
6. Large N

Non-Abelian gauge theories are hard. We may have mentioned this previously. Indeed,

it’s not a bad summary of the lectures so far. The di�culty stems from the lack of

a small, dimensionless parameter which we can use as the basis for a perturbative

expansion.

Soon after the advent of QCD, ’t Hooft pointed out that gauge theories based on the

group G = SU(N) simplify in the limit N ! 1. This can then be used as a starting

point for an expansion in 1/N . Viewed in the right way, Yang-Mills does have a small

parameter after all.

At first glance, it seems surprising that the theory simplifies in the large N limit.

Naively, you might think that the theory only gets more complicated as the number

of fields increase. However, this intuition breaks down when the fields are related by a

symmetry, in which case the collective behaviour of the fields becomes sti↵er as their

number increases. This results in a novel, classical regime of the theory. The weakly

coupled degrees of freedom typically look very di↵erent from the gluons that we start

with in the original Lagrangian.

Large N limits are now commonplace in statistical and quantum physics. As a

general rule of thumb, the large N limit renders a theory tractable when the number

of degrees of freedom grows linearly with N . (We shall meet two examples in Section 7

when we discuss the CPN�1 model and the Gross-Neveu model.) In contrast when the

number of degrees of freedom grows as N2, or faster, then the theory simplifies but,

apart from a few special cases, cannot be solved. This is the case for Yang-Mills where

the large N limit will not allow us to demonstrate, say, confinement. Nonetheless, it

does provide an approach which allows us to compute certain properties. Moreover, it

points to deep connection between gauge theory and string theory, one which underlies

many of the recent advances in both subjects.

You might reasonably wonder whether the large N expansion is likely to be relevant

for QCD which has N = 3. We’ll see as we go along how useful it is. A common

rebuttal, originally due to Witten, is that in natural units the fine structure constant

is

↵ =
e2

4⇡
⇡ 1

137
) e ⇡ 0.30

This comparison is a little unfair. The true expansion parameter in QED is better

phrased as ↵/4⇡ ⇠ 10�3. In contrast, there are no factors of 4⇡ that ride to the rescue
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for Yang-Mills. The expansion parameter is 1/N or, in many situations, 1/N2. We

might therefore hope that this approach will give us results that are quantitatively

correct at the 10% level.

6.1 A Quantum Mechanics Warm-Up: The Hydrogen Atom

We start by providing a simple example where a large N limit o↵ers a novel way to

apply perturbation theory. The set-up is very familiar: the hydrogen atom.

In natural units, ~ = c = ✏0 = 1, the Hamiltonian of the hydrogen atom is

H = � 1

2m
r2 � ↵

r
(6.1)

with ↵ the fine structure constant. In our first course on Quantum Mechanics, we learn

the exact solution for the bound states of this system. But suppose we didn’t know

this. Can we try to approximate the solutions using perturbation theory?

Since there’s a small number, ↵ ⇡ 1/137, sitting in the potential term, you might

think that you could expand in ↵. But this is misleading. In the context of atomic

physics, the fine structure constant cannot be used as the basis for a perturbative

expansion. This is because we can always reabsorb it by a change of scale. Define

r0 = m↵r. Then the Hamiltonian becomes,

H = m↵2


�1

2
r0 2 � 1

r0

�

We see that the fine structure constant simply sets the overall scale of the problem.

This means that we expect the order of magnitude of bound state to be around

Eatomic = �m↵2 ⇡ �27.2 eV

In fact, the ground state energy is Eatomic/2 ⇡ �13.6 eV, the factor of 1/2 coming from

solving the Schrödinger equation.

For our purposes this means that the hydrogen atom is, like Yang-Mills, a theory

with a scale but with no small, dimensionless parameter. How, then, to construct a

perturbative solution? One possibility is to generalise the problem from three dimen-

sions to N dimensions. The Hamiltonian remains (6.1), but now with r2 denoting the

Laplacian in RN rather than R3. Clearly we have increased the number of degrees

of freedom from 3 to N . We have also increased the symmetry group from SO(3) to

SO(N).
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We note in passing that we are not solving the higher dimensional version of the

hydrogen atom, since in that case the Coulomb force would fall-o↵ as 1/rN�2. Instead,

we keep the Coulomb force fixed as 1/r and vary the dimension of space.

To see how this helps, we will focus on the s-wave sector. Here the Schrödinger

equation becomes

H = m↵2

✓
�1

2

d2

dr0 2
� (N � 1)

2r0
d

dr0
� 1

r0

◆
 = E 

At leading order in 1/N , we can replace the (N � 1) factor by N . We’ll do this

because the equations are a little simpler, although if we were serious about pursuing

perturbation theory in 1/N , we would have to be more careful. We can now remove

the term that is first order in derivatives by redefining the wavefunction as  (r0) =

�(r0)/r0N/2, leaving us with the rescaled Schrödinger equation

H� = m↵2

✓
�1

2

d2

dr0 2
+

N2

8r0 2
� 1

r0

◆
� = E�

We’ll make one further rescaling, and define a new radial coordinate, r0 = N2R. The

Schrödinger equation now becomes

H� =
m↵2

N2

✓
� 1

2N2

d2

dR2
+ Ve↵(R)

◆
� = E� with Ve↵(R) =

1

8R2
� 1

R

This rescaling has removed all N dependence from the e↵ective potential. Instead, we

see that it appears in two places: the overall scale of the problem; and the e↵ective

(dimensionless) mass of the particle, which can be read o↵ from the kinetic term and

is me↵ = N2.

We’re left with a very heavy particle, moving in the one-dimensional e↵ective poten-

tial Ve↵(R). In this limit, we can expand the potential in a Taylor series around the

minimum Rmin = 1/4. To leading order, we can then treat the problem as a harmonic

oscillator, centred on Rmin. Higher order terms in the Taylor series will a↵ect the energy

only at subleading order in 1/N

To leading order, the ground state energy is given by Ve↵(Rmin). (The zero point

energy of the harmonic oscillator is suppressed by 1/me↵ ⇠ 1/N2). This gives us our

expression for the ground state of the harmonic oscillator,

Eground =
m↵2

N2

✓
2 +O

✓
1

N

◆◆

If we now revert to the real world with N = 3, we get Eground ⇡ 2m↵2/9. The true

answer, as we mentioned above, is Eground = m↵2/2.
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Of course, it’s a little perverse to apply perturbation to a problem for which there

is an exact solution. But the key idea remains: the extra degrees of freedom, together

with the restriction of O(N) symmetry, combine to render the problem weakly coupled

in the limit N ! 1. We will now see how a similar e↵ect occurs for Yang-Mills theory.

6.2 Large N Yang-Mills

The action for SU(N) Yang-Mills theory is

SYM = � 1

2g2

Z
d4x trF µ⌫Fµ⌫

There is an immediate hurdle if we try to naively take the large N limit. As we saw in

Section 2.4, confinement and the mass gap all occur at the strong coupling scale ⇤QCD

which, at one-loop, is given by

⇤QCD = ⇤UV exp

✓
� 3

22

(4⇡)2

g2N

◆

If we keep both the UV cut-o↵ ⇤UV and the gauge coupling g2 fixed, and send N ! 1,

then there is no parametric separation between the physical scale ⇤QCD and the cut-o↵.

