortly, bounded below by a

much smaller length scale l0.

As the larger eddies break up, they lose energy which is fed into the smaller eddies

below them. The eddies of size l have some velocity di↵erence �ul. These eddies

are being fed some energy by the bigger boys above them but, at the same time,

they’re losing energy as they themselves decay into the smaller eddies below. The key

assumption here is that, at least in some regime of scales, this process takes place with

no dissipation at all. Indeed, we’ve seen that the dissipation due to the very largest

eddies (6.12) is suppressed by 1/Re, and we make the approximation that this can be

ignored completely. This is essentially the statement that viscosity is irrelevant for this

aspect of turbulence. This assumption means that the eddies at size l receive some

energy (per time per unit mass) ✏ and promptly pass it down to smaller scales. This

process is known as the energy cascade and was first proposed by Richardson.

The kinetic energy of eddies at scale l and below is⇠ (�ul)2. (Note: rather unusually,

we’re talking about the energy in vortices of size . l rather than the more usual

formulation of vortices between size, say l and l + dl.) Suppose that these eddies

hold on to the energy for some “cascade time” ⌧l which, as the notation suggests, also

depends on l. The energy passing through is equal to (6.10) and, at a given scale l, is

(�ul)2

⌧l
⇠

(�U)3

L
⇠ ✏ (6.13)

The next question is: what is the cascade time ⌧l? On dimensional grounds, there’s

only one possibility: this it must be

⌧l ⇠
l

�ul

(6.14)

Note that it’s important that we don’t allow the viscosity ⌫ to sneak into this formula

since that carries dimensions [⌫] = L2T�1 and messes up the dimensional analysis. This
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is a reiteration of a point that we made above: the viscosity is irrelevant for the energy

cascade since no dissipation is taking place. If we now substitute (6.14) into (6.13), we

find that there is a scale invariance in the energy cascade, with the velocities of eddies

of size l obeying the same formula independent of l,

(�ul)3

l
⇠

(�U)3

L
⇠ ✏

Rearranging this, we find that the velocities of eddies of size l scale as

�ul ⇠ (✏l)1/3 (6.15)

This is known as the Kolmogorov-Obhukov law. (Later, in 6.3, we will give a more

precise formulation of this law and see that it is better viewed as originally written as

(�u)3 ⇠ ✏l.)

Viscosity Brings the Cascade to a Halt

The energy cascade does not involve dissipation, merely a transfer of energy from large

scales to small. But at some point this energy cascade should come to a halt and the

energy ✏ should be dissipated into heat. To understand when this happens, we return

to the statement (6.11) which says that the energy in is equal to the energy out. We

saw that this certainly wasn’t satisfied by the dissipation from large eddies. But now

we can ask: for what scale l0 does this energy balance hold?

The eddies of size l0 have velocity di↵erentials �u0 and (6.11) holds if

⌫(�u0)2

l20
⇠ ✏

But we also know from (6.15) how �u0 and l0 are related. This gives us the Kolmogorov

scale, also known as the inner scale,

l0 ⇠

✓
⌫3

✏

◆1/4

⇠

✓
⌫3L

(�U)3

◆1/4

⇠
L

(Re)3/4

Clearly l0 ⌧ L since Re � 1. This is where energy is finally dissipated to heat. Note

that the Kolmogorov scale can also be determined by dimensional analysis: it is the

unique length scale that can be formed from the energy dissipation rate ✏ and the

viscosity ⌫.
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Figure 35. On the left, a sketch of the expected behaviour of E(k) based on dimensional

analysis. The energy is injected at small k and dissipated at large k, with the characteristic

E(k) ⇠ k
�5/3 in the inertial range. On the right, data.

This finishes our crude, dimensional analysis approach to turbulence. The energy

is injected at some scale L and dissipated at the much smaller scale l0 = L/(Re)3/4.

The scales in-between, l0 ⌧ l ⌧ L are called the inertial range and exhibit a scale

invariant energy cascade. Note that we’re not really used the Navier-Stokes equation

at any point in the analysis. Everything follows from the hypothesis that, in the inertial

range, big eddies cascade down into smaller eddies in a way that does not involve any

dissipation.

