
4. Linear Response

The goal of response theory is to figure out how a system reacts to outside influences.

These outside influences are things like applied electric and magnetic fields, or applied

pressure, or an applied driving force due to some guy sticking a spoon into a quantum

liquid and stirring.

We’ve already looked at a number of situations like this earlier in these lectures. If

you apply a shearing force to a fluid, its response is to move; how much it moves is

determined by the viscosity. If you apply a temperature gradient, the response is for

heat to flow; the amount of heat is determined by the thermal conductivity. However, in

both of these cases, the outside influence was time independent. Our purpose here is to

explore the more general case of time dependent influences. As we’ll see, by studying

the response of the system at di↵erent frequencies, we learn important information

about what’s going on inside the system itself.

4.1 Response Functions

Until now, our discussion has been almost entirely classical. Here we want to deal with

both classical and quantum worlds. For both cases, we start by explaining mathemat-

ically what is meant by an outside influence on a system.

Forces in Classical Dynamics

Consider a simple dynamical system with some generalized coordinates xi(t) which

depend on time. If left alone, these coordinates will obey some equations of motion,

ẍi + gi(ẋ, x) = 0

This dynamics need not necessarily be Hamiltonian. Indeed, often we’ll be interested

in situations with friction. The outside influence in this example arises from perturbing

the system by the addition of some driving forces Fi(t), so that the equations of motion

become,

ẍi + gi(ẋ, x) = Fi(t) (4.1)

In this expression, xi(t) are dynamical degrees of freedom. This is what we’re solving

for. In contrast, Fi(t) are not dynamical: they’re forces that are under our control, like

someone pulling on the end of a spring. We get to decide on the time dependence of

each Fi(t).
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It may be useful to have an even more concrete example at the back of our minds.

For this, we take every physicist’s favorite toy: the simple harmonic oscillator. Here

we’ll include a friction term, proportional to �, so that we have the damped harmonic

oscillator with equation of motion

ẍ+ �ẋ+ !
2
0x = F (t) (4.2)

We will discuss this model in some detail in section 4.2.

Sources in Quantum Mechanics

In quantum mechanics, we introduce the outside influences in a slightly di↵erent man-

ner. The observables of the system are now operators, Oi. We’ll work in the Heisenberg

picture, so that the operators are time dependent: O = O(t). Left alone, the dynamics

of these operators will be governed by a Hamiltonian H(O). However, we have no

interest in leaving the system alone. We want to give it a kick. Mathematically this is

achieved by adding an extra term to the Hamiltonian,

Hsource(t) = �i(t)Oi(t) (4.3)

The �i(x) are referred to as sources. They are external fields that are under our

control, analogous to the driving forces in the example above. Indeed, if we take a

classical Hamiltonian and add a term of the form x� then the resulting Euler-Lagrange

equations include the source � on the right-hand-side in the same way that the force

F appears in (4.2).

4.1.1 Linear Response

We want to understand how our system reacts to the presence of the source or the

driving force. To be concrete, we’ll chose to work in the language of quantum mechanics,

but everything that we discuss in this section will also carry over to classical systems.

Our goal is to understand how the correlation functions of the theory change when we

turn on a source (or sources) �i(x).

In general, it’s a di�cult question to understand how the theory is deformed by the

sources. To figure this out, we really just need to sit down and solve the theory all over

again. However, we can make progress under the assumption that the source is a small

perturbation of the original system. This is fairly restrictive but it’s the simplest place

where we can make progress so, from now on, we focus on this limit. Mathematically,

this means that we assume that the change in the expectation value of any operator is

linear in the perturbing source. We write

�hOi(t)i =

Z
dt

0
�ij(t; t

0)�j(t
0) (4.4)
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Here �ij(t; t0) is known as a response function. We could write a similar expression for

the classical dynamical system (4.1), where �hOii is replaced by xi(t) and � is replaced

by the driving force Fj(t). In classical mechanics, it is clear from the form of the

equation of motion (4.1) that the response function is simply the Green’s function for

the system. For this reason, the response functions are often called Green’s functions

and you’ll often see them denoted as G instead of �.

From now on, we’ll assume that our system is invariant under time translations. In

this case, we have

�ij(t; t
0) = �ij(t� t

0)

and it is useful to perform a Fourier transform to work in frequency space. We define

the Fourier transform of the function f(t) to be

f(!) =

Z
dt e

i!t
f(t) and f(t) =

Z
d!

2⇡
e
�i!t

f(!) (4.5)

In particular, we will use the convention where the two functions are distinguished only

by their argument.

Taking the Fourier transform of (4.4) gives

�hOi(!)i =

Z
dt

0
Z

dt e
i!t
�ij(t� t

0)�j(t
0)

=

Z
dt

0
Z

dt e
i!(t�t

0)
�ij(t� t

0) ei!t
0
�j(t

0)

= �ij(!)�j(!) (4.6)

We learn the response is “local” in frequency space: if you shake something at frequency

!, it responds at frequency !. Anything beyond this lies within the domain of non-

linear response.

In this section we’ll describe some of the properties of the response function �(!)

and how to interpret them. Many of these properties follow from very simple physical

input. To avoid clutter, we’ll mostly drop both the i, j indices. When there’s something

interesting to say, we’ll put them back in.