This is bad. To rectify this, we define the ’t Hooft coupling,

� = g2N

We will consider the theory in the limit N ! 1, with both ⇤UV and � held fixed.

This ensures that the physical scale ⇤QCD also remains fixed in this limit. Indeed,

throughout this section we will discuss how masses, lifetimes and scattering amplitudes

of various states scale with N . In all cases, it is ⇤QCD which fixes the dimensions of

these properties.

With these new couplings, the Yang-Mills action is

SYM = �N

2�

Z
d4x trF µ⌫Fµ⌫ (6.2)

This is the form we will work with.

6.2.1 The Topology of Feynman Diagrams

To proceed, we’re going to look more closely at the Feynman diagrams that arise from

the Yang-Mills action 6.2. We’ll see that, in the ’t Hooft limit N ! 1, � fixed, there

is a rearrangement in the importance of various diagrams.
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We will write down the Feynman rules for Yang-Mills. Each gluon field is an N ⇥N

matrix,

(Aµ)
i

j
, i, j = 1, . . . , N

The propagator has the index structure

hAi

µ j
(x)Ak

⌫ l
(y)i = �µ⌫(x� y)

✓
�i
l
�k
j
� 1

N
�i
j
�k
l

◆

where �µ⌫(x) is the usual photon propagator for a single gauge field. The 1/N term

arises because we’re working with traceless SU(N) gauge fields, rather than U(N)

gauge fields. But clearly it is suppressed by 1/N and so, at leading order in 1/N , we

don’t lose anything by dropping this term. We then have

hAi

µ j
(x)Ak

⌫ l
(y)i = �µ⌫(x� y) �i

l
�k
j

This means that we’re really working with U(N) gauge theory rather than SU(N)

gauge theory

At this point, it is useful to introduce some new notation. The fact that the gauge

field has two indices, i, j, suggests that we can represent it as two lines in a Feynman

diagram rather than one. One of these lines represents the top index, which trans-

forms in the N̄ representation; the other the bottom index which transforms in the N

representation. Instead of the usual curly line notation for the gluon propagator, we

have

�! ⇠ �

N
(6.3)

Note that each line comes with an arrow, and the arrows point in opposite ways. This

reflects the fact that the upper and lower lines are associated to complex conjugate

representations. The propagator scales as �/N , as can be read o↵ from the action

(6.2).

Similarly, the cubic vertex that come from expanding out the Yang-Mills action take

the form

�! i

i

j

j k

k

⇠ N

�
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where we’ve now included the i, j, k = 1, . . . , N indices to show how these must match

up as we follow the arrows. (There is also a second diagram from the cubic vertex in

which the arrows are reversed.) Similarly, the quartic coupling vertex becomes

�!

i
j

k

l
i

l
k

j

⇠ N

�

Each vertex comes with a factor of N/�. This also follows from the action 6.2. The

fact that the vertex comes with an inverse power of the coupling might be unfamiliar,

but it is because of the way we chose to scale our fields. It will all come out in the

wash, with the propagators compensating so that increasingly complicated diagrams

are suppressed by powers of � as expected. We’ll see examples shortly.

As we evaluate the various Feynman diagrams, we will now have a double expansion

in both � and in 1/N . We’d like to understand how the diagrams arrange themselves.

The general scaling will be

diagram ⇠
✓
�

N

◆#propagators✓N

�

◆#vertices
N#index contractions (6.4)

where the index contractions come from the loops in the diagram. To see this more

clearly, it’s best to look at some examples.

Vacuum Bubbles

To understand the Feynman diagram expansion, let’s start by considering the vacuum

bubbles. The leading order contribution is a diagram which, in double line notation,

looks like,

⇠
✓
�

N

◆3 ✓N

�

◆2

N3 ⇠ �N2 (6.5)

Here the first two factors come from the 3 propagators and the 2 vertices in the diagram.

The final factor is important: it comes from the fact that we have three contractions

over the indices i, j, k = 1, . . . , N . These are denoted by the three arrows in the

diagram. Note that we get a contribution from the outside circle since we’re dealing

with vacuum bubbles.
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Similarly, at the next order in �, we have the diagram

⇠
✓
�

N

◆6 ✓N

�

◆4

N4 ⇠ �2N2 (6.6)

There are now four contractions over internal loops. This diagram has the same N2

behaviour as our first one-loop diagram, but it is down in the expansion in ’t Hooft

coupling. It is easy to convince yourself that the two diagrams above give the leading

contribution (in N) to the free energy, which scales as ⇠ O(N2). This reflects the fact

that Yang-Mills theory has N2 degrees of freedom.

However, there is another diagram that we could have drawn. This has the same

momentum structure as (6.5), but a di↵erent index structure. In double line notation

it takes the form,

⇠
✓
�

N

◆3 ✓N

�

◆2

N ⇠ � (6.7)

If you follow the loop around, you will find that there is now just a single contraction

of the group indices. The result is a contribution to the vacuum energy which occurs

at the same value of � as (6.5), but is suppressed by 1/N2 relative to the first two

diagrams. This means that in the limit N ! 1, with � fixed this diagram will be

sub-dominant.

We see that, among all the possible Feynman diagrams, a subset dominate in the

large N limit. The dominant diagrams are those which, like (6.5) and (6.6), can be

drawn flat on a plane in the double line notation. These are referred to as planar

diagrams. In contrast, diagrams like (6.7) need a third dimension to draw them. These

non-planar diagrams are subleading.

The large N limit has seemed to simplify our task. We no longer need to sum over

all Feynman diagrams; only the planar ones. This remains daunting. Nonetheless, as

we will see below, this new structure does give us some insight into the strong coupling

dynamics of non-Abelian gauge theory.
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The Gluon Propagator

The ideas above don’t just apply to the vacuum bubbles. A similar distinction holds

for any Feynman diagram. We can, for example, consider the gluon propagator (6.3).

A planar, one-loop correction is given by the diagramr

⇠
✓
�

N

◆4 ✓N

�

◆2

N ⇠ �2

N

Now we sum only over the indices on the internal loop, because we have fixed the

external legs. We see that this again gives a contribution with the same 1/N scaling

as the original propagator (6.3), but is down by a power of the ’t Hooft coupling.

Meanwhile, the following two-loop, non-planar graph scales as

⇠
✓
�

N

◆7 ✓N

�

◆4

⇠ �3

N3

and is suppressed by 1/N2 compared to the earlier contributions.

The Topology of Feynman Diagrams

Let’s understand better how to order the di↵erent diagrams. We’ll return to the vacuum

diagrams. The key idea is that each of these can be inscribed on the surface of a two

dimensional manifold of a given topology.

The planar diagrams can all be drawn on the surface of a sphere. This

Figure 48:

is because for any graph on a sphere, you can remove one of the faces and

flatten out what’s left to give the planar graph. The simplest example is

the vacuum diagram (6.5) which sits nicely on the sphere as shown on the

right.

In contrast, the non-planar diagrams must be drawn on higher genus surfaces. For

example, the non-planar vacuum diagram (6.7) cannot be inscribed on a sphere, but re-

quires a torus. It also requires more artistic skill than I can muster, but looks something

like .
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Figure 49: Examples of the simplest Riemann surfaces with � = 2, 0 and �2.