Wavenumbers

We can also phrase the energy cascade in terms of wavenumbers k ⇠ 1/l. Let E(k) dk

be the kinetic energy per unit mass storied in eddies with wavenumber between k and

k + dk. Then E(k) has dimension [E] = L3T�2. On dimensional grounds, we must

have

E(k) ⇠ ✏2/3k�5/3 (6.16)

The expected behaviour is sketched on the left of figure 35. This k�5/3 behaviour

matches well with experiment. The first test was done with a probe attached to a ship

which sailed back and forth in a tidal channel just o↵ Vancouver Island. The data15 is

shown in the right-hand side of Figure 35, with the straight line having slope �5/3.

15This is taken from Grant, Stewart and Moilliet, “Turbulence Spectra from a Tidal Channel”.
The function �(k) shown on the vertical axis is closely related to E(k) described above: it is 2E =
k
2
@
2
�/@k

2
� k@�/@k.
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We can reconcile the result E(k) ⇠ k�5/3 with our previous analysis. If we integrate

over all wavenumbers larger than k, we have
Z 1

k

dk0 E(k0) ⇠ ✏2/3k�2/3
⇠ (✏l)2/3 ⇠ (�ul)

2

This is the kinetic energy (�ul)2 which, from (6.15), we see should indeed scale as

(�ul)2 ⇠ (✏l)2/3, in agreement with (6.15).

Briefly, Intermittency

There is a slight problem with the dimensional analysis that we described above. It’s

not really correct. The subtlety comes because we assume that the energy cascade

retains no memory of the outer scale L on which we initially inject energy. If this scale

could sneak into the energy cascade, then it would infect our dimensional analysis and

the result (6.16) could be corrected to

E(k) ⇠ ✏2/3k�5/3(kL)⇣

for some ⇣ known as the intermittency exponent, the name arising because the ex-

perimental manifestation is that turbulent flows have periods in which the velocity

fluctuations are weak, interspersed with intermittent bursts in which the fluctuations

are much larger. In many situations, this exponent seems to be small. But it is not

known how to calculate it.

There are close similarities between this story and what’s seen in so-called critical

points in phase transitions. There too one sees scale invariance and a naive dimensional

analysis argument (known in that context as “mean field theory”) suggests a particular

value for certain exponents. But that’s not the value that is seen experimentally.

The flaw in that context is that the short distance UV cut-o↵ (i.e. the atomic scale)

unexpectedly sneaks in to the dimensional analysis and contributes what’s known as an

“anomalous critical exponent”. It is entirely analogous to the intermittency exponent

in turbulence, except that now this involve the long distance IR cut-o↵. You can read

more about critical points and how to compute anomalous exponents in the lectures

on Statistical Field Theory.

6.3 Velocity Correlations

In this section, we put a little more meat on the dimensional analysis argument above.

In particular, we will derive a more rigorous version of the Kolmogorov-Obhukov law

(6.15).
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We will do this by returning to the averaging procedure that we introduced in Section

6.1, but now with a focus on the fluctuations �u rather than the mean flow U. To do

this, it’s simplest if we assume that there are only fluctuations with a vanishing mean

flow U = 0. This means, of course, that �u = u and we can drop the �’s. With no

background flow governing the fluctuations, all points in space and time are, statistically

at least, the same. This is known as homogeneous and isotropic turbulence and it o↵ers

the simplest setting where we may hope to understand a little of what’s going on.

(An aside: if the restriction to vanishing U seems to restrictive then there is another

way to think about things. We could, alternatively, zoom into some patch where U is

approximately constant and then boost to a frame in which it vanishes. In this way,

our analysis should hold locally even for general mean flows U(x).)

The averages that we encountered in the previous section involved fluctuations at

the same point in space. For example, the Reynolds’ stress tensor is

Rij = ⇢h�ui(x)�uj(x)i

with the two velocities evaluated at the same point. Because we no longer have a

background flow U(x), the system has translational invariance. This means, among

other things, that Rij doesn’t depend on the point x at which it’s evaluated.

