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Recommended Books and Resources

• M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory

This is a very clear and comprehensive book, covering everything in this course at the

right level. It will also cover everything in the “Advanced Quantum Field Theory”

course, much of the “Standard Model” course, and will serve you well if you go on to

do research. To a large extent, our course will follow the first section of this book.

There is a vast array of further Quantum Field Theory texts, many of them with

redeeming features. Here I mention a few very di↵erent ones.

• S. Weinberg, The Quantum Theory of Fields, Vol 1

This is the first in a three volume series by one of the masters of quantum field theory.

It takes a unique route to through the subject, focussing initially on particles rather

than fields. The second volume covers material lectured in “AQFT”.

• L. Ryder, Quantum Field Theory

This elementary text has a nice discussion of much of the material in this course.

• A. Zee, Quantum Field Theory in a Nutshell

This is charming book, where emphasis is placed on physical understanding and the

author isn’t afraid to hide the ugly truth when necessary. It contains many gems.

• M Srednicki, Quantum Field Theory

A very clear and well written introduction to the subject. Both this book and Zee’s

focus on the path integral approach, rather than canonical quantization that we develop

in this course.

There are also resources available on the web. Some particularly good ones are listed

on the course webpage: http://www.damtp.cam.ac.uk/user/tong/qft.html
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0. Introduction

“There are no real one-particle systems in nature, not even few-particle

systems. The existence of virtual pairs and of pair fluctuations shows that

the days of fixed particle numbers are over.”
Viki Weisskopf

The concept of wave-particle duality tells us that the properties of electrons and

photons are fundamentally very similar. Despite obvious di↵erences in their mass and

charge, under the right circumstances both su↵er wave-like di↵raction and both can

pack a particle-like punch.

Yet the appearance of these objects in classical physics is very di↵erent. Electrons

and other matter particles are postulated to be elementary constituents of Nature. In

contrast, light is a derived concept: it arises as a ripple of the electromagnetic field. If

photons and particles are truely to be placed on equal footing, how should we reconcile

this di↵erence in the quantum world? Should we view the particle as fundamental,

with the electromagnetic field arising only in some classical limit from a collection of

quantum photons? Or should we instead view the field as fundamental, with the photon

appearing only when we correctly treat the field in a manner consistent with quantum

theory? And, if this latter view is correct, should we also introduce an “electron field”,

whose ripples give rise to particles with mass and charge? But why then didn’t Faraday,

Maxwell and other classical physicists find it useful to introduce the concept of matter

fields, analogous to the electromagnetic field?

The purpose of this course is to answer these questions. We shall see that the second

viewpoint above is the most useful: the field is primary and particles are derived

concepts, appearing only after quantization. We will show how photons arise from the

quantization of the electromagnetic field and how massive, charged particles such as

electrons arise from the quantization of matter fields. We will learn that in order to

describe the fundamental laws of Nature, we must not only introduce electron fields,

but also quark fields, neutrino fields, gluon fields, W and Z-boson fields, Higgs fields

and a whole slew of others. There is a field associated to each type of fundamental

particle that appears in Nature.

Why Quantum Field Theory?

In classical physics, the primary reason for introducing the concept of the field is to

construct laws of Nature that are local. The old laws of Coulomb and Newton involve

“action at a distance”. This means that the force felt by an electron (or planet) changes
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immediately if a distant proton (or star) moves. This situation is philosophically un-

satisfactory. More importantly, it is also experimentally wrong. The field theories of

Maxwell and Einstein remedy the situation, with all interactions mediated in a local

fashion by the field.

The requirement of locality remains a strong motivation for studying field theories

in the quantum world. However, there are further reasons for treating the quantum

field as fundamental1. Here I’ll give two answers to the question: Why quantum field

theory?

Answer 1: Because the combination of quantum mechanics and special relativity

implies that particle number is not conserved.

Particles are not indestructible objects, made at the

Figure 1:

beginning of the universe and here for good. They can be

created and destroyed. They are, in fact, mostly ephemeral

and fleeting. This experimentally verified fact was first

predicted by Dirac who understood how relativity implies

the necessity of anti-particles. An extreme demonstra-

tion of particle creation is shown in the picture, which

comes from the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven, Long Island. This machine crashes gold nu-

clei together, each containing 197 nucleons. The resulting

explosion contains up to 10,000 particles, captured here in

all their beauty by the STAR detector.