In general, the Feynman diagram tiles a two dimensional surface ⌃. The map is

E = # of edges = # of propagators

F = # of faces = # of index loops

V = # of vertices

From (6.4), a given diagram then scales as

diagram ⇠ NF+V�E�E�V

But there is a beautiful fact, due to Euler, which says that the following combination

determines the topology of the Riemann surface

�(⌃) = F + V � E (6.8)

The quantity �(⌃) is called the Euler character. It is related to the number of handles

H of the Riemann surface, also called the genus, by

�(⌃) = 2� 2H (6.9)

The simplest examples are shown in the figure. The sphere has H = 0 and � = 2; the

torus has H = 1 and � = 0; the thing with two holes in has H = 2 and � = �2. In

this way, the large N expansion is a sum over Feynman diagrams, weighted by their

topology

diagram ⇠ N��E�V

For each genus, the Riemann surface can be tiled in di↵erent ways by Feynman diagram

webs, giving the expansion in the ’t Hooft coupling. There is no topological interpre-

tation of this exponent V � E. We’ll shortly discuss the implication of this large N

expansion.

The Euler Character

Before we proceed, it will be useful to get some intuition for why the Euler character

(6.8) is a topological invariant, and why it is given by (6.9).
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To see the former, it’s best to play around a little bit by deforming various diagrams.

The key manipulation is to take a face and shrink it to vanishing size. For example,

we have

Under such a transformation, the number of faces shrinks by 1: F ! F�1. The number

of vertices has also decreased, V ! V � 2, as has the number of edges, E ! E � 3.

But the combination � = F + V � E remains unchanged.

In all the examples above, we used only the cubic Yang-Mills vertex. Including the

quartic vertex doesn’t change the counting. This is because we can always split the

quartic vertex into two cubic ones,

The left hand side has V = 1 and E = 4, which transforms into the right hand side

with V = 2 and E = 5. We see neither �, nor the power of � depend on the kind of

vertex that we use.

This should help explain why the Euler character does not vary under manipulations

that make the diagram more and more complicated, but leave the underlying topology

unchanged. For the sphere, the example we drew above shows that � = 2. For each

extra handle, we can consider first consider cutting a hole in the surface. We do this

by removing a face, leaving us with a boundary. To build a handle, we cut out two

faces, each of which is an n-gon. This reduces the number of faces F ! F � 2. Now

we glue the faces together by identifying the perimeters of the holes. This act reduces

E ! E � n and V ! V � n. But the net e↵ect is that for each handle we add,

�! �� 2.

6.2.2 A Stringy Expansion of Yang-Mills

The large N limit of Yang-Mills has been repackaged as a sum over Riemann surfaces

of di↵erent topologies. But this is the defining feature of weakly coupled string theory.

This is discussed in much detail in the lectures on String Theory; here we’ll just mention

some pertinent facts.
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In string theory, the sum over Riemann surfaces is weighted by the string coupling

constant gs. By analogy, we see that

gs =
1

N

But there are also di↵erences. In string theory, the Riemann surfaces are smooth

objects, which su↵er quantum fluctuations governed by the inverse string tension ↵0.

This is a quantity with dimension [↵0] = �2 and it is often written as ↵0 = l2
s
with ls

the typical size of a string. The fluctuations of the Riemann surface are really governed

by ↵0/L2 where L is the spatial size of the background in which the string propagates.

In contrast, the Riemann surfaces that arise in the large N expansion are not smooth

at all; they are tiled by Feynman diagrams and in the perturbative limit, � ⌧ 1,

the diagrams with the fewest vertices dominate. However, taken naively, it appears

that in the opposite limit � � 1, the diagrams with large numbers of vertices are

important. With some imagination, these can be viewed as diagrams which finely

cover the Riemann surface, so that it looks more and more like a classical geometry.

This suggests that, in the ’t Hooft limit, strongly coupled Yang-Mills may be a weakly

coupled string theory in some background, with

��1 ⇠
✓
↵0

L2

◆#

where I’ve admitted ignorance about the positive exponent #.

This is a bold idea. Weakly coupled string theory is a theory of quantum gravity,

and gives rise to general relativity at long distances. If we can somehow make the idea

above fly, then Yang-Mills theory would contain general relativity! But the strings and

gravity would not live in the d = 3 + 1 dimensions of the Yang-Mills theory. Instead,

we would find gravity in the “space in which the Feynman diagrams live”, whatever

that means.

So far, no one has made sense of these ideas for pure Yang-Mills. However, it is

now understood how these ideas fit together in a very closely related theory called

maximally supersymmetric (or N = 4) Yang-Mills which is just SU(N) Yang-Mills

coupled to a bunch of adjoint scalars and fermions. In that case, the strongly coupled

’t Hooft limit is indeed a theory of gravity in a d = 9 + 1 dimensional spacetime that

has the form AdS5 ⇥ S5. The d = 3 + 1 dimensional world in which the Yang-Mills

theory lives is the boundary of AdS5. This remarkable connection goes by the name of

the AdS/CFT correspondence or, more generally, gauge-gravity duality. It is a topic

for another course.

– 310 –



It’s an astonishing fact that, among the class of gauge theories in d = 3+1 dimensions,

is a theory of quantum gravity in higher dimensional spacetime. It leaves us wondering

just what else is hiding in the land of strongly coupled quantum field theories.

6.2.3 The Large N Limit is Classical

We can use the large N counting described above to understand the scaling of correla-

tion functions.

In what follows, we consider gauge invariant operators which cannot be further de-

composed into colour singlets. Since Yang-Mills has only adjoint fields, this means that

we are interested in operators that have just a single trace. The simplest is

Gµ⌫,⇢�(x) = trFµ⌫F⇢�(x)

There’s a slew of further operators in which we add more powers of Fµ⌫ inside the trace.

However, it’s important that the number of fields inside the trace is kept finite as we

take N ! 1, otherwise it will infect our N counting. This means, for example, that

we can’t discuss operators like detFµ⌫F µ⌫ . Of course, Yang-Mills also has non-local

operators – the Wilson loops – and much of what we say will hold for them. But, for

once, our main interest will be on the local, single trace operators.

We could also consider coupling our theory to adjoint matter, either scalars or

fermions. Restricting to the adjoint representation means that these new fields are

also N ⇥ N matrices, and the same 1/N counting that we developed above holds for

their Feynman diagram expansion. This gives us the option to build more single trace

operators, such as G = tr(�m) for a scalar �, or combinations of scalars and field

strengths. Once again, we insist only that the number of fields inside the trace does

not scale with N .

We can compute correlation functions of any of these operators by adding sources in

the usual way,

SYM = N

Z
d4x � 1

2�
trF µ⌫Fµ⌫ + . . .+ JaGa

where the . . . is any further adjoint matter that we’ve included, and where the operators

Ga denote any single trace involving strings of the field strength, the other adjoint

matter, or their derivatives. Note that we’ve scaled both fields and operators to keep

an overall factor of N in front of the action. The connected correlation functions can

be computed in the usual way by di↵erentiating the partition function,

hG1 . . .Gpic =
1

Np

�

�J1
. . .

�

�Jp
log Z[J ] (6.10)

– 311 –



where the subscript c is there to remind is that we’re dealing with connected correlators.

Because the action, including the source terms, has the form S = N tr (something), our

previous large N counting goes over unchanged, and the free energy is dominated by

planar graphs at order log Z ⇠ N2. (This conclusion would no longer hold if we

included multi-trace operators as sources, or if there were some other powers of N

that had somehow snuck unseen into the action.). We learn that connected correlation

functions of single trace operators have the leading scaling

hG1 . . .Gpic ⇠ N2�p (6.11)

where in this formula, and others below, we’re ignoring the dependence on the ’t Hooft

coupling �.