4.1.2 Analyticity and Causality

If we work with a real source � and a Hermitian operator O (which means a real

expectation value hOi) then �(t) must also be real. Let’s see what this means for the

– 81 –



Fourier transform �(!). It’s useful to introduce some new notation for the real and

imaginary parts,

�(!) = Re�(!) + iIm�(!)

⌘ �
0(!) + i�

00(!)

This notation in terms of primes is fairly odd the first time you see it, but it’s standard

in the literature. You just have to remember that, in this context, primes do not mean

derivatives!

The real and imaginary parts of the response function �(!) have di↵erent interpre-

tations. Let’s look at these in turn

• Imaginary Part: We can write the imaginary piece as

�
00(!) = �

i

2
[�(!)� �

?(!)]

= �
i

2

Z +1

�1
dt �(t)[ei!t � e

�i!t]

= �
i

2

Z +1

�1
dt e

i!t[�(t)� �(�t)]

We see that the imaginary part of �(!) is due to the part of the response func-

tion that is not invariant under time reversal t ! �t. In other words, �00(!)

knows about the arrow of time. Since microscopic systems are typically invariant

under time reversal, the imaginary part �00(!) must be arising due to dissipative

processes.

�
00(!) is called the dissipative or absorptive part of the response function. It is

also known as the spectral function. It will turn out to contain information about

the density of states in the system that take part in absorptive processes. We’ll

see this more clearly in an example shortly.

Finally, notice that �00(!) is an odd function,

�
00(�!) = ��

00(!)

• Real Part: The same analysis as above shows that

�
0(!) =

1

2

Z +1

�1
dt e

i!t[�(t) + �(�t)]
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The real part doesn’t care about the arrow of time. It is called the reactive part

of the response function. It is an even function,

�
0(�!) = +�0(!)

Before we move on, we need to briefly mention what happens when we put the labels

i, j back on the response functions. In this case, a similar analysis to that above shows

that the dissipative response function comes from the anti-Hermitian part,

�
00
ij
(!) = �

i

2
[�

ij
(!)� �

?

ji
(!)] (4.7)

Causality

We can’t a↵ect the past. This statement of causality means that any response function

must satisfy

�(t) = 0 for all t < 0

For this reason, � is often referred to as the causal Green’s function or retarded Green’s

function and is sometimes denoted as GR(t). Let’s see what this simple causality

requirement means for the Fourier expansion of �,

�(t) =

Z +1

�1

d!

2⇡
e
�i!t

�(!)

When t < 0, we can perform the integral by completing the contour in the upper-half

place (so that the exponent becomes �i!⇥(�i|t|) ! �1). The answer has to be zero.

Of course, the integral is given by the sum of the residues inside the contour. So if

we want the response function to vanish for all t < 0, it must be that �(!) has no poles

in the upper-half plane. In other words, causality requires:

�(!) is analytic for Im! > 0

4.1.3 Kramers-Kronig Relation

The fact that � is analytic in the upper-half plane means that there is a relationship

between the real and imaginary parts, �0 and �
00. This is called the Kramers-Kronig

relation. Our task in this section is to derive it. We start by providing a few general

mathematical statements about complex integrals.
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A Discontinuous Function

First, consider a general function ⇢(!). We’ll ask that ⇢(!) is meromorphic, meaning

that it is analytic apart from at isolated poles. But, for now, we won’t place any

restrictions on the position of these poles. (We will shortly replace ⇢(!) by �(!) which,

as we’ve just seen, has no poles in the upper half plane). We can define a new function

f(!) by the integral,

f(!) =
1

i⇡

Z
b

a

⇢(!0)

!0 � !
d!

0 (4.8)

Here the integral is taken along the interval !0
2 [a, b] of the real line. However, when

! also lies in this interval, we have a problem because the integral diverges at !0 = !.

To avoid this, we can simply deform the contour of the integral into the complex plane,

either running just above the singularity along !0 + i✏ or just below the singularity

along !0
� i✏. Alternatively (in fact, equivalently) we could just shift the position of

the singularity to ! ! ! ⌥ ✏. In both cases we just skim by the singularity and the

integral is well defined. The only problem is that we get di↵erent answers depending

on which way we do things. Indeed, the di↵erence between the two answers is given by

Cauchy’s residue theorem,

1

2
[f(! + i✏)� f(! � i✏)] = ⇢(!) (4.9)

The di↵erence between f(!+i✏) and f(!�i✏) means that the function f(!) is discontin-

uous across the real axis for ! 2 [a, b]. If ⇢(!) is everywhere analytic, this discontinuity

is a branch cut.

We can also define the average of the two functions either side of the discontinuity.

This is usually called the principal value, and is denoted by adding the symbol P before

the integral,

1

2
[f(! + i✏) + f(! � i✏)] ⌘

1

i⇡
P

Z
b

a

⇢(!0)

!0 � !
d!

0 (4.10)

We can get a better handle on the meaning of this principal part if we look at the real

and imaginary pieces of the denominator in the integrand 1/[!0
� (! ± i✏)],

1

!0 � (! ± i✏)
=

!
0
� !

(!0 � !)2 + ✏2
±

i✏

(!0 � !)2 + ✏2
(4.11)

By taking the sum of f(!+ i✏) and f(!� i✏) in (4.10), we isolate the real part, the first

term in (4.11). This is shown in the left-hand figure. It can be thought of as a suitably

cut-o↵ version of 1/(!0
�!). It’s as if we have deleted an small segment of this function

lying symmetrically about divergent point ! and replaced it with a smooth function

going through zero. This is the usual definition of the principal part of an integral.
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Figure 9: The real part of the function

(4.11), plotted with !0 = 1 and ✏ = 0.5.