We will review Dirac’s argument for anti-particles later in this course, together with

the better understanding that we get from viewing particles in the framework of quan-

tum field theory. For now, we’ll quickly sketch the circumstances in which we expect

the number of particles to change. Consider a particle of mass m trapped in a box

of size L. Heisenberg tells us that the uncertainty in the momentum is �p � ~/L.
In a relativistic setting, momentum and energy are on an equivalent footing, so we

should also have an uncertainty in the energy of order �E � ~c/L. However, when

the uncertainty in the energy exceeds �E = 2mc2, then we cross the barrier to pop

particle anti-particle pairs out of the vacuum. We learn that particle-anti-particle pairs

are expected to be important when a particle of mass m is localized within a distance

of order

� =
~
mc

1A concise review of the underlying principles and major successes of quantum field theory can be
found in the article by Frank Wilczek, http://arxiv.org/abs/hep-th/9803075
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At distances shorter than this, there is a high probability that we will detect particle-

anti-particle pairs swarming around the original particle that we put in. The distance �

is called the Compton wavelength. It is always smaller than the de Broglie wavelength

�dB = h/|~p|. If you like, the de Broglie wavelength is the distance at which the wavelike

nature of particles becomes apparent; the Compton wavelength is the distance at which

the concept of a single pointlike particle breaks down completely.

The presence of a multitude of particles and antiparticles at short distances tells us

that any attempt to write down a relativistic version of the one-particle Schrödinger

equation (or, indeed, an equation for any fixed number of particles) is doomed to failure.

There is no mechanism in standard non-relativistic quantum mechanics to deal with

changes in the particle number. Indeed, any attempt to naively construct a relativistic

version of the one-particle Schrödinger equation meets with serious problems. (Negative

probabilities, infinite towers of negative energy states, or a breakdown in causality are

the common issues that arise). In each case, this failure is telling us that once we

enter the relativistic regime we need a new formalism in order to treat states with an

unspecified number of particles. This formalism is quantum field theory (QFT).

Answer 2: Because all particles of the same type are the same

This sound rather dumb. But it’s not! What I mean by this is that two electrons

are identical in every way, regardless of where they came from and what they’ve been

through. The same is true of every other fundamental particle. Let me illustrate this

through a rather prosaic story. Suppose we capture a proton from a cosmic ray which

we identify as coming from a supernova lying 8 billion lightyears away. We compare

this proton with one freshly minted in a particle accelerator here on Earth. And the

two are exactly the same! How is this possible? Why aren’t there errors in proton

production? How can two objects, manufactured so far apart in space and time, be

identical in all respects? One explanation that might be o↵ered is that there’s a sea

of proton “stu↵” filling the universe and when we make a proton we somehow dip our

hand into this stu↵ and from it mould a proton. Then it’s not surprising that protons

produced in di↵erent parts of the universe are identical: they’re made of the same stu↵.

It turns out that this is roughly what happens. The “stu↵” is the proton field or, if

you look closely enough, the quark field.

In fact, there’s more to this tale. Being the “same” in the quantum world is not

like being the “same” in the classical world: quantum particles that are the same are

truely indistinguishable. Swapping two particles around leaves the state completely

unchanged — apart from a possible minus sign. This minus sign determines the statis-

tics of the particle. In quantum mechanics you have to put these statistics in by hand
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and, to agree with experiment, should choose Bose statistics (no minus sign) for integer

spin particles, and Fermi statistics (yes minus sign) for half-integer spin particles. In

quantum field theory, this relationship between spin and statistics is not something

that you have to put in by hand. Rather, it is a consequence of the framework.

What is Quantum Field Theory?

Having told you why QFT is necessary, I should really tell you what it is. The clue is in

the name: it is the quantization of a classical field, the most familiar example of which

is the electromagnetic field. In standard quantum mechanics, we’re taught to take the

classical degrees of freedom and promote them to operators acting on a Hilbert space.

The rules for quantizing a field are no di↵erent. Thus the basic degrees of freedom in

quantum field theory are operator valued functions of space and time. This means that

we are dealing with an infinite number of degrees of freedom — at least one for every

point in space. This infinity will come back to bite on several occasions.

It will turn out that the possible interactions in quantum field theory are governed

by a few basic principles: locality, symmetry and renormalization group flow (the

decoupling of short distance phenomena from physics at larger scales). These ideas

make QFT a very robust framework: given a set of fields there is very often an almost

unique way to couple them together.

What is Quantum Field Theory Good For?