The simple formula (6.11) is telling us something interesting: the leading contribution

to any correlation function comes from disconnected diagrams, rather than connected

diagrams. For example, any two-point function has a connected piece hGGi ⇠ hGihGi ⇠
N2. This should be contrasted with the connected piece which scales as hGGic ⇠ N0.

This means that the strict N ! 1 limit of Yang-Mills is a free, classical theory. All

correlation functions of single trace, gauge invariant operators factorise. Said slightly

di↵erently, quantum fluctuations are highly suppressed in the large N limit, with the

variance of any gauge singlet operator O given by

(�G)2 = hGGi � hGihGi = hGGic ⇠ N0 ) (�G)2
hGi2 ⇠ 1

N2

Usually when we hear the words “free, classical theory”, we think “easy”. That’s not the

case here. The large N limit is a theory of an infinite number of single trace operators

Ga(x). If the theory is confining and has a mass gap, like Yang-Mills, each of these

corresponds to a particle in the theory. (We will make this connection clearer below.)

Or, to be more precise, each of the operators G(x) corresponds to some complicated

linear combination of particles in the theory. After diagonalising the Hamiltonian, we

will have a free theory of an infinite number of massive particles. Determining these

masses is a di�cult problem which remains unsolved.

The large N limit does not only hold for confining theories. For example, maximally

supersymmetric Yang-Mills is a conformal field theory and does not confine. Now the

goal in the large N limit is to diagonalise the dilatation operator to find the conformal

dimensions of single trace operators. This is a di�cult problem that is largely solved

using techniques of integrability.
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The fact that the large N limit is free leads to the concept of the master field. There

should be a configuration of the gauge fields Aµ on which we can evaluate any correlation

function to get the correct N ! 1 answer. (If we add more adjoint matter fields, we

would need to specify their value as well.) Once we have this master field, there is

nothing left to do: no fluctuations, no integrations. We just evaluate. Furthermore,

the master field should be translationally invariant so, at least in a suitable gauge, the

Aµ are just constant. In other words, all of the information about Yang-Mils in the

N ! 1 limit is contained in four matrices, Aµ. The twist, of course, is that these are

1⇥1 matrices and, as a well known physicist is fond of saying, “you can hide a lot in

a large N matrix”. For pure Yang-Mills in d = 3+ 1 dimensions, no progress has been

made in understanding the master field in decades. For maximally supersymmetric

Yang-Mills, the master field should be equivalent to saying that the theory is really ten

dimensional gravity in disguise.

6.2.4 Glueball Scattering and Decay

The strict N ! 1 limit is free, with the degrees of freedom organised in single trace op-

erators G(x). All of the di�culties of the strong coupling dynamics goes into diagonal-

ising the Hamiltonian to determine masses (or scaling dimensions) of the corresponding

states.

At large, but finite N , we introduce interactions between these degrees of freedom,

which must scale as some power of 1/N . Even though we can’t solve the N ! 1 limit,

we can still get some useful intuition for the theory by looking at these interactions in

a little more detail.

To see this, let’s revert to pure Yang-Mills. We will assume that this theory confines

in the large N limit. There is no reason to think this is not the case but it’s important

to stress that we can currently no more prove confinement in the large N limit than at

finite N11. We consider the local glueball operators

G(x) = trFm(x) (6.12)

for some m � 2. We’ve ignored the Lorentz indices, which endow each operator with a

certain spin. We could also include derivatives to increase the spin yet further.

11The Millennium Prize Problem requires that you prove confinement for all compact non-Abelian
gauge groups. This stipulation was put in place to avoid a scenario where confinement was proven
only in the large N limit. Apparently, the authors of the problem originally meant to find a di↵erent
phrasing, one that avoided the caveat of large N but would award a proof of confinement in, say,
SU(3) Yang-Mills. But they never got round to changing the wording. Like with all such prizes, if
you’re genuinely interested in the million dollars then you are probably in the wrong field.
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At large N , there is a connected component to the two point function which, with

the normalisation (6.11), scales as

hG(x)G(0)ic ⇠ N0

which means that G(x) creates a glueball state with amplitude of order 1. In terms

of our original Feynman diagrams, this picks up contributions from very complicated

processes, such as the one below

=

In the large N limit, this is converted into tree-level propagation of gauge singlet

operators created by G(x). Importantly, the operator G(x) creates only single-particle

states. To see this, we can cut the diagram to see the intermediate state, as shown

below

We’ve now included i, j = 1, . . . , N indices to help keep track. To make something

gauge invariant, we need to take the trace, which means combining each index with its

partner. The only way to do this is to include all the internal legs together. This is the

statement that the internal state corresponds to a single trace operator. In contrast,

multi-particle states only propagate in non-planar diagrams where the internal lines

can be combined into multi-trace colour singlets.

The fact that the single-trace operator G(x) creates single particle states also follows

from the scaling of the correlation function (6.11). To see this, first suppose that the

statement isn’t true, and G creates a two particle state with amplitude order 1. Then

one could construct a suitable correlation function which has the value hGG̃G̃Gi ⇠ 1,

with the operators G̃ each interacting, with amplitude 1, with one of the the two

intermediate particles. But we know from large N counting (6.11) that hGG̃G̃Gi ⇠
1/N2. (There is actually an implicit assumption here that there is no degeneracy of

states at order N . But this is precisely the assumption of confinement.)
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So we can think of any two-point function hG(x)G(0)ic as the tree-level propagation
of confined, single particle states. We are repackaging

X

planar graphs

=
X

single particles

In general, the only singularities in tree-level graphs are poles. (This is to be contrasted

with one-loop diagrams where we can have two-particle cuts, and higher loop diagrams

with multi-particles cuts.) This means that there should be some expansion of the

two-point function in momentum space as

hG(k)G(�k)ic =
X

n

|an|2
k2 �M2

n

(6.13)

where an = h0|G|ni, with |ni the single particle state with mass Mn. But now there’s

something of a puzzle. At large k, Yang-Mills theory is asymptotically free, and we can

compute this correlation function to find that it scales as

hG(k)G(�k)ic ! k2 log k2

Yet naively the propagator (6.13) would appear to scale as 1/k2 for large momentum.

The only way we can reproduce the expected log behaviour is if there are an infinite

number of stable intermediate states |ni, with an infinite tower of masses mn. This

coincides with our earlier expectations: as N ! 1 Yang-Mills is a theory of an infinite

number of free particles.

At large but finite N , there can no longer be an infinite tower of stable, massive

particles. The heavy ones surely decay to the light ones. But this process is captured

by the correlation functions of the schematic form

hGGGi ⇠
X

+ . . . ⇠ 1

N

which tells us that the amplitude for a glueball to decay to two glueballs scales as 1/N ,

so their lifetime scales as N2. Similarly, for scattering we can turn to the four-point

function

hGGGGi ⇠
X

+ + . . . ⇠ 1

N2
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So the amplitude for gluon-gluon scattering scales as 1/N2.