Figure 10: The imaginary part of the

function (4.11), plotted with !0 = 1 and

✏ = 0.5

We can also see the meaning of the imaginary part of 1/(!0
� !), the second term

in (4.11). This is shown in the right-hand figure. As ✏ ! 0, it tends towards a delta

function, as expected from (4.9). For finite ✏, it is a regularized version of the delta

function.

Kramers-Kronig

Let’s now apply this discussion to our response function �(!). We’ll be interested in

the integral

1

i⇡

I

C

d!
0 �(!

0)

!0 � !
! 2 R (4.12)

where the contour C skims just above the real axis, before closing at infinity in the

upper-half plane. We’ll need to make one additional assumption: that �(z) falls o↵

faster than 1/|z| at infinity. If this holds, the integral is the same as we consider in

(4.8) with [a, b] ! [�1,+1]. Indeed, in the language of the previous discussion, the

integral is f(! � i✏), with ⇢ = �.

We apply the formulae (4.9) and (4.10). It gives

f(! � i✏) =
1

i⇡
P

Z +1

�1
d!

0 �(!
0)

!0 � !

�
� �(!)

But we know the integral in (4.12) has to be zero since �(!) has no poles in the

upper-half plane. This means that f(! � i✏) = 0, or

�(!) =
1

i⇡
P

Z +1

�1
d!

0 �(!
0)

!0 � !
(4.13)
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The important part for us is that factor of “i” sitting in the denominator. Taking real

and imaginary parts, we learn that

Re�(!) = P

Z +1

�1

d!
0

⇡

Im�(!0)

!0 � !
(4.14)

and

Im�(!) = �P

Z +1

�1

d!
0

⇡

Re�(!0)

!0 � !
(4.15)

These are the Kramers-Kronig relations. They follow from causality alone and tell

us that the dissipative, imaginary part of the response function �
00(!) is determined

in terms of the reactive, real part, �0(!) and vice-versa. However, the relationship is

not local in frequency space: you need to know �
0(!) for all frequencies in order to

reconstruct �00 for any single frequency.

There’s another way of writing these relations which is also useful and tells us how

we can reconstruct the full response function �(!) if we only know the dissipative part.

To see this, look at
Z +1

�1

d!
0

i⇡

Im�(!0)

!0 � ! � i✏
(4.16)

where the �i✏ in the denominator tells us that this is an integral just below the real

axis. Again using the formulae (4.9) and (4.10), we have

Z +1

�1

d!
0

i⇡

Im�(!0)

!0 � ! � i✏
= Im�(!) + P

Z +1

�1

d!
0

i⇡

Im�(!0)

!0 � ! � i✏

= Im�(!)� iRe�(!) (4.17)

Or, rewriting as �(!) = Re�(!) + i Im�(!), we get

�(!) =

Z +1

�1

d!
0

⇡

Im�(!0)

!0 � ! � i✏
(4.18)

If you know the dissipative part of the response function, you know everything.

An Application: Susceptibility

Suppose that turning on a perturbation � induces a response hOi for some observable

of our system. Then the susceptibility is defined as

� =
@hOi

@�

����
!=0

– 86 –



We’ve called the susceptibility � which is the same name that we gave to the response

function. And, indeed, from the definition of linear response (4.4), the former is simply

the zero frequency limit of the latter:

� = lim
!!0

�(!)

A common example, which we met in our first course in Statistical Mechanics, is the

change of magnetization M of a system in response to an external magnetic field B.

The aptly named magnetic susceptibility is given by � = @M/@B.

From (4.18), we can write the susceptibility as

� =

Z +1

�1

d!
0

⇡

Im�(!0)

!0 � i✏
(4.19)

We see that if you can do an experiment to determine how much the system absorbs

at all frequencies, then from this information you can determine the response of the

system at zero frequency. This is known as the thermodynamic sum rule.

4.2 Classical Examples

The definitions and manipulations of the previous section can appear somewhat ab-

stract the first time you encounter them. Some simple examples should shed some

light. The main example we’ll focus on is the same one that accompanies us through

most of physics: the classical harmonic oscillator.

4.2.1 The Damped Harmonic Oscillator

The equation of motion governing the damped harmonic oscillator in the presence of a

driving force is

ẍ+ �ẋ+ !
2
0x = F (t) (4.20)

Here � is the friction. We denote the undamped frequency as !0, saving ! for the

frequency of the driving force as in the previous section. We want to determine the

response function, or Green’s function, �(t � t
0) of this system. This is the function

which e↵ectively solves the dynamics for us, meaning that if someone tells us the driving

force F (t), the motion is given by

x(t) =

Z +1

�1
dt

0
�(t� t

0)F (t0) (4.21)
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Figure 11: The real, reactive part of the response function for the underdamped harmonic

oscillator, plotted with !0 = 1 and � = 0.5.

There is a standard method to figure out �(t). Firstly, we introduce the (inverse)

Fourier transform

�(t) =

Z
d!

2⇡
e
�i!t

�(!)

We plug this into the equation of motion (4.20) to get
Z +1

�1

d!

2⇡

Z +1

�1
dt

0[�!2
� i�! + !