There is now an obvious generalisation in which the correlation between velocity

fields is computed at di↵erent points,

Cij(x1,x2) = hui(x1)uj(x2)i

A number of constraints on this correlation function follow simply from the symmetries

of our problem which are enhanced because we’re assuming U = 0. First, translational

invariance means that it is only a function of the di↵erence r = x1 � x2 and we write

Cij(x1,x2) = Cij(r). Second, isotropy, together with parity invariance, means that the

six components of a general symmetric tensor are reduced to just two,

Cij(r) = CTT (r) (�ij � r̂ir̂j) + CLL(r)r̂ir̂j (6.17)

Here CTT (r) is the transverse correlation function and CLL(r) the longitudinal corre-

lation function. Note, in particular, that Cij(r) = Cij(�r), which follows by parity

invariance.
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When r = 0, so the two points in the correlation function coincide, we have a handle

on the correlation function: it must take the form

Cij(0) =
2

3
E�ij (6.18)

where E = 1
2hu ·ui is the kinetic energy (divided by the density ⇢). This coincides with

the expression (6.7) when U = 0 (with E = K/⇢). But while (6.7) was pulled out of

thin air, here (6.18) follows because, in the absence of a background mean flow, the

only symmetric two-tensor that we have at our disposal is �ij.

There’s one last constraint that comes from the fact that the fluid is incompressible,

r · u = 0, which means that

@Cij

@ri
= 0

We can use this to relate CTT (r) and CLL(r). To do this, we write r̂k = rk/r and make

use of the identities

@r̂k
@ri

=
�ik
r

�
rirk
r3

)
@(r̂ir̂j)

@ri
= 2

r̂j
r

Then

@Cij

@ri
=

dCTT

dr
r̂i (�ij � r̂ir̂j) +

dCLL

dr
r̂ir̂ir̂j + 2(CLL � CTT )

r̂j
r

The first term vanishes and we’re left with the simple expression

CTT (r) = CLL +
r

2

dCLL

dr
(6.19)

This is known as the von Kármán relation.

In what follows, we’ll also have need for the closely related structure function. This

looks at the correlation between the di↵erence in the velocity fluctuations between two

points,

Sij(r) = h(ui(x1)� ui(x2))(uj(x1)� uj(x2))i (6.20)

Expanding out the four terms, the structure function can be trivially expressed in terms

of the correlation function as

Sij(r) = 2Cij(0)� 2Cij(r) =
4

3
E�ij � 2Cij(r)
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Note, in particular, that Sij(0) = 0. As with the correlation function, we can decompose

the structure function into transverse and longitudinal pieces

Sij(r) = STT (r) (�ij � r̂ir̂j) + SLL(r)r̂ir̂j

Comparing to the components of the correlation function, we have

SLL(r) =
4

3
E � 2CLL(r) (6.21)

with a similar expression for the transverse component: STT (r) =
4
3E � 2CTT (r).

One advantage of working with the structure function is that we can make contact

with the simple dimensional analysis arguments of Section 6.2. In particular, if we take

the Kolmogorov-Obhukov law (6.15) at face value then it should apply to the structure

function, telling us to expect

Sij(r) ⇠ r2/3 when l0 ⌧ r ⌧ L (6.22)

This should hold only in the inertial range, as shown. Since the von Kármán rela-

tion (6.19) also holds for the structure function, it tells us that, in the inertial range,

STT = 4
3SLL. (Actually, as part of our analysis we’ll get a better understanding of the

Kolmogorov-Obhukov law and see that the result Sij ⇠ r2/3 is not exact: nonetheless,

we may hope that it’s not a wildly inaccurate expectation.)

