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Dr David Tong, October 2007

1. A string of length a, mass per unit length σ and under tension T is fixed at

each end. The Lagrangian governing the time evolution of the transverse displacement

y(x, t) is

L =

∫ a

0

dx

[

σ

2

(

∂y

∂t

)2

−
T

2

(

∂y

∂x

)2
]

(1)

where x identifies position along the string from one end point. By expressing the

displacement as a sine series Fourier expansion in the form

y(x, t) =

√

2

a

∞
∑

n=1

sin
(nπx

a

)

qn(t) (2)

show that the Lagrangian becomes

L =

∞
∑

n=1

[

σ

2
q̇2

n −
T

2

(nπ

a

)2

q2

n

]

. (3)

Derive the equations of motion. Hence show that the string is equivalent to an infinite

set of decoupled harmonic oscillators with frequencies

ωn =

√

T

σ

(nπ

a

)

. (4)

2. Show directly that if φ(x) satisfies the Klein-Gordon equation, then φ(Λ−1x) also

satisfies this equation for any Lorentz transformation Λ.

3. The motion of a complex field ψ(x) is governed by the Lagrangian

L = ∂µψ
∗∂µψ −m2ψ∗ψ −

λ

2
(ψ∗ψ)2 . (5)

Write down the Euler-Lagrange field equations for this system. Verify that the La-

grangian is invariant under the infinitesimal transformation

δψ = iαψ , δψ∗ = −iαψ∗ (6)

Derive the Noether current associated with this transformation and verify explicitly

that it is conserved using the field equations satisfied by ψ.
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4. Verify that the Lagrangian density

L =
1

2
∂µφa∂

µφa −
1

2
m2φaφa (7)

for a triplet of real fields φa (a = 1, 2, 3) is invariant under the infinitesimal SO(3)

rotation by θ

φa → φa + θǫabcnbφc (8)

where na is a unit vector. Compute the Noether current jµ. Deduce that the three

quantities

Qa =

∫

d3x ǫabc φ̇bφc (9)

are all conserved and verify this directly using the field equations satisfied by φa.

5. A Lorentz transformation xµ → x′µ = Λµ
νx

ν is such that it preserves the Minkowski

metric ηµν , meaning that ηµνx
µxν = ηµνx

′µx′ν for all x. Show that this implies that

ηµν = ηστΛ
σ
µΛ

τ
ν . (10)

Use this result to show that an infinitesimal transformation of the form

Λµ
ν = δµ

ν + ωµ
ν (11)

is a Lorentz tranformation when ωµν is antisymmetric: i.e. ωµν = −ωνµ.

Write down the matrix form for ωµ
ν that corresponds to a rotation through an in-

finitesimal angle θ about the x3-axis. Do the same for a boost along the x1-axis by an

infinitesimal velocity v.

6. Consider the infinitesimal form of the Lorentz transformation derived in the previous

question: xµ → xµ + ωµ
νx

ν . Show that a scalar field transforms as

φ(x) → φ′(x) = φ(x) − ωµ
ν x

ν ∂µφ(x) (12)

and hence show that the variation of the Lagrangian density is a total derivative

δL = −∂µ(ωµ
νx

ν L) (13)

2



Using Noether’s theorem deduce the existence of the conserved current

jµ = −ωρ
ν [T µ

ρ x
ν ] (14)

The three conserved charges arising from spatial rotational invariance define the total

angular momentum of the field. Show that these charges are given by,

Qi = ǫijk

∫

d3x
(

xjT 0k − xkT 0j
)

(15)

Derive the conserved charges arising from invariance under Lorentz boosts. Show that

they imply

d

dt

∫

d3x (xi T 00) = constant (16)

and interpret this equation.

7. Maxwell’s Lagrangian for the electromagnetic field is

L = −
1

4
FµνF

µν (17)

where Fµν = ∂µAν − ∂νAµ and Aµ is the 4-vector potential. Show that L is invariant

under gauge transformations

Aµ → Aµ + ∂µξ (18)

where ξ = ξ(x) is a scalar field with arbitrary (differentiable) dependence on x.

Use Noether’s theorem, and the spacetime translational invariance of the action, to

construct the energy-momentum tensor T µν for the electromagnetic field. Show that

the resulting object is neither symmetric nor gauge invariant. Consider a new tensor

given by

Θµν = T µν − F ρµ ∂ρA
ν (19)

Show that this object also defines four conserved currents. Moreover, show that it is

symmetric, gauge invariant and traceless.

Comment: T µν and Θµν are both equally good definitions of the energy-momentum

tensor. However Θµν clearly has the nicer properties. Moreover, if you couple Maxwell’s

Lagrangian to general relativity then it is Θµν which appears in Einstein’s equations.

3



8. The Lagrangian density for a massive vector field Cµ is given by

L = −
1

4
FµνF

µν +
1

2
m2CµC

µ (20)

where Fµν = ∂µCν − ∂νCµ. Derive the equations of motion and show that when m 6= 0

they imply

∂µC
µ = 0 (21)

Further show that C0 can be eliminated completely in terms of the other fields by

∂i∂
i C0 +m2C0 = ∂iĊi (22)

Construct the canonical momenta Πi conjugate to Ci, i = 1, 2, 3 and show that the

canonical momentum conjugate to C0 is vanishing. Construct the Hamiltonian density

H in terms of C0, Ci and Πi. (Note: Do not be concerned that the canonical momen-

tum for C0 is vanishing. C0 is non-dynamical — it is determined entirely in terms of

the other fields using equation (22)).

9. A class of interesting theories are invariant under the scaling of all lengths by

xµ → (x′)µ = λ xµ and φ(x) → φ′(x) = λ−Dφ(λ−1x) (23)

Here D is called the scaling dimension of the field. Consider the action for a real scalar

field given by

S =

∫

d4x
1

2
∂µφ∂

µφ−
1

2
m2φ2 − gφ p (24)

Find the scaling dimension D such that the derivative terms remain invariant. For

what values of m and p is the scaling (23) a symmetry of the theory. How do these

conclusions change for a scalar field living in an (n+ 1)-dimensional spacetime instead

of a 3 + 1-dimensional spacetime?

In 3 + 1 dimensions, use Noether’s theorem to construct the conserved current Dµ

associated to scaling invariance.
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