2
0]e

�i!(t�t
0)
�(!)F (t0) = F (t)

which is solved if the
R
d! gives a delta function. But since we can write a delta

function as 2⇡�(t) =
R
d!e

�i!t, that can be achieved by simply taking

�(!) =
1

�!2 � i�! + !
2
0

(4.22)

There’s a whole lot of simple physics sitting in this equation which we’ll now take some

time to extract. All the lessons that we’ll learn carry over to more complicated systems.

Firstly, we can look at the susceptibility, meaning �(! = 0) = 1/!2
0. This tells us

how much the observable changes by a perturbation of the system, i.e. a static force:

x = F/!
2
0 as expected.

Let’s look at the structure of the response function on the complex !-plane. The

poles sit at !2
⇤ + i�!⇤ � !

2
0 = 0 or, solving the quadratic, at

!? = �
i�

2
±

q
!
2
0 � �2/4

There are two di↵erent regimes that we should consider separately,
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Figure 12: The imaginary, dissipative part of the response function for the underdamped

harmonic oscillator, plotted with !0 = 1 and � = 0.5.

• Underdamped: !2
0 > �

2
/4. In this case, the poles have both a real and imag-

inary part. They both sit on the lower half plane. This is in agreement with

our general lesson of causality which tells us that the response function must be

analytic in the upper-half plane

• Overdamped: !2
0 < �

2
/4. Now the poles lie on the negative imaginary axis.

Again, there are none in the upper-half place, consistent with causality.

We can gain some intuition by plotting the real and imaginary part of the response

function for ! 2 R. Firstly, the real part is shown in Figure 11 where we plot

Re�(!) =
!
2
0 � !

2

(!2
0 � !2)2 + �2!2

(4.23)

This is the reactive part. The higher the function, the more the system will respond

to a given frequency. Notice that Re�(!) is an even function, as expected.

More interesting is the dissipative part of the response function,

Im�(!) =
!�

(!2
0 � !2)2 + �2!2

(4.24)

This is an odd function. In the underdamped case, this is plotted in Figure 12. Notice

that Im� is proportional to �, the coe�cient of friction. The function peaks around

±!0, at frequencies where the system naturally vibrates. This is because this is where

the system is able to absorb energy. However, as � ! 0, the imaginary part doesn’t

become zero: instead it tends towards two delta functions situated at ±!0.
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4.2.2 Dissipation

We can see directly how Im�(!) is related to dissipation by computing the energy

absorbed by the system. This what we used to call the work done on the system before

we became all sophisticated and grown-up. It is

dW

dt
= F (t)ẋ(t)

= F (t)
d

dt

Z +1

�1
dt

0
�(t� t

0)F (t0)

= F (t)

Z +1

�1
dt

0
Z +1

�1

d!

2⇡
(�i!)e�i!(t�t

0)
�(!)F (t0)

=

Z +1

�1

d!

2⇡

d!
0

2⇡
[�i!�(!)]e�i(!+!

0)t
F (!)F (!0) (4.25)

Let’s drive the system with a force of a specific frequency ⌦, so that

F (t) = F0 cos⌦t = F0 Re(e
�i⌦t)

Notice that it’s crucial to make sure that the force is real at this stage of the calculation

because the reality of the force (or source) was the starting point for our discussion

of the analytic properties of response functions in section 4.1.2. In a more pedestrian

fashion, we can see that it’s going to be important because our equation above is not

linear in F (!), so it’s necessary to take the real part before progressing. Taking the

Fourier transform, the driving force is

F (!) = 2⇡F0 [�(! � ⌦) + �(! + ⌦)]

Inserting this into (4.25) gives

dW

dt
= �iF

2
0⌦

⇥
�(⌦)e�i⌦t

� �(�⌦)e+i⌦t
⇤ ⇥
e
�i⌦t + e

i⌦t
⇤

(4.26)

This is still oscillating with time. It’s more useful to take an average over a cycle,

dW

dt
⌘

⌦

2⇡

Z 2⇡/⌦

0

dt
dW

dt
= �iF

2
0⌦ [�(⌦)� �(�⌦)]

But we’ve already seen that Re�(!) is an even function, while Im�(!) is an odd

function. This allows us to write

dW

dt
= 2F 2

0⌦ Im�(⌦) (4.27)
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We see that the work done is proportional to Im�. To derive this result, we didn’t

need the exact form of the response function; only the even/odd property of the

real/imaginary parts, which follow on general grounds. For our damped harmonic

oscillator, we can now use the explicit form (4.24) to derive

dW

dt
= 2F 2

0

�⌦2

(!2
0 � ⌦2)2 + (�⌦)2

This is a maximum when we shake the harmonic oscillator at its natural frequency,

⌦ = !0. As this example illustrates, the imaginary part of the response function tells

us the frequencies at which the system naturally vibrates. These are the frequencies

where the system can absorb energy when shaken.

4.2.3 Hydrodynamic Response

For our final classical example, we’ll briefly return to the topic of hydrodynamics. One

di↵erence with our present discussion is that the dynamical variables are now functions

of both space and time. A typical example that we’ll focus on here is the mass density,

⇢(~x, t). Similarly, the driving force (or, in the context of quantum mechanics, the

source) is similarly a function of space and time.