6.3.1 Navier-Stokes for Correlation Functions

We’ll attempt to compute the correlation functions using the Navier-Stokes equation

@u

@t
= �(u ·r)u�

1

⇢
(rP � f) + ⌫r2u (6.23)

We’ve included the driving force f which, as in Section 6.2, will be responsible for

the injection of energy. Because averaging commutes with di↵erentiation (both with

respect to time and space), we have

@Cij(r; t)

@t
= h@tui(x1) uj(x2)i+ hui(x1) @tuj(x2)i

= �
@

@xk

1

huk(x1)ui(x1) uj(x2)i �
@

@xk

2

hui(x1)uk(x2)uj(x2)i

�
1

⇢
h@iP (x1) uj(x2)i �

1

⇢
hui(x1)@jP (x2)i

+
1

⇢
hfi(x1)uj(x2)i+

1

⇢
hui(x1)fj(x2)i

+ ⌫hr2ui(x1) uj(x2)i+ ⌫hui(x1)r
2uj(x2)i (6.24)
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In the first line we have used the incompressibility of the fluid, r · u = 0, to take the

derivative outside the average. We can see immediately from this that, as in Section

6.1, to get an equation for the two-point correlation function Cij(r), we need to know

something about the three-point function h�u3
i. If we tried to get an equation for h�u3

i

then we would, as before, find that it pushes us towards the four-point function h�u4
i

and so on. This is the same closure problem that we met previously.

This time, however, there is something that we can say without going down the rab-

bit hole. First we’ll sort out some of the terms in (6.24), and then return to the 3-point

function.

Claim: The pressure terms vanish: hui(x1)P (x2)i = 0.

Proof: Using homogeneity and isotropy, we must have hP (x1)ui(x2)i = f(r)r̂i for

some function f(r) where, as before, r = x1 � x2. But incompressibility tells us that

0 =
@

@xi

1

hui(x1)P (x2)i = f 0(r) +
2

r
f(r) ) f(r) =

↵

r2

for some constant ↵. But the correlation hui(x1)P (x2)i should be finite as r ! 0.

Which means that we must have ↵ = 0 and hui(x1)P (x2)i = 0. ⇤

Next, we turn our attention to the energy injection terms involving the correlation

hui(x1)fj(x2)i. To make sense of this, we need to specify the form of the forcing term

although, as explained in Section 6.2, the expectation is that the energy will cascade

down to smaller scales in a way that is ultimately independent of the forcing term we

choose. It turns out that things are particularly simple if we pick a random forcing

term that takes the form of Gaussian white noise, meaning that

hfi(x1, t1)fj(x2, t2)i = �(t1 � t2)⇢
2✏ij(r) (6.25)

for some choice of function ✏ij(r) which we get to decide. We’ll take it to be symmetric,

so ✏ij = ✏ji and isotropic so ✏ij(r) = ✏ij(�r). We’ll shortly see how this tensor ✏ij is

related to the work done per unit mass ✏ that played such a key role in our dimensional

analysis argument of Section 6.2. One important property of white noise is that the

value of the force at any time t is completely uncorrelated with its value at any earlier

time t0. This will be important shortly.

Claim: With the force given by the Gaussian white noise (6.25), the correlation be-

tween the force and velocity is give by

1

⇢

⇣
hfi(x1)uj(x2)i+ hui(x1)fj(x2)i

⌘
= ✏ij(r) (6.26)
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Proof: We integrate up the Navier-Stokes equation (6.23) to get the expression for the

velocity field u(x, t),

u(x, t) =

Z
t

0

dt0

�(u ·r)u�

1

⇢
(rP � f) + ⌫r2u

�

with t � t0 � 0. Substituting this into the correlation function then gives

hfi(x1, t)uj(x2, t)i =

Z
t

0

dt0 hfi(x1, t)


�uk

@uj

@xk
�

1

⇢

✓
@P

@xj
� fj

◆
+ ⌫r2uj

�
(x2, t

0)i

All the fields u(x, t0) and P (x, t0) are uncorrelated with the force f(x, t) at a later time

t > t0 because the force is taken to be white noise. The only contribution comes from

in this correlation function therefore comes from

hfi(x1, t)uj(x2, t)i =
1

⇢

Z
t

0

dt0 hfi(x1, t)fj(x2, t
0)i = ⇢

Z
t

0

dt0 �(t� t0)✏ij(r)

Now, if we integrate
R
dt0 �(t� t0) over a range that includes the point t0 = t then the

integral clearly gives 1. Here, however, the point t0 = t sits right at the end of the

integral range. This is a bit ambiguous but there’s a sensible way to think about it.