6.2.5 Theta Dependence Revisited

We saw in Section 2.2 that Yang-Mills theory comes with an extra, topological pa-

rameter: the theta-term. How does this fare in the large N limit? The Lagrangian

is

LYM = � 1

2g2
trFµ⌫F

µ⌫ +
✓

16⇡2
trFµ⌫

?F µ⌫

= N

✓
� 1

2�
trFµ⌫F

µ⌫ +
✓

16⇡2N
trFµ⌫

?F µ⌫

◆

With the appropriate factor of N sitting outside the action, we see that we should keep

✓/N fixed as we send N ! 1. The first question that we should ask is: does the

physics still depend on ✓?

At first glance, it appears that the answer to this question should be no. The reasons

for this are two-fold. At leading order in perturbation theory, none of the planar graphs

appear to depend on ✓. Moreover, the instanton e↵ects which, at weak coupling, give us

✓ dependence now scale as ⇠ e�8⇡2
/g

2 ⇠ e�8⇡2
N/� and so are exponentially suppressed

in the large N limit.

Although both of these arguments appears compelling, the conclusion is thought

to be wrong. It is believed that, at leading order in the 1/N expansion, the physics

continues to depend on ✓ (or, more precisely, on ✓/N). Perhaps the simplest observable

is the ground state energy, defined schematically in the Euclidean path integral as

e�V E(✓) =

Z
DA exp

✓
�
Z

d4x LYM

◆
(6.14)

where V is the spacetime volume. Recall that, in Euclidean space, the theta term

weights the path integral as ei✓⌫ where ⌫ is the topological winding of the configuration.

The large N arguments that we’ve seen above tell us that E ⇠ N2. It is believed that

the ✓ dependence a↵ects this quantity at leading order

E(✓) = N2h

✓
✓

N

◆
(6.15)

for some function h(x).
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There are two main reasons for thinking that ✓ dependence survives in the large N

limit. The first is that, in the presence of light quarks, the dependence can be seen

in the chiral Lagrangian; we will describe this in Section 6.4. The second is that both

the arguments we gave above also hold in toy models in two-dimensions (specifically

the CPN model that we will introduce in 7.3) where one can see that they lead to

the wrong conclusion. The loophole lies in the first argument; at leading order in the

1/N expansion we must sum an infinite number of diagrams, and interesting things can

happen for infinite series that don’t arise for finite sums.

To make this more concrete, let’s introduce the topological susceptibility,

�(k) =

Z
d4x eik·xhtr (Fµ⌫

?F µ⌫(x)) tr (F⇢�
?F ⇢�(0))i (6.16)

(Not to be confused with the Euler character that we encountered earlier.) Roughly

speaking, this tells us how the theory responds to changes in ✓. In particular, the

ground state energy E(✓) has the dependence

d2E

d✓2
=

✓
1

16⇡2N

◆2

lim
k!0

�(k) (6.17)

We can compute contributions to �(k) in perturbation theory. One finds that, at

leading order in 1/N , each individual diagram has �(k) ! 0 as k ! 0. Nonetheless, it

is expected that the sum of all such diagrams does not vanish. No one has managed to

perform this calculation explicitly in four-dimensional Yang-Mills theory. To see that

such behaviour is indeed possible, you need only consider the series

f(k) = k2
1X

n=0

(�1)n

n!
logn k2 = k2 exp� log k2 = 1

The behaviour of the ground state energy (6.15) brings a new puzzle. The energy

depends on ✓/N , but must obey E(✓) = E(✓ + 2⇡). How can we reconcile these two

properties? The accepted answer – and the one which is seen in the CPN model – is

that there is a level crossing in the ground state as ✓ is varied. This works as follows: at

large N the theory is thought to have a large number of meta-stable, Lorentz-invariant

states that di↵er in energy. There are order N such states and, in the kth, the energy

is given by

Ek(✓) = N2h

✓
✓ + 2⇡k

N

◆

The ground state energy is then

E(✓) = mink Ek (6.18)
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Figure 50: The vacuum energy as a function of ✓.

We’re left with a function which is periodic, but not smooth. In particular, when ✓ = ⇡

two levels cross.

What does the function E(✓) look like? First, we know that it has its minimum at

✓ = 0. This is because the Euclidean path integral (6.14) is a sum over configurations

weighted by ei✓. Only for ✓ = 0 is this real and positive, hence maximising e�V E(✓),

and so minimising E(✓). Taylor expanding, we therefore expect that

E(✓) = mink

1

2
C(✓ + 2⇡k)2 +O

✓
1

N

◆

where C = �(0)/(16⇡2N)2. This is shown in the figure.

A general value of ✓ explicitly breaks time-reversal or, equivalently, CP . The two

exceptions are ✓ = 0 and ✓ = ⇡. (We explained why ✓ = ⇡ is time reversal invariant in

Section 1.2.5). But, at ✓ = ⇡, there are two degenerate ground states and time-reversal

invariance maps one to the other. We learn that, at large N Yang-Mills, time-reversal

invariance is spontaneously broken at ✓ = ⇡. This coincides with our conclusion from

Section 3.6 using discrete anomalies.

6.3 Large N QCD

Our discussion in the previous section focussed purely on matrix valued fields. To get

closer to QCD, we add quarks, as Dirac fermions in the fundamental representation.

We rescale the quark field  !
p
N , so that the action continues to have a factor

of N sitting outside,

SQCD = N

Z
d4x � 1

2�
trF µ⌫Fµ⌫ + i ̄ /D 
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We’ll stick with just a single quark field for now, but everything that we say will go

over for Nf flavours of quarks provided that we keep Nf fixed as N ! 1.

The quark field carries just a single gauge index,  i with i = 1, . . . , N . Correspond-

ingly, it is represented by just a single line in a Feynman diagram,

⇠ �

N

Meanwhile, the quark-gluon vertex is represented by

�! ⇠ N

We can now repeat the large N counting that we saw previously. We can start by

looking at contributions to the vacuum energy that include a quark loop. For example,

we have

�! ⇠
✓
�

N

◆3

N2 N2 ⇠ �3N

where the first factor of N2 comes from the two quark-gluon vertices, while the second

factor comes from the index loops. We see that this is subleading compared to the

pure glue vacuum diagrams which are ⇠ N2. Including extra internal gluons, all planar

diagrams with a single quark loop on the boundary will continue to scale as ⇠ N . This

is the leading order contribution to the vacuum energy that includes quarks. This is

simple to understand: the amplitude to create a quark is the same as the amplitude to

create a gluon, but there are N2 gluon degrees of freedom and only N quark degrees

of freedom.

If the quark loop does not run around the boundary, the diagram is suppressed yet

further. For example, consider the diagram

⇠
✓
�

N

◆6

N4 N ⇠ �6N�1

Similarly, if we include internal quark lines in other Feynman diagrams, say the gluon

propagator, we again get a suppression factor of 1/N .
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We can again interpret the large N Feynman diagrams in terms of 2d surfaces.

However, now the surfaces are no longer closed. Instead, each quark loop should be

thought of as the boundary of a hole on the Riemann surface. Each boundary increases

the number of edges E by one, so a given Feynman diagram again scales as

diagram ⇠ NF+V�E �E�V = N��E�V

which is the same result that we had before. But now the expression for the Euler

character is

� = 2� 2H � B

where B is the number of boundaries, or holes, in the surface.

In terms of string theory, the addition of quarks means that the large N limit includes

open strings, with boundaries, as well as closed strings. This is closely related to the

concept of D-branes in string theory.