Rather than playing at the full Navier-Stokes equation, here we’ll instead just look

at a simple model of di↵usion. The continuity equation is

@⇢

@t
+ ~r · ~J = 0

We’ll write down a simple model for the current,

~J = �D~r⇢+ ~F (4.28)

where D is the di↵usion constant and the first term gives rise to Fick’s law that we met

already in Section 1. The second term, ~F = ~F (~x, t), is the driving force. Combining

this with the continuity equation gives,

@⇢

@t
�Dr

2
⇢ = �~r · ~F (4.29)

We want to understand the response functions associated to this force. This includes

both the response of ⇢ and the response of ~J ,
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For simplicity, let’s work in a single spatial dimension so that we can drop the vector

indices. We write

⇢(x, t) =

Z
dx

0
dt

0
�⇢J(x

0
, t

0; x, t)F (x0
, t)

J(x, t) =

Z
dx

0
dt

0
�JJ(x

0
, t

0; x, t)F (x0
, t)

where we’ve called the second label J on both of these functions to reflect the fact that

F is a driving force for J . We follow our discussion of Section 4.1.1. We now assume

that our system is invariant under both time and space translations which ensures that

the response function depend only on t
0
� t and x

0
�x. We then Fourier transform with

respect to both time and space. For example,

⇢(!, t) =

Z
dxdt e

i(!t�kx)
⇢(x, t)

Then in momentum and frequency space, the response functions become

⇢(!, k) = �⇢J(!, k)F (!, k)

J(!, k) = �JJ(!, k)F (!, k)

The di↵usion equation (4.29) immediately gives an expression for �⇢J . Substituting

the resulting expression into (4.28) then gives us �JJ . The response functions ar

�⇢J =
ik

�i! +Dk2
, �JJ =

�i!

�i! +Dk2

Both of the denominator have poles on the imaginary axis at ! = �iDk
2. This is the

characteristic behaviour of response functions capturing di↵usion.

Our study of hydrodynamics in Sections 2.4 and 2.5 revealed a di↵erent method of

transport, namely sound. For the ideal fluid of Section 2.4, the sound waves travelled

without dissipation. The associated response function has the form

�sound ⇠
1

!2 � v2
s
k2

which is simply the Green’s function for the wave equation. If one includes the e↵ect of

dissipation, the poles of the response function pick up a (negative) imaginary part. For

sound waves in the Navier-Stokes equation, we computed the location of these poles in

(2.76).
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4.3 Quantum Mechanics and the Kubo Formula

Let’s now return to quantum mechanics. Recall the basic set up: working in the

Heisenberg picture, we add to a Hamiltonian the perturbation

Hsource(t) = �j(t)Oj(t) (4.30)

where there is an implicit sum over j, labelling the operators in the theory and, corre-

spondingly, the di↵erent sources that we can turn on. Usually in any given situation we

only turn on a source for a single operator, but we may be interested in how this source

a↵ects the expectation value of any other operator in the theory, hOii. However, if we

restrict to small values of the source, we can address this using standard perturbation

theory. We introduce the time evolution operator,

U(t, t0) = T exp

✓
�i

Z
t

t0

Hsource(t
0)dt0

◆

which is constructed to obey the operator equation idU/dt = HsourceU . Then, switching

to the interaction picture, states evolve as

| (t)iI = U(t, t0)| (t0)iI

We’ll usually be working in an ensemble of states described by a density matrix ⇢. If,

in the distant past t ! 1, the density matrix is given by ⇢0, then at some finite time

it evolves as

⇢(t) = U(t)⇢0U
�1(t)

with U(t) = U(t, t0 ! �1). From this we can compute the expectation value of any

operator Oj in the presence of the sources �. Working to first order in perturbation

theory (from the third line below), we have

hOi(t)i|� = Tr ⇢(t)Oi(t)

= Tr ⇢0(t)U
�1(t)Oi(t)U(t)

⇡ Tr ⇢0(t)

✓
Oi(t) + i

Z
t

�1
dt

0 [Hsource(t
0),Oi(t)] + . . .

◆

= hOi(t)i|�=0 + i

Z
t

�1
dt

0
h[Hsource(t

0),Oi(t)]i+ . . .

Inserting our explicit expression for the source Hamiltonian gives the change in the

expectation value, �hOii = hOii� � hOii�=0,

�hOii = i

Z
t

�1
dt

0
h[Oj(t

0),Oi(t)]i�j(t
0)

= i

Z +1

�1
dt

0
✓(t� t

0) h[Oj(t
0),Oi(t)]i�j(t

0) (4.31)
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where, in the second line, we have done nothing more than use the step function to

extend the range of the time integration to +1. Comparing this to our initial definition

given in (4.4), we see that the response function in a quantum theory is given by the

two-pont function,

�ij(t� t
0) = �i✓(t� t

0) h[Oi(t),Oj(t
0)]i (4.32)

This important result is known as the Kubo formula. (Although sometimes the name

“Kubo formula” is restricted to specific examples of this equation which govern trans-

port properties in quantum field theory. We will derive these examples in Section 4.4).

4.3.1 Dissipation Again

Before we make use of the Kubo formula, we will first return to the question of dis-

sipation. Here we repeat the calculation of 4.2.2 where we showed that, for classical

systems, the energy absorbed by a system is proportional to Im�. Here we do the same

for quantum systems. The calculation is a little tedious, but worth ploughing through.