If we were to extend the integral a little further beyond t, the integral clearly gives 1.

But this gets a contribution both from our original integral and from the extension. It

seems fair to share these. This then gives

Z
t

0

dt0 �(t� t0) =
1

2
) hfi(x1, t)uj(x2, t)i =

⇢

2
✏ij(r)

Adding the second contribution then gives the claimed result (6.26). ⇤

From (6.26), we see that if we take the trace of the tensor ✏ij(r) and evaluate it at

r = 0 we have the work done (divided by the density),

✏ii(0) =
2

⇢
hf · ui := 2✏ (6.27)

On the right-hand side, we have the same ✏ that we met in Kolmogorov’s dimensional

analysis argument in Section 6.2. We’ll make contact with these ideas later in this

section. For now, note that we can make the same tensor decomposition as in (6.17)

and write

✏ij(r) = ✏TT (r) (�ij � r̂ir̂j) + ✏LLr̂ir̂j
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This gives ✏LL(r) = r̂ir̂j✏ij(r). If we evaluate this tensor at r = 0 then we must have

✏ij(0) = ✏LL(0)�ij as there is no other tensor in the game. This then gives

✏LL(0) =
2

3
✏ (6.28)

Let’s pause to take stock. Our equation (6.24) for the correlation function has now

become

@Cij(r; t)

@t
= �

@

@xk

1

huk(x1)ui(x1) uj(x2)i �
@

@xk

2

hui(x1)uk(x2)uj(x2)i

+ ✏ij(r) + 2⌫r2Cij(r) (6.29)

which is starting to look a little simpler. Our next task is to better understand the

structure of the three-point functions.

6.3.2 The Structure of the Three-Point Function

We write the three-point function as

Cij,k(x1,x2) = hui(x1)uj(x1)uk(x2)i

The comma is there to remind us that two of the velocities are evaluated at x1 and the

third at x2. (The comma doesn’t mean di↵erentiation. This isn’t general relativity!)

By isotropy, we must have

Cij,k(x1,x2) = Cij,k(r) = Cji,k(r)

and by parity invariance,

Cij,k(r) = �Cij,k(�r) = �hui(�x1)uj(�x1)uk(�x2)i = �hui(x2)uj(x2)uk(x1)i (6.30)

with the overall minus sign arising because the correlation function involves an odd

number of velocities. In the final equality, we’ve invoked translational invariance and

shifted all arguments by x1 + x2.

In fact, the tensor structure means that we can reduce the correlation function to

just three function of r = |r|,

Cij,k(r) = A(r)�ij r̂k +B(r) (�ikr̂j + �jkr̂i) +D(r)r̂ir̂j r̂k

These di↵erent functions are further related by the incompressibility of the flow. For

the two-point function, this gave us the von Kármán relation (6.19). For the three-

point function, we have
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Claim: Incompressibility gives the relations

B = �
1

2r

d(r2A)

dr
(6.31)

and

3A+ 2B +D = 0 (6.32)

Proof: Incompressibility r · u = 0 means that

@Cij,k

@xk

2

= �
@Cij,k

@rk
= 0

We use @r̂k/@ri = �ik/r � r̂ir̂k/r and, after a line or two of algebra, we get

@Cij,k

@rk
= �ij

✓
A0 +

2A

r
+

2B

r

◆
+ r̂ir̂j

✓
2B0

�
2B

r
+D0 +

2D

r

◆

Each of these tensor structures must individually vanish. The first gives the relation

(6.31). The vanishing of the second term can be written as

1

r2
d

dr

⇥
r2(D + 2B)

⇤
=

6B

r

If we substitute in our expression for B in the recently proved (6.31), this becomes

d

dr

⇥
r2(D + 2B + 3A)