6.3.1 Mesons

We can now rerun the arguments of Sections 6.2.3 and 6.2.4 for large N QCD. In

addition to the glueball operators (6.12), we also have the meson operators

J (x) =
p
N  ̄Fm (6.19)

where the Fm can denote any number of field strengths, derivatives and gamma matri-

ces, so that J (x) is a local, gauge invariant operator that cannot be decomposed into

smaller colour singlets.

Note that we’ve included an overall factor of
p
N in (6.19). To see why this is, we

compute correlation functoins

hJ1 . . .Jpic ⇠ N1�p/2 (6.20)

The first factor of N comes from the planar diagrams with a quark loop running

along the boundary. The normalisation factor of
p
N in (6.19) means that correlation

function scale as N�p/2 rather than as N�p. This normalises the two-point function as

hJJ ic ⇠ N0, so J creates a meson state with amplitude 1.
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The same arguments that we used for pure Yang-Mills still apply here. The strict

N ! 1 limit is again a free theory, now including infinite towers of both glueball and

meson states. In momentum space, the analog of the propagator (6.13) is

hJ (k)J (�k)ic =
X

n

|bn|2
k2 �m2

n

(6.21)

where bn = h0|J |ni, with |ni the single particle meson state with mass mn. As for glue-

balls, this expression is only compatible with the log behaviour of asymptotic freedom

if there is an infinite tower of massive meson states.

At large N , the three point function of meson fields

hJJJ i ⇠ 1p
N

tells us that the amplitude for a meson to decay into two lighter mesons scales as 1/
p
N .

The lifetime of a meson is then typically of order N . They are shorter lived than the

glueballs. Similarly, the four point function of meson fields is

hJJJJ i ⇠ 1

N

The amplitude for meson-meson scattering scales as 1/N .

We can also compute correlation functions of both glueballs and mesons. At leading

order, we have

hJ1 . . .Jp G1 . . .Gqi ⇠ N N�p/2 N�q

This means that the two-point function hJGi ⇠ 1/
p
N , so mesons and glueballs don’t

mix at large N , even if they share the same quantum numbers. (We had assumed

when talking separately about meson and glueballs above, so it’s good to know it’s

true.) We can also extract the amplitude for a gluon to decay into two mesons which

is hGJJ i ⇠ 1/N , which is the same order as the decay into two gluons. Meanwhile,

the amplitude for a meson to decay into two gluons is hJGGi ⇠ 1/N3/2. We see that

a gluon doesn’t much mind who it decays into, while a meson greatly prefers decaying

into other mesons.

The OZI Rule

The large N approach helps explain a couple of phenomenological facts that had been

previously observed to hold for QCD. In particular, note that the leading order meson
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decays have the form

⇠ 1p
N

In such a process, one of the original quarks ends up in each of the final decay products.

In contrast, a process in which the two original quarks decay into pure glue which

subsequently produces two further mesons, is suppressed by an extra factor of 1/N ,

⇠ 1

N3/2

This suppression was observed experimentally in the early days of meson physics and

goes by the name of the OZI rule (for Okubo, Zweig and Iizuka; it is also sometimes

called the Zweig rule).

The standard example is the � vector meson, which has quark content ss̄. On energy

considerations alone, one would have thought this would decay to ⇡+⇡�⇡0, none of

which contain a strange quark. In reality, this decay is suppressed by QCD dynamics,

and the � meson decays primarily to K+K�, where the positively charged kaon has

quark content us̄. This fact is clearest in the 1/N expansion.

The large N expansion also makes it clear that we don’t expect to see meson bound

states or, more generally, q̄qq̄q states with four quarks. Such states are referred to as

exotics. The amplitude for meson interactions scales as 1/N , so such exotics certainly

don’t form in the large N limit. The lack of exotics in particle data book suggests that

this suppression extends down to N = 3.

6.3.2 Baryons

We now turn to baryons. These are a little more subtle because they contain N quarks,

anti-symmetrised over the colour indices. Nonetheless, as first explained by Witten,

they are naturally accommodated in the large N limit of QCD.

In what follows we will consider the large N limit with just a single flavour of quark,

although it is not di�cult to include Nf > 1 flavours. The baryon is then

B = ✏i1...iN i1 . . . iN (6.22)
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This is the large N analog of, say, the �++ in QCD which contains three up quarks,

or the �� which contains three down quarks.

We can start by modelling these as N distinct quark lines. A gluon exchange between

any pair of quarks is

�! ⇠ 1

N
(6.23)

where we’ve been more careful in the second diagram in showing how the arrows flow.

However, there 1
2N(N � 1) ⇠ N2 di↵erent pairs of quarks, so the total amplitude for a

gluon exchange within a baryon is order N .

There is a similar story for three body interactions. The gluon exchange is now

⇠ 1

N2
(6.24)

but there are order N3 triplets of quarks, so again the total amplitude scales as N .

These simple arguments suggest that many-body interactions are all equally impor-

tant, and contribute to the energy of the baryon at order N . It is therefore natural to

guess that

Mbaryon ⇠ N (6.25)

This is perhaps not a surprise since the baryon contains N quarks, and is certainly to

be expected in the non-relativistic quark model.

There’s a calculation which may give you pause. Consider the the gluon exchange

between two di↵erent pairs of quarks,

⇠ 1

N2
(6.26)

But now there are ⇠ N4 ways of picking two pairs of quarks, so it looks as if this

contributes to the energy at order N4 ⇥ N�2 ⇠ N2. It seems like we get increasingly
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divergent answers as we look at more and more disconnected pieces. In fact, this is

the kind of behaviour that we would expect if the baryon mass scales as (6.25). The

propagator for large times T then takes the form

e�iMbaryonT ⇡ 1� iMbaryonT � 1

2
M2

baryonT
2 + . . .

For the diagram (6.26), each of the gluons can be exchanged at any time and so it

corresponds to the second order term in the expansion above which, we see, should

indeed scale as M2
baryon ⇠ N2.

At this point, we could start to explore the interactions between baryons and mesons,

and build towards a fuller phenomenology of QCD. However, we won’t go in this di-

rection. Instead, I will point out a nice connection between baryons in the large N

expansion and another recurring topic from these lectures.

The Hartree Approximation

A particularly simple way to proceed is to assume that the quarks are non-relativistic.

This is not particularly realistic for QCD, but it will provide a simple way to shine a

light on the structure of the baryon. If each quark has mass m, we could try to model

their physics inside a baryon by the following Hamiltonian

H = Nm+
1

2m

NX

i=1

p2
i
+

1

2N

X

i 6=j

V2(xij) +
1

6N2

X

i 6=j 6=k

V3(xij, xjk) + . . .

where xij = xi � xj and the coe�cients in front of the potentials are taken from (6.23)

and (6.24). We should also include all multi-particle potentials. As we have seen, it is

a mistake to think that these potentials are genuinely suppressed by the 1/N factors

in the Hamiltonian: these are compensated by the sums over particles, so each term

ends up of order N .

There is a straightforward variational approach to such many-body Hamiltonians

called the Hartree approximation. It is the first port of call in atomic physics, when

studying atoms with many electrons, and we met it in the lectures on Topics in Quan-

tum Mechanics. The idea is to work with the ansatz for the ground state wavefunction

given by

 (x1, . . . ,xN) =
NY

i=1

�0(xi)

Note that the quarks are fermions, but they have already been anti-symmetrised over

the colour indices (6.22), so it is appropriate that the wavefunction for the remaining

degrees of freedom is symmetric.
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The Hartree ansatz neglects interactions between the quarks. Instead, it is a self-

consistent approach in which each quark experiences a potential due to all the others.