As in the classical context, the work done is associated to the change in the energy

of the system which, this time, can be written as

dW

dt
=

d

dt
Tr ⇢H = Tr(⇢̇H + ⇢Ḣ)

To compute physical observables, it doesn’t matter if we work in the Heisenberg or

Schrödinger picture. So lets revert momentarily back to the Schrödinger picture. Here,

the density matrix evolves as i⇢̇ = [H, ⇢], so the first term above vanishes. Meanwhile,

the Hamiltonian H changes because we’re sitting there playing around with the source

(4.30), providing an explicit time dependence. To simplify our life, we’ll assume that

we turn on just a single source, �. Then, in the Schrödinger picture

Ḣ = O�̇(t)

This gives us the energy lost by the system,

dW

dt
= Tr(⇢O�̇) = hOi��̇ = [hOi�=0 + �hOi] �̇

We again look at a periodically varying source which we write as

�(t) = Re(�0 e
�i⌦t)

and we again compute the average work done over a complete cycle

dW

dt
=

⌦

2⇡

Z 2⇡/⌦

0

dt
dW

dt
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The term hO(~x)i0 cancels out when integrated over the full cycle. This leaves us with

dW

dt
=

⌦

2⇡

Z 2⇡/⌦

0

dt

Z +1

�1
dt

0
�(t� t

0)�(t0) �̇(t)

=
⌦

2⇡

Z 2⇡/⌦

0

dt

Z +1

�1
dt

0
Z

d!

2⇡
�(!)e�i!(t�t

0)

⇥
1

4

h
�0e

�i⌦t
0
+ �

?

0e
+i⌦t

0
i h

� i⌦�0e
�i⌦t + i⌦�?

0e
+i⌦t

i

=
1

4
[�(⌦)� �(�⌦)] |�0|

2
i⌦

where the �2 and �? 2 terms have canceled out after performing the
R
dt. Continuing,

we only need the fact that the real part of � is even while the imaginary part is odd.

This gives us the result

dW

dt
=

1

2
⌦�00(⌦)|�0|

2 (4.33)

Finally, this calculation tells us about another property of the response function. If we

perform work on a system, the energy should increase. This translates into a positivity

requirement ⌦�00(⌦) � 0. More generally, the requirement is that ⌦�00
ij
(⌦) is a positive

definite matrix.

Spectral Representation

In the case of the damped harmonic oscillator, we saw explicitly that the dissipation

was proportional to the coe�cient of friction, �. But for our quantum systems, the

dynamics is entirely Hamiltonian: there is no friction. So what is giving rise to the

dissipation? In fact, the answer to this can also be found in our analysis of the harmonic

oscillator, for there we found that in the limit � ! 0, the dissipative part of the response

function �
00 doesn’t vanish but instead reduces to a pair of delta functions. Here we

will show that a similar property holds for a general quantum system.

We’ll take the state of our quantum system to be described by a density matrix

describing the canonical ensemble, ⇢ = e
��H . Taking the Fourier transform of the

Kubo formula (4.32) gives

�ij(!) = �i

Z 1

0

dt e
i!t Tr

⇣
e
��H [Oi(t),Oj(0)]

⌘

We will need to use the fact that operators evolve asOi(t) = U
�1
Oi(0)U with U = e

�iHt

and will evaluate �ij(!) by inserting complete basis of energy states

�ij(!) = �i

Z 1

0

dt e
i!t

X

mn

e
�Em�

⇥
hm|Oi|nihn|Oj|mie

i(Em�En)t
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�hm|Oj|nihn|Oi|mie
i(En�Em)t

⇤

To ensure that the integral is convergent for t > 0, we replace ! ! ! + i✏. Then

performing the integral over
R
dt gives

�ij(! + i✏) =
X

m,n

e
�Em�


(Oi)mn(Oj)nm

! + Em � En + i✏
�

(Oj)mn(Oi)nm
! + En � Em + i✏

�

=
X

m,n

(Oi)mn(Oj)nm
! + Em � En + i✏

�
e
�Em�

� e
�En�

�

which tells us that the response function has poles just below the real axis,

! = En � Em � i✏

Of course, we knew on general grounds that the poles couldn’t lie in the upper half-

plane: we see that in a Hamiltonian system the poles lie essentially on the real axis (as

✏! 0) at the values of the frequency that can excite the system from one energy level

to another. In any finite quantum system, we have an isolated number of singularities.

As in the case of the harmonic oscillator, in the limit ✏ ! 0, the imaginary part of

the response function doesn’t disappear: instead it becomes a sum of delta function

spikes

�
00
⇠

X

m,n

✏

(! + Em � En)2 + ✏2
�!

X

m,n

� (! � (En � Em))

The expression above is appropriate for quantum systems with discrete energy levels.

However, in infinite systems — and, in particular, in the quantum field theories that

we turn to shortly — these spikes can merge into smooth functions and dissipative

behaviour can occur for all values of the frequency.

4.3.2 Fluctuation-Dissipation Theorem

We have seen above that the imaginary part of the response function governs the

dissipation in a system. Yet, the Kubo formula (4.32) tells us that the response formula

can be written in terms of a two-point correlation function in the quantum theory.

And we know that such two-point functions provide a measure of the variance, or

fluctuations, in the system. This is the essence of the fluctuation-dissipation theorem

which we’ll now make more precise.
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First, the form of the correlation function in (4.32) — with the commutator and

funny theta term — isn’t the simplest kind of correlation we could image. The more

basic correlation function is simply

Sij(t) ⌘ hOi(t)Oj(0)i

where we have used time translational invariance to set the time at which Oj is evalu-

ated to zero. The Fourier transform of this correlation function is

Sij(!) =

Z
dt e

i!t
Sij(t) (4.34)

The content of the fluctuation-dissipation theorem is to relate the dissipative part of

the response function to the fluctuations S(!) in the vacuum state which, at finite

temperature, means the canonical ensemble ⇢ = e
��H .

