Quantum Field Theory: Example Sheet 1
Dr David Tong, October 2007

1. A string of length a, mass per unit length ¢ and under tension T is fixed at
each end. The Lagrangian governing the time evolution of the transverse displacement

y(z,t) is
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where z identifies position along the string from one end point. By expressing the
displacement as a sine series Fourier expansion in the form
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show that the Lagrangian becomes
= [o T /nm\2
LZE:_@__(_) 2| 3

Derive the equations of motion. Hence show that the string is equivalent to an infinite
set of decoupled harmonic oscillators with frequencies
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2. Show directly that if ¢(z) satisfies the Klein-Gordon equation, then ¢(A~'z) also
satisfies this equation for any Lorentz transformation A.

3. The motion of a complex field 1(x) is governed by the Lagrangian

A
L= 0,00 —m*' — S w)° (5)

Write down the Euler-Lagrange field equations for this system. Verify that the La-
grangian is invariant under the infinitesimal transformation

oY =iday , Yt = —ia)” (6)

Derive the Noether current associated with this transformation and verify explicitly
that it is conserved using the field equations satisfied by .
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4. Verify that the Lagrangian density
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L= 50u0a0"00 — §m2¢a¢a (7)

for a triplet of real fields ¢, (a = 1,2,3) is invariant under the infinitesimal SO(3)
rotation by 6

¢a - ¢a + eeabcnb¢c (8)

where n, is a unit vector. Compute the Noether current j#. Deduce that the three
quantities

Qa = /de €abe ¢b¢c (9)
are all conserved and verify this directly using the field equations satisfied by ¢,.

5. A Lorentz transformation z* — z'* = A* ¥ is such that it preserves the Minkowski
metric 7),,,, meaning that n,,x"z" = n,,2™z" for all x. Show that this implies that

77#1/ = nUTAU,uATV . (10)
Use this result to show that an infinitesimal transformation of the form
AHI/ - 6“1/ + wul/ (11)

is a Lorentz tranformation when w” is antisymmetric: i.e. W’ = —w"".

Write down the matrix form for w*, that corresponds to a rotation through an in-
finitesimal angle § about the 2*-axis. Do the same for a boost along the x!-axis by an
infinitesimal velocity v.

6. Consider the infinitesimal form of the Lorentz transformation derived in the previous
question: z# — x* 4+ w* z¥. Show that a scalar field transforms as

¢(x) — ¢ (x) = d(z) — W', 2" () (12)
and hence show that the variation of the Lagrangian density is a total derivative

0L = =0, (wha" L) (13)



Using Noether’s theorem deduce the existence of the conserved current
gt ==, [T 2] (14)

The three conserved charges arising from spatial rotational invariance define the total
angular momentum of the field. Show that these charges are given by,

Q; = el-jk/d?’x (ijOk — kaOj) (15)
Derive the conserved charges arising from invariance under Lorentz boosts. Show that
they imply
d 3 i 700
pm d’z (' T"") = constant (16)

and interpret this equation.

7. Maxwell’s Lagrangian for the electromagnetic field is

1 14
L= —ZFWF“ (17)
where F),, = 0,A, — 0,A, and A, is the 4-vector potential. Show that £ is invariant

under gauge transformations
A, — A+ 0.8 (18)
where £ = £(z) is a scalar field with arbitrary (differentiable) dependence on x.
Use Noether’s theorem, and the spacetime translational invariance of the action, to
construct the energy-momentum tensor 7" for the electromagnetic field. Show that

the resulting object is neither symmetric nor gauge invariant. Consider a new tensor
given by

QM = TH — FP g, A (19)

Show that this object also defines four conserved currents. Moreover, show that it is
symmetric, gauge invariant and traceless.

Comment: 7" and ©* are both equally good definitions of the energy-momentum
tensor. However ©*” clearly has the nicer properties. Moreover, if you couple Maxwell’s
Lagrangian to general relativity then it is ©*” which appears in Einstein’s equations.



8. The Lagrangian density for a massive vector field C), is given by

1 1
L=—JFuF" + §m2OMC’“ (20)

where F),, = 0,C, — 0,C,,. Derive the equations of motion and show that when m # 0
they imply

9,0 =0 (21)
Further show that C can be eliminated completely in terms of the other fields by
9;0" Cy +m2Cy = 0'C; (22)

Construct the canonical momenta II; conjugate to C;, ¢+ = 1,2,3 and show that the
canonical momentum conjugate to Cy is vanishing. Construct the Hamiltonian density
H in terms of Cy, C; and II;. (Note: Do not be concerned that the canonical momen-
tum for Cj is vanishing. Cj is non-dynamical — it is determined entirely in terms of
the other fields using equation (22)).

9. A class of interesting theories are invariant under the scaling of all lengths by
o' — () = Ao and é(z) — ¢'(z) = AP\ ') (23)

Here D is called the scaling dimension of the field. Consider the action for a real scalar
field given by
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5= [ die 30,000 - Jus? - g0 (24)

Find the scaling dimension D such that the derivative terms remain invariant. For
what values of m and p is the scaling (23) a symmetry of the theory. How do these
conclusions change for a scalar field living in an (n 4 1)-dimensional spacetime instead
of a 3 + 1-dimensional spacetime?

In 3 + 1 dimensions, use Noether’s theorem to construct the conserved current D*
associated to scaling invariance.