The answer is: almost everything. As I have stressed above, for any relativistic system

it is a necessity. But it is also a very useful tool in non-relativistic systems with many

particles. Quantum field theory has had a major impact in condensed matter, high-

energy physics, cosmology, quantum gravity and pure mathematics. It is literally the

language in which the laws of Nature are written.

0.1 Units and Scales

Nature presents us with three fundamental dimensionful constants; the speed of light c,

Planck’s constant (divided by 2⇡) ~ and Newton’s constant G. They have dimensions

[c] = LT�1

[~] = L2MT�1

[G] = L3M�1T�2

Throughout this course we will work with “natural” units, defined by

c = ~ = 1 (0.1)
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which allows us to express all dimensionful quantities in terms of a single scale which

we choose to be mass or, equivalently, energy (since E = mc2 has become E = m).

The usual choice of energy unit is eV , the electron volt or, more often GeV = 109eV or

TeV = 1012eV . To convert the unit of energy back to a unit of length or time, we need

to insert the relevant powers of c and ~. For example, the length scale � associated to

a mass m is the Compton wavelength

� =
~
mc

With this conversion factor, the electron mass me = 106eV translates to a length scale

�e ⇠ 10�12m. (The Compton wavelength is also defined with an extra factor of 2⇡:

� = 2⇡~/mc.)

Throughout this course we will refer to the dimension of a quantity, meaning the

mass dimension. If X has dimensions of (mass)d we will write [X] = d. In particular,

the surviving natural quantity G has dimensions [G] = �2 and defines a mass scale,

G =
~c
M2

p

=
1

M2
p

(0.2)

where Mp ⇡ 1019GeV is the Planck scale. It corresponds to a length lp ⇡ 10�33cm. The

Planck scale is thought to be the smallest length scale that makes sense: beyond this

quantum gravity e↵ects become important and it’s no longer clear that the concept

of spacetime makes sense. The largest length scale we can talk of is the size of the

cosmological horizon, roughly 1060lp.
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Figure 2: Energy and Distance Scales in the Universe

Some useful scales in the universe are shown in the figure. This is a logarithmic plot,

with energy increasing to the right and, correspondingly, length increasing to the left.

The smallest and largest scales known are shown on the figure, together with other
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relevant energy scales. The standard model of particle physics is expected to hold up

to about the TeV . This is precisely the regime that is currently being probed by the

Large Hadron Collider (LHC) at CERN. There is a general belief that the framework

of quantum field theory will continue to hold to energy scales only slightly below the

Planck scale — for example, there are experimental hints that the coupling constants

of electromagnetism, and the weak and strong forces unify at around 1018 GeV.

For comparison, the rough masses of some elementary (and not so elementary) par-

ticles are shown in the table,

Particle Mass

neutrinos ⇠ 10�2 eV

electron 0.5 MeV

Muon 100 MeV

Pions 140 MeV

Proton, Neutron 1 GeV

Tau 2 GeV

W,Z Bosons 80-90 GeV

Higgs Boson 125 GeV
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1. Classical Field Theory

In this first section we will discuss various aspects of classical fields. We will cover only

the bare minimum ground necessary before turning to the quantum theory, and will

return to classical field theory at several later stages in the course when we need to

introduce new ideas.

1.1 The Dynamics of Fields

A field is a quantity defined at every point of space and time (~x, t). While classical

particle mechanics deals with a finite number of generalized coordinates qa(t), indexed

by a label a, in field theory we are interested in the dynamics of fields

�a(~x, t) (1.1)

where both a and ~x are considered as labels. Thus we are dealing with a system with an

infinite number of degrees of freedom — at least one for each point ~x in space. Notice

that the concept of position has been relegated from a dynamical variable in particle

mechanics to a mere label in field theory.

An Example: The Electromagnetic Field

The most familiar examples of fields from classical physics are the electric and magnetic

fields, ~E(~x, t) and ~B(~x, t). Both of these fields are spatial 3-vectors. In a more sophis-

ticated treatement of electromagnetism, we derive these two 3-vectors from a single

4-component field Aµ(~x, t) = (�, ~A) where µ = 0, 1, 2, 3 shows that this field is a vector

in spacetime. The electric and magnetic fields are given by

~E = �r�� @ ~A

@t
and ~B = r⇥ ~A (1.2)

which ensure that two of Maxwell’s equations, r · ~B = 0 and d ~B/dt = �r⇥ ~E, hold

immediately as identities.