There is a fairly pedestrian proof of the theorem using spectral decomposition (i.e.

inserting a complete basis of energy eigenstates as we did in the previous section). Here

we instead give a somewhat slicker proof although, as we will see, it requires us to do

something fishy somewhere. We proceed by writing an expression for the dissipative

part of the response function using the Kubo formula (4.32),

�
00
ij
(t) = �

i

2
[�ij(t)� �ji(�t)]

= �
1

2
✓(t)

h
hOi(t)Oj(0)i � hOj(0)Oi(t)i

i

+
1

2
✓(�t)

h
hOj(�t)Oi(0)i � hOi(0)Oj(�t)i

i

By time translational invariance, we know that hOj(0)Oi(t)i = hOj(�t)Oi(0)i. This

means that the step functions arrange themselves to give ✓(t) + ✓(�t) = 1, leaving

�
00
ij
(t) = �

1

2
hOi(t)Oj(0)i+

1

2
hOj(�t)Oi(0)i (4.35)

But we can re-order the operators in the last term. To do this, we need to be sitting

in the canonical ensemble, so that the expectation value is computed with respect to

the Boltzmann density matrix. We then have

hOj(�t)Oi(0)i = Tr e��H
Oj(�t)Oi(0)

= Tr e��H
Oj(�t)e�He��H

Oi(0)

= Tr e��H
Oi(0)Oj(�t+ i�)

= hOi(t� i�)Oj(0)i
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The third line above is where we’ve done something slippery: we’ve treated the density

matrix ⇢ = e
��H as a time evolution operator, but one which evolves the operator in

the imaginary time direction! In the final line we’ve used time translational invariance,

now both in real and imaginary time directions. While this may look dodgy, we can

turn it into something more palatable by taking the Fourier transform. The dissipative

part of the response function can be written in terms of correlation functions as

�
00
ij
(t) = �

1

2

h
hOi(t)Oj(0)i � hOi(t� i�)Oj(0)i

i
(4.36)

Taking the Fourier transform then gives us our final expression:

�
00
ij
(!) = �

1

2

⇥
1� e

��!
⇤
Sij(!) (4.37)

This is the fluctuation-dissipation theorem, relating the fluctuations in frequency space,

captured by S(!), to the dissipation, captured by �00(!). Indeed, a similar relationship

holds already in classical physics; the most famous example is the Einstein relation

that we met in Section 3.1.3.

The physics behind (4.37) is highlighted a little better if we invert the equation. We

can write

Sij(!) = �2 [nB(!) + 1]�00
ij
(!)

where nB(!) = (e�! � 1)�1 is the Bose-Einstein distribution function. Here we see

explicitly the two contributions to the fluctuations: the nB(!) factor is due to thermal

e↵ects; the “+1” can be thought of as due to inherently quantum fluctuations. As usual,

the classical limit occurs for high temperatures with �! ⌧ 1 where nB(!) ⇡ kBT/!.

In this regime, the fluctuation dissipation theorem reduces to its classical counterpart

Sij(!) = �
2kBT

!
�
00
ij
(!)

4.4 Response in Quantum Field Theory

We end these lectures by describing how response theory can be used to compute some

of the transport properties that we’ve encountered in previous sections. To do this,

we work with Quantum Field Theory where the operators become functions of space

and time, O(~x, t). In the context of condensed matter, this is the right framework

to describe many-body physics. In the context of particle physics, this is the right

framework to describe everything.
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Suppose that you take a quantum field theory, place it in a state with a finite amount

of stu↵ (whatever that stu↵ is) and heat it up. What is the right description of the

resulting dynamics? From our earlier discussion, we know the answer: the low-energy

excitations of the system are described by hydrodynamics, simply because this is the

universal description that applies to everything. (Actually, we’re brushing over some-

thing here: the exact form of the hydrodynamics depends on the symmetries of the

theory, both broken and unbroken). All that remains is to identify the transport co-

e�cients, such as viscosity and thermal conductivity, that arise in the hydrodynamic

equations. But how to do that starting from the quantum field?

The answer to this question lies in the machinery of linear response that we developed

above. For a quantum field, we again add source terms to the action, now of the form

Hsource(t) =

Z
d
d�1

~x �i(~x, t)Oi(~x, t) (4.38)

The response function � is again defined to be the change of the expectation values of

O in the presence of the source �,

�hOi(~x, t)i =

Z
d
d
~x

0
dt

0
�ij(~x, t; ~x

0
, t

0)�j(~x
0
, t

0) (4.39)

All the properties of the response function that we derived previously also hold in the

context of quantum field theory. Indeed, for the most part, the label ~x and ~x 0can be

treated in the same way as the label i, j. Going through the steps leading to the Kubo

formula (4.32), we now find

�ij(~x, ~x
0; t� t

0) = �i✓(t� t
0)h[Oi(~x, t),Oj(~x

0
, t

0)]i (4.40)

We learned in our first course on Quantum Field Theory that the two-point functions

are Green’s functions. Usually, when thinking about scattering amplitudes, we work

with time-ordered (Feynman) correlation functions that are relevant for building per-

turbation theory. Here, we interested in the retarded correlation functions, characterised

by the presence of the step function sitting in front of (4.40).