This approach becomes increasingly accurate as the number of particles becomes large,

so it is particularly well suited to baryons in the large N limit.

Evaluating the Hamiltonian on the Hartree wavefunction gives

h |H| i = N


m+

1

2m

Z
d3x |�(x)|2 + 1

2

Z
d3x1d

3x2 V2(x12)|�(x1)�(x2)|2

+
1

6

Z
d3x1d

3x2d
3x3 V3(x12, x23)|�(x1)�(x2)�(x3)|2

�

We then find the �(x) which minimises this expression. This, obviously, is a hard

problem. But fortunately it is not one we need to solve in order to extract the main

lessons. These come simply from the fact that there is a factor of N outside the

bracket, but nothing inside. This confirms our earlier conclusion (6.25) that the mass

of the baryon indeed scales as Mbaryon ⇠ N . But we also learn something new, because

whatever function �(x) ends up being, it certainly does not depend on N . This means

that the size of the baryon – its spatial profile in �(x) – is order 1.

The mass and size of the baryon are rather suggestive. Recall that the large N limit

is a theory of weakly coupled gauge singlets, interacting with coupling 1/N . This means

that the mass of the baryon scales as the inverse coupling, N , with the size independent

of the coupling. But this is the typical behaviour of solitons. For example, the ’t Hooft

Polyakov monopole that we met in Section 2.8 has a mass which scales as 1/g2 and a

size which is independent of g2. This strongly suggests that the baryon should emerge

as a soliton in large N QCD.

We have, of course, already seen a context in which baryons emerge as solitons:

they are the Skyrmions in the chiral Lagrangian that we met in Section 5.3. To my

knowledge, this connection has not been fully explained.

Before we move on, there is one further twist to the “baryons as solitons” story. The

mass of the baryon, N , is not quite like the mass of the monopole: it is proportional to

the inverse coupling, rather than the square of the inverse coupling. Returning to the

language of string theory that we introduced in Section 6.2.2, the mass of the baryon

scales as

Mbaryon ⇠ 1

gs

with gs = 1/N the string coupling constant. This suggests that baryons are a rather

special kind of soliton: they are D-branes. These are objects in string theory on which
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strings can end, and have a number of magical properties. (You can read more about

D-branes in the lectures on String Theory.) With its N constituent quarks, the baryon

is indeed a vertex on which N QCD flux tubes can end.

6.4 The Chiral Lagrangian Revisited

In this section, we will see what becomes of the chiral Lagrangian at large N . Let’s

first recall the usual story: Yang-Mills coupled to Nf massless fermions has a classical

global symmetry

G = U(Nf )L ⇥ U(Nf )R (6.27)

However, the anomaly means that U(1)A does not survive the quantisation process,

leaving us just with U(1)V ⇥ SU(Nf )L ⇥ SU(Nf )R. This is subsequently broken to

U(1)V ⇥ SU(Nf )V , and the resulting Goldstone modes are described by the chiral

Lagrangian.

How does this story change at large N . The key lies in the anomaly, which is given

by

@µJ
µ

A
=

g2Nf

8⇡2
trFµ⌫

?F µ⌫ (6.28)

In the large N limit, we send g2 ! 0 keeping � = g2N fixed. This suggests that the

anomaly is suppressed in the large N limit and the quantum theory enjoys the full

chiral symmetry (6.27). This means that there is one further Goldstone mode that

appears: the ⌘0 meson. In this section we will see how this plays out.

6.4.1 Including the ⌘0

Our first steps are a straightforward generalisation of the chiral Lagangian derived in

Section 5.2. The chiral condensate takes the form

h ̄
� ĩ
 + j̃

i = �⌃
ĩj̃

but now with ⌃ 2 U(Nf ) rather than SU(Nf ). (The ugly ĩ, j̃ = 1, . . . , Nf flavour

indices are to ensure that we don’t confuse them with the i, j colour indices we’ve used

elsewhere in this Section.) As before, we promote the order parameter to a dynamical

field, ⌃ ! ⌃(x), whose ripples describe our massless mesons, transforming under the

chiral symmetry G as

⌃(x) ! L†⌃(x)R (6.29)
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with L⇥R 2 G. The overall phase of ⌃ is our new Goldstone boson, ⌘0,

det ⌃ = ei⌘
0
/f⌘0 (6.30)

We would now like to construct the Lagrangian consistent with the chiral symmetry

(6.29). Unlike, in Section 5.2, we now have two di↵erent terms with two derivatives,

(tr⌃†@µ⌃)
2 and tr(@µ⌃

†@µ⌃)2 (6.31)

The first term vanishes when ⌃ ⇢ SU(Nf ), but survives when ⌃ ⇢ U(Nf ). In other

words, it provides a kinetic term only for ⌘0. Meanwhile, the second term treats all

Goldstone modes on the same footing.

Large N -ology tells us that all these mesons have the same properties and, in par-

ticular, to leading order in 1/N we have f⌘0 = f⇡. This means that we need only the

second kinetic term and the chiral Lagrangian takes the same form as (5.7),

L =
f 2
⇡

4
tr(@µ⌃

†@µ⌃)2

We can compute the expected scaling of f⇡ with N . Recall that the pion decay constant

f⇡ is defined by (5.13)

h0|Ja

Lµ
(x)|⇡b(p)i = �i

f⇡
2
�ab pµe

�ix·p

with JL a generator of the SU(Nf ) flavour current. At this point we need to be a

little careful about normalisations. The current J above is defined with the usual

kinetic kinetic term L ⇠ i ̄ /D . Meanwhile, our large N counting used a di↵erent

normalisation in which there was an overall factor of N outside the action. Chasing

this through, means that the current JL is related to the appropriate normalised large

N current (6.19) by

JL =
p
NJL

We can then use the general result (6.20) to find

hJLJLi =
X

n

h0|JL|nihn|JL|0i ⇠ N ) h0|JL|ni ⇠
p
N

This means that the pion decay constant scales as

f⇡ ⇠
p
N
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6.4.2 Rediscovering the Anomaly

So far, things are rather easy. Now we would like to consider what happens at the

next order in 1/N . Obviously, we could add the other kinetic term in (6.31), splitting

f⌘0 and f⇡. This doesn’t greatly change the physics and we will ignore this possibility

below. Instead, there is a much more dramatic e↵ect that we must take into account,

because the anomaly now gives ⌘0 a mass. How do we describe that?

We can isolate ⌘0 by taking the determinant (6.30), and therefore introduce a mass

term by

L =
f 2
⇡

4
tr(@µ⌃

†@µ⌃)2 � 1

2
f 2
⇡
m2

⌘0 (�i log det⌃)2

Herem2
⌘0 is the mass which must vanish asN ! 1. We will see shortly thatm2

⌘0 ⇠ 1/N .