The Lagrangian

The dynamics of the field is governed by a Lagrangian which is a function of �(~x, t),

�̇(~x, t) and r�(~x, t). In all the systems we study in this course, the Lagrangian is of

the form,

L(t) =

Z
d3x L(�a, @µ�a) (1.3)
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where the o�cial name for L is the Lagrangian density, although everyone simply calls

it the Lagrangian. The action is,

S =

Z
t2

t1

dt

Z
d3x L =

Z
d4x L (1.4)

Recall that in particle mechanics L depends on q and q̇, but not q̈. In field theory

we similarly restrict to Lagrangians L depending on � and �̇, and not �̈. In principle,

there’s nothing to stop L depending on r�, r2�, r3�, etc. However, with an eye to

later Lorentz invariance, we will only consider Lagrangians depending on r� and not

higher derivatives. Also we will not consider Lagrangians with explicit dependence on

xµ; all such dependence only comes through � and its derivatives.

We can determine the equations of motion by the principle of least action. We vary

the path, keeping the end points fixed and require �S = 0,

�S =

Z
d4x


@L
@�a

��a +
@L

@(@µ�a)
�(@µ�a)

�

=

Z
d4x


@L
@�a

� @µ

✓
@L

@(@µ�a)

◆�
��a + @µ

✓
@L

@(@µ�a)
��a

◆
(1.5)

The last term is a total derivative and vanishes for any ��a(~x, t) that decays at spatial

infinity and obeys ��a(~x, t1) = ��a(~x, t2) = 0. Requiring �S = 0 for all such paths

yields the Euler-Lagrange equations of motion for the fields �a,

@µ

✓
@L

@(@µ�a)

◆
� @L
@�a

= 0 (1.6)

1.1.1 An Example: The Klein-Gordon Equation

Consider the Lagrangian for a real scalar field �(~x, t),

L = 1
2 ⌘

µ⌫ @µ�@⌫�� 1
2m

2�2 (1.7)

= 1
2 �̇

2 � 1

2
(r�)2 � 1

2m
2�2

where we are using the Minkowski space metric

⌘µ⌫ = ⌘µ⌫ =

 
+1

�1

�1

�1

!
(1.8)

Comparing (1.7) to the usual expression for the Lagrangian L = T �V , we identify the

kinetic energy of the field as

T =

Z
d3x 1

2 �̇
2 (1.9)
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and the potential energy of the field as

V =

Z
d3x 1

2(r�)
2 + 1

2m
2�2 (1.10)

The first term in this expression is called the gradient energy, while the phrase “poten-

tial energy”, or just “potential”, is usually reserved for the last term.

To determine the equations of motion arising from (1.7), we compute

@L
@�

= �m2� and
@L

@(@µ�)
= @µ� ⌘ (�̇,�r�) (1.11)

The Euler-Lagrange equation is then

�̈�r2�+m2� = 0 (1.12)

which we can write in relativistic form as

@µ@
µ�+m2� = 0 (1.13)

This is the Klein-Gordon Equation. The Laplacian in Minkowski space is sometimes

denoted by ⇤. In this notation, the Klein-Gordon equation reads ⇤�+m2� = 0.

An obvious generalization of the Klein-Gordon equation comes from considering the

Lagrangian with arbitrary potential V (�),

L = 1
2@µ�@

µ�� V (�) ) @µ@
µ�+

@V

@�
= 0 (1.14)

1.1.2 Another Example: First Order Lagrangians

We could also consider a Lagrangian that is linear in time derivatives, rather than

quadratic. Take a complex scalar field  whose dynamics is defined by the real La-

grangian

L =
i

2
( ? ̇ �  ̇? )�r ? ·r �m ? (1.15)

We can determine the equations of motion by treating  and  ? as independent objects,

so that
@L
@ ?

=
i

2
 ̇ �m and

@L
@ ̇?

= � i

2
 and

@L
@r ?

= �r (1.16)

This gives us the equation of motion

i
@ 

@t
= �r2 +m (1.17)

This looks very much like the Schrödinger equation. Except it isn’t! Or, at least, the

interpretation of this equation is very di↵erent: the field  is a classical field with none

of the probability interpretation of the wavefunction. We’ll come back to this point in

Section 2.8.
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The initial data required on a Cauchy surface di↵ers for the two examples above.

When L ⇠ �̇2, both � and �̇ must be specified to determine the future evolution;

however when L ⇠  ? ̇, only  and  ? are needed.