Finally, if the system exhibits translational invariance in both space and time, then

the response function depends only on the di↵erences t� t
0 and ~x�~x 0. In this situation

it is useful to work in momentum and frequency space, so that the (4.39) becomes

�hOi(~k,!)i = �ij(~k,!)�j(~k,!) (4.41)
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Electrical Conductivity

Consider a quantum field theory with a U(1) global symmetry. By Noether’s theorem,

there is an associated conserved current Jµ = (J0
, J

i), obeying @µJµ = 0. This current

is an example of a composite operator. It couples to a source which is a gauge field

Aµ(x),

Hsource =

Z
d
d�1

~x AµJ
µ (4.42)

Here Aµ is the background gauge field of electromagnetism. However, for the purposes

of our discussion, we do not take Aµ to have dynamics of its own. Instead, we treat it

as a fixed source, under our control.

There is, however, a slight subtlety. In the presence of the background gauge field,

the current itself may be altered so that it depends on Aµ. A simple, well known,

example of this occurs for a free, relativistic, complex scalar field '. The conserved

current in the presence of the background field is given by

J
µ = ie['†

@
µ
'� (@µ'†)']� e

2
A

µ
'
†
' (4.43)

where e is the electric charge. With this definition, the Lagrangian can be written in

terms of covariant derivatives Dµ' = @µ'� ieAµ',

L =

Z
d
d�1

~x |@µ'|
2 + AµJ

µ =

Z
d
d�1

~x |Dµ'|
2 (4.44)

For non-relativistic fields (either bosons or fermions), similar Aµ terms arise in the

current for the spatial components.

We want to derive the response of the system to a background electric field. Which,

in more basic language, means that we want to derive Ohm’s law in our quantum field

theory. This is

hJi(~k,!)i = �ij(~k,!)Ej(~k,!) (4.45)

Here Ei is the background electric field in Fourier space and �ij is the conductivity

tensor. In a system with rotational and parity invariance (which, typically means in

the absence of a magnetic field) we have �ij = ��ij, so that the current is parallel to

the applied electric field. Here we will work with the more general case. Our goal is to

get an expression for �ij in terms of correlation functions in the field theory. Applying

(4.41) with the perturbation (4.42), we have

�hJµi = hJµi � hJµi0 = �i

Z
t

�1
dt

0
d
3
~x h[Jµ(~x, t), J⌫(~x

0
, t

0)]i0 A⌫(~x
0
, t

0) (4.46)
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The subscript 0 here means the quantum average in the state Aµ = 0 before we turn

on the background field. Let’s start by looking at the term hJii0. You might think that

there are no currents before we turn on the background field. But, in fact, the extra

term in (4.43) gives a contribution even if – as we’ll assume – the unperturbed state

has no currents. This contribution is

hJii0 = e
2
Aih'

†
'i0 = eAi⇢

where ⇢ is the background charge density. Notice it is not correct to set Ai = 0 in this

expression; the subscript 0 only means that we are evaluating the expectation value in

the Ai = 0 quantum state.

Let’s now deal with the right-hand side of (4.46). If we work in A0 = 0 gauge (where

things are simplest), the electric field is given by Ei = �Ȧi. In Fourier transform space,

this becomes

Ai(!) =
Ei(!)

i!
(4.47)

We can now simply Fourier transform (4.46) to get it in the form of Ohm’s law (4.45).

The conductivity tensor has two contributions: the first from the background charge

density; the second from the retarded Green’s function

�ij = �
e⇢

i!
�ij +

�ij(~k,!)

i!
(4.48)

with the Fourier transform of the retarded Green’s function given in terms of the

current-current correlation function

�ij(~k,!) = �i

Z 1

�1
dt d

3
~x ✓(t) ei(!t�

~k·~x)
h[Ji(~x, t), Jj(~0, 0)]i

This is the Kubo formula for conductivity.

Viscosity

We already saw in Section 2 that viscosity is associated to the transport of momentum.

And, just as for electric charge, momentum is conserved. For field theories that are

invariant under space and time translations, Noether’s theorem gives rise to four cur-

rents, associated to energy and momentum conservation. These are usually packaged

together into the stress-energy tensor T µ⌫ , obeying @µT µ⌫ = 0. (We already met this

object in a slightly di↵erent guise in Section 2, where the spatial components appeared

as the pressure tensor Pij and the temporal components as the overall velocity ui).
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The computation of viscosity in the framework of quantum field theory is entirely

analogous to the computation of electrical conductivity. The electric current is simply

replaced by the momentum current. Indeed, as we already saw in Section 2.5.3, the

viscosity tells us the ease with which momentum in, say, the x-direction can be trans-

ported in the z-direction. For such a set-up, the relevant component of the current is

T
xz. The analog of the formula for electrical conductivity can be re-interpreted as a

formula for viscosity. There are two di↵erences. Firstly, there is no background charge

density. Secondly, the viscosity is for a constant force, meaning that we should take

the ! ! 0 and ~k ! 0 limit of our equation. We have

�xz,xz(~k,!) = �i

Z 1

�1
dt d

3
~x ✓(t) ei(!t�

~k·~x)
h[Txz(~x, t), Txz(~0, 0)]i

and

⌘ = lim
!!0

�xz,xz(0,!)

i!

This is the Kubo formula for viscosity.

– 102 –