⇤
= 0 ) 3A+ 2B +D =

constant

r2
(6.33)

We can fix the constant by looking at Cij,k(0) which must take the value Cij,k(0) = 0 for

the simple reason that there’s no invariant 3-tensor with the right symmetry properties

that it can equal. This means that the constant in (6.33) is actually zero and so we get

(6.32). ⇤

We can combine the two relations (6.31) and (6.32) to give D = rA0
�A. The upshot

is that the three-point correlation function actually depends on just a single function

A(r),

Cij,k(r) = A�ij r̂k �
1

2
(rA0 + 2A) (�ikr̂j + �jkr̂i) + (rA0

� A)r̂ir̂j r̂k (6.34)

Next, it will also be useful to introduce the three-point structure function, which is the

obvious generalisation of (6.20),

Sijk(r) = h(ui(x1)� ui(x2))(uj(x1)� uj(x2))(uk(x1)� uk(x2))i
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This is completely symmetric in all three indices. If we expand and cancel terms

(remembering that we have translational invariance so hu(x1)3i = hu(x2)3i) then we

can relate the structure function to the correlation function

Sijk(r) = �2(Cij,k + Cik,j + Cjk,i)

If we substitute in the expression (6.34) we get

Sijk(r) = 2(A+ rA0)(�ij r̂k + �ikr̂j + �jkr̂i)� 6(rA0
� A)r̂ir̂j r̂k (6.35)

The fully longitudinal part of the structure function is defined to be

SLLL(r) = Sijk(r)r̂ir̂j r̂k

From (6.35), we see that this is the same thing as the function A(r), up to an overall

constant,

SLLL(r) = 12A(r)

In what follows, we’ll work with SLLL(r) as the object that describes the three-point

function.

6.3.3 The von Kármán-Howarth Equation

Now we can return to our expression (6.29) for the dynamics of the correlation function.

This reads

@Cij

@t
= �

@Cik,j

@rk
�

@Cjk,i

@rk
+ ✏ij(r) + 2⌫r2Cij(r)

where the indices in the second @C/@r term have rearranged themselves courtesy of

(6.30). We focus on the longitudinal component of the two-point correlator, CLL =

Cij r̂ir̂j which obeys,

@CLL

@t
� ✏LL � 2⌫r̂ir̂jr

2Cij = �2r̂ir̂j
@Cik,j

@rk
(6.36)

We have a little bit of work to do to move those r̂ir̂j terms inside the derivatives. On

the right-hand side, we have

r̂ir̂j
@Cik,j

@rk
=

@

@rk
(Cik,j r̂ir̂j)� Cik,j

@(r̂ir̂j)

@rk

=
@

@rk
(Cik,j r̂ir̂j)�

1

r
(Cii,j r̂j + Cik,kr̂i � 2Cij,kr̂ir̂j r̂k) (6.37)
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where we’ve again made use of the identity @r̂i/@rk = �ik/r� r̂ir̂k/r. Now, from (6.34),

we can compute the various contractions of Cij,k with r̂,

Cik,j r̂ir̂j = Ar̂k � (rA0 + 2A) r̂k + (rA0
� A)r̂k = �2Ar̂k

Cii,j r̂j = 3A� (rA0 + 2A) + (rA0
� A) = 0

Cik,kr̂i = A� 2 (rA0 + 2A) + (rA0
� A) = �rA0

� 4A

Cij,kr̂ir̂j r̂k = A� (rA0 + 2A) + (rA0
� A) = �2A

So (6.37) becomes

r̂ir̂j
@Cik,j

@rk
= �2A

@

@rk
(Ar̂k) + A0 = �

4A

r
� A0

We have a similar task for the ⌫r2Cij term in (6.36). For this, it’s best to return to

the expression (6.17). A slightly tedious exercise in algebra gives

r
2Cij = r

2CTT (�ij � r̂ir̂j) +r
2CLLr̂ir̂j +

CLL � CTT

r2
(2�ij � 6r̂ir̂j)