1.1.3 A Final Example: Maxwell’s Equations

We may derive Maxwell’s equations in the vacuum from the Lagrangian,

L = �1
2 (@µA⌫) (@

µA⌫) + 1
2(@µA

µ)2 (1.18)

Notice the funny minus signs! This is to ensure that the kinetic terms for Ai are positive

using the Minkowski space metric (1.8), so L ⇠ 1
2 Ȧ

2
i
. The Lagrangian (1.18) has no

kinetic term Ȧ2
0 for A0. We will see the consequences of this in Section 6. To see that

Maxwell’s equations indeed follow from (1.18), we compute

@L
@(@µA⌫)

= �@µA⌫ + (@⇢A
⇢) ⌘µ⌫ (1.19)

from which we may derive the equations of motion,

@µ

✓
@L

@(@µA⌫)

◆
= �@2A⌫ + @⌫(@⇢A

⇢) = �@µ(@µA⌫ � @⌫Aµ) ⌘ �@µF µ⌫ (1.20)

where the field strength is defined by Fµ⌫ = @µA⌫ � @⌫Aµ. You can check using (1.2)

that this reproduces the remaining two Maxwell’s equations in a vacuum: r · ~E = 0

and @ ~E/@t = r ⇥ ~B. Using the notation of the field strength, we may rewrite the

Maxwell Lagrangian (up to an integration by parts) in the compact form

L = �1
4 Fµ⌫F

µ⌫ (1.21)

1.1.4 Locality, Locality, Locality

In each of the examples above, the Lagrangian is local. This means that there are no

terms in the Lagrangian coupling �(~x, t) directly to �(~y, t) with ~x 6= ~y. For example,

there are no terms that look like

L =

Z
d3xd3y �(~x)�(~y) (1.22)

A priori, there’s no reason for this. After all, ~x is merely a label, and we’re quite

happy to couple other labels together (for example, the term @3A0 @0A3 in the Maxwell

Lagrangian couples the µ = 0 field to the µ = 3 field). But the closest we get for the

~x label is a coupling between �(~x) and �(~x + �~x) through the gradient term (r�)2.
This property of locality is, as far as we know, a key feature of all theories of Nature.

Indeed, one of the main reasons for introducing field theories in classical physics is to

implement locality. In this course, we will only consider local Lagrangians.
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1.2 Lorentz Invariance

The laws of Nature are relativistic, and one of the main motivations to develop quantum

field theory is to reconcile quantum mechanics with special relativity. To this end, we

want to construct field theories in which space and time are placed on an equal footing

and the theory is invariant under Lorentz transformations,

xµ �! (x0)µ = ⇤µ

⌫
x⌫ (1.23)

where ⇤µ

⌫
satisfies

⇤µ

�
⌘�⌧ ⇤⌫

⌧
= ⌘µ⌫ (1.24)

For example, a rotation by ✓ about the x3-axis, and a boost by v < 1 along the x1-axis

are respectively described by the Lorentz transformations

⇤µ

⌫
=

0

BBBB@

1 0 0 0

0 cos ✓ � sin ✓ 0

0 sin ✓ cos ✓ 0

0 0 0 1

1

CCCCA
and ⇤µ

⌫
=

0

BBBB@

� ��v 0 0

��v � 0 0

0 0 1 0

0 0 0 1

1

CCCCA
(1.25)

with � = 1/
p
1� v2. The Lorentz transformations form a Lie group under matrix

multiplication. You’ll learn more about this in the “Symmetries and Particle Physics”

course.

The Lorentz transformations have a representation on the fields. The simplest ex-

ample is the scalar field which, under the Lorentz transformation x ! ⇤x, transforms

as

�(x) ! �0(x) = �(⇤�1x) (1.26)

The inverse ⇤�1 appears in the argument because we are dealing with an active trans-

formation in which the field is truly shifted. To see why this means that the inverse

appears, it will su�ce to consider a non-relativistic example such as a temperature field.

Suppose we start with an initial field �(~x) which has a hotspot at, say, ~x = (1, 0, 0).

After a rotation ~x ! R~x about the z-axis, the new field �0(~x) will have the hotspot at

~x = (0, 1, 0). If we want to express �0(~x) in terms of the old field �, we need to place

ourselves at ~x = (0, 1, 0) and ask what the old field looked like where we’ve come from

at R�1(0, 1, 0) = (1, 0, 0). This R�1 is the origin of the inverse transformation. (If we

were instead dealing with a passive transformation in which we relabel our choice of

coordinates, we would have instead �(x) ! �0(x) = �(⇤x)).
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The definition of a Lorentz invariant theory is that if �(x) solves the equations of

motion then �(