It is unusual to include a log term in an e↵ective action. However, as we will now

see, it captures a number of aspects of the anomaly. To illustrate this, let’s first add

masses for the other quarks. As we saw in Section 5.2.3, this is achieved by including

the term

L =

Z
d4x

f 2
⇡

4
tr (@µ⌃† @µ⌃)�

�

2
tr

�
M⌃+ ⌃†M †

�
� 1

2
f 2
⇡
m2

⌘0 (�i log det⌃)2

with M a complex mass matrix. By a suitable SU(Nf ) ⇥ SU(Nf ) rotation, we can

always choose

M = ei✓/NM

where M is diagonal, real and positive. This final phase can be removed by a U(1)A
rotation, ⌃ ! e�i✓/N⌃ to make the mass real. But this now shows up in the mass term

for the ⌘0,

L =

Z
d4x

f 2
⇡

4
tr (@µ⌃† @µ⌃)�

�

2
tr

�
M⌃+ ⌃†M†

�
� 1

2
f 2
⇡
m2

⌘0 (�i log det⌃� ✓)2

However, we’ve played these games before: in Section 3.3.3, we saw that rotating the

phase of the mass matrix in equivalent to introducing a theta angle. We conclude that

this is how the QCD theta angle appears in the chiral Lagrangian.

We can now minimise this potential to find the ground state. With M diagonal, the

ground state always takes the form

⌃ = diag
⇣
ei�1 , . . . , ei�Nf

⌘
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The exact form depends in a fairly complicated manner on the choices of mass matrix

M and theta angle. To proceed, we must make some assumptions. We will take m⌘

much bigger than all other masses, which means that we first impose the second term

as a constraint

NfX

i=1

�i = ✓

We further look at the simplest case of a diagonal mass matrix: M = m1Nf
with

m > 0. We will then see how the ground states change as we vary ✓.

For ✓ = 0, the ground state sits at ⌃ = 1. Now we increase ✓. What happens next

di↵ers slightly for Nf = 2 and Nf > 2. Let’s start with Nf = 2. As we increase ✓,

the ground state moves to �1 > 0 and the overall magnitude of the potential decreases.

At ✓ ! ⇡�, the ground state tends towards �1 = ⇡/2. At ✓ = ⇡ itself, the potential

vanishes for all �1, which is symptomatic of a second order phase transition. If we now

increase ✓ just a little more, the ground state jumps to �1 = �⇡/2, before moving back

towards �1 = 0 as ✓ ! 2⇡. The sequence is shown in the plots below for ✓ = 0, 2⇡3 , ⇡

and 4⇡
3
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The fact that the potential vanishes when ✓ = ⇡ is special to Nf = 2. The story

for Nf � 3 is similar, except that there are now just two degenerate vacua at ✓ = ⇡.

This is characteristic of a first order phase transition. The potential for Nf = 3 for

✓ = 0, 2⇡3 , ⇡ and 4⇡
3 is shown below.
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6.4.3 The Witten-Veneziano Formula

So far, we’ve happily incorporated the new ⌘0 Goldstone boson into our chiral La-

grangian. However, this brings something of a puzzle, which is to reconcile the following

facts:

• The ground state energy is E(✓) ⇠ N2 and depends on ✓.

• Quarks contribute to quantities such as E(✓) at order N .

• All ✓ dependence vanishes if we have a massless fermion.

These three facts seem incompatible. How can the ⇠ N contribution from quarks

cancel the ⇠ N2 contribution from gluons to render E(✓) independent of ✓?

To see how this might work, let’s consider schematically the contribution to the

susceptibility (6.16)

�(k) =
X

glueballs

N2a2
n

k2 �M2
n

+
X

mesons

Nb2
n

k2 �m2
n

where Mn are the masses of glueballs, mn the masses of mesons, and an and bn the

amplitudes for trFµ⌫
?F µ⌫ to create these states from the vacuum,

h0|trF ?F |nth glueballi = Nan , h0|trF ?F |nth mesoni =
p
Nbn

We want the second term to cancel the first in the limit k ! 0. We can achieve this

only if there is some meson whose mass scales as m2 ⇠ 1/N . But this tallies with our

discussion above; we expect that the ⌘0 becomes a genuine Goldstone boson in the large

N limit. We’re therefore led to the conclusion

�(0)
���
Yang�Mills

=
Nb2

⌘0

m2
⌘0

(6.32)

But we can now use our anomaly equation (6.28) to write

p
Nb⌘0 = h0|F ?F |⌘0i = 8⇡2N

�Nf

h0|@µJµ

A
|⌘0i = 8⇡2N

�Nf

pµh0|Jµ

A
|⌘0i

But we know from our discussion of currents in the chiral Lagrangian (5.13) that

h0|Jµ

A
|⌘0i = �i

p
Nff⇡pµ. (The factor of

p
Nf here is a novel normalisation, but ensures

that f⇡ is independent of Nf in the large N limit.) We therefore find that
p
Nb⌘0 =

(8⇡2N/
p
Nf�)f⇡m2

⌘0 . Inserting this into (6.32), and using (6.17), we have

m2
⌘0 =

4Nf

f 2
⇡

d2E

d✓2

���
✓=0

This is the Witten-Veneziano formula. Rather remarkably, it relates the mass of the ⌘0

meson to the vacuum energy �(0) of large N , pure Yang-Mills theory without quarks.
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It’s worth pausing to see how the N scaling works in this formula. While E(✓) ⇠ N ,

we expect that d2E/d✓2 is of order 1. Meanwhile, f⇡ ⇠
p
N . We then see that

m2
⌘0 ⇠ 1/N as anticipated previously.

We don’t know how to measure the topological susceptibility �(0) experimentally.

Nonetheless, we can use the Witten-Veneziano formula, with m⌘0 ⇡ 950 and f⇡ ⇡ 93

MeV and Nf = 3 to get d2E/d✓2 ⇡ (150MeV)4.

6.5 Further Reading

The large N expansion in Yang-Mills was introduced by ’t Hooft in 1974 [97]. (’t Hooft

was astonishingly productive in those years!) Although we didn’t cover it in these

lectures, ’t Hooft quickly showed how these methods could be used to solve QCD in

two dimensions, a theory that is now referred to as the ’t Hooft model [98].

The discussion of baryons in the 1/N expansion is due to Witten [221], as is the

1/D expansion in atomic physics [223]. Witten goes on to apply the 1/D expansion to

helium. It’s clever, but also shows why chemists tend not to adopt this approach.

The fact that, despite all appearances, dependence on the ✓ angle survives in the

large N limit was first emphasised by Witten in [220]. The large N limit of the chiral

Lagrangian was constructed in [224, 41], and the Witten-Veneziano formula was intro-

duced in [222, 199]. The symmetry breaking pattern needed for the chiral Lagrangian

can be proven in the large N limit: this result is due to Coleman and Witten [31]. The

idea that QCD at ✓ = ⇡ spontaneously breaks time reversal was pointed out pre-QCD

and pre-theta by Dashen [38] and is sometimes referred to as the Dashen phase.

The tantalising connection between string theory and the large N expansion can be

made explicit in a number of low dimensional examples; the lectures by Ginsparg and

Moore are a good place to start [75]. In d = 3+1 dimensions, this relationship underlies

the AdS/CFT correspondence [129].

Coleman’s lectures remain the go-to place for a gentle introduction to the 1/N ex-

pansion [32]. Manohar has written an excellent review of the phenomenology of large

N QCD [132]. Any number of reviews on the gauge/gravity duality also contain a

discussion of 1/N and its relationship to string theory: I particularly like the lectures

by McGreevy [135].
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