+
1

r

✓
@CLL

@rk
�

@CTT

@rk

◆
(�ikr̂j + �jkr̂i � 2r̂ir̂j r̂k)

If we now contract with r̂ir̂j, the second line disappears and we’re left with

r̂ir̂jr
2Cij = r

2CLL �
4

r2
(CLL � CTT )

But now we can use the von Kármán relation (6.19) to write this purely in terms of

CLL,

r̂ir̂jr
2Cij = r

2CLL +
2

r

@CLL

@r

=
1

r2
@

@r

✓
r2
@CLL

@r

◆
+

2

r

@CLL

@r

=
1

r4
@

@r

✓
r4
@CLL

@r

◆

Now we can put these pieces back into the expression (6.36), which becomes an equa-

tion that relates the longitudinal two-point function CLL with the three-point function

SLLL = 12A,

@CLL

@t
� ✏LL �

2⌫

r4
@

@r

✓
r4
@CLL

@r

◆
=

1

6

✓
S 0
LLL

+
4SLLL

r

◆
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We can express everything in terms of the structure function using the relation (6.21)

which relates SLL = 4
3E � 2CLL with E = 1

2hu · ui the average kinetic energy (divided

by the density). The end result is:

@SLL

@t
=

4

3

@E

@t
� 2✏LL +

2⌫

r4
@

@r

✓
r4
@SLL

@r

◆
�

1

3r4
@

@r

�
r4SLLL

�
(6.38)

This is the von Kármán-Howarth equation. It tells us how the two-point correlations of

the velocity evolve with time. In the limit r ! 0, it reduces to the equation describing

energy balance.

6.3.4 Kolmogorov’s 4/5

it’s a short step from the von Kármán-Howarth equation to what we want. We’ll focus

on the static case where we’ve reached a kind of equilibrium where, as described in

Section 6.2, all the energy fed into the system at large scales is lost to viscosity at small

scales. This allows us to drop the time derivatives in (6.38) and we have

1

r4
@

@r

✓
r4

✓
2⌫

@SLL

@r
�

SLLL

3

◆◆
= 2✏LL(r)

We will further assume that the energy is injected on large scales. Following (6.28), we

interpret this as the statement

✏LL(r) =
1

3
✏ii(r) ⇡

2

3
✏+ . . .

where ✏ is the work done per unit mass that we met in the dimensional analysis argu-

ment of Section 6.2. We then integrate our di↵erential equation to get

2⌫
@SLL

@r
�

1

3
SLLL =

4

15
✏r

where the constants of integration have been put to zero using the fact that SLL(0) =

SLLL(0) = 0. Rearranging, we have an expression for the three-point correlations,

SLLL(r) = �
4

5
✏r + 6⌫

@SLL

@r
(6.39)

This is Kolmogorov’s 4/5th’s law. It’s important because the number of exact results

about turbulence can be counted on one finger. This is the one. We recognise the

first term as a more rigorous version of the Kolmogorov-Obhukov law (6.15) that we

derived using dimensional analysis. In fact, this result tells us how to think of the

Kolmogorov-Obhukov law: it holds for three-point functions.
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The second term in (6.39) is a correction. A naive application of Kolmogorov-

Obhukov suggests that the two-point structure function scales as SLL(r) ⇠ r2/3. (We

already mentioned this is (6.22).) But that’s not the way correlation functions work:

just because hu3
i ⇠ r doesn’t mean that hup

i ⇠ rp/3. Nonetheless, if we take this as

a ballpark guess for the behaviour of the correlation function then the second term is

much smaller than the first if we focus on distance scales that are much larger than the

Kolmogorov viscosity scale, r � l0 ⇠ (⌫3/✏)1/4. This is because if SLL ⇠ (✏r)2/3 then

S 0
LL

⇠ ✏2/3r�1/3 and hence ⌫S 0
LL

⇠ (l0/r)4/3✏r ⌧ ✏r. So, in the inertial range we have

the Kolmogorov-Obhukov result

SLLL(r) ⇡ �
4

5
✏r

Except now we know the prefactor. It is �4/5.
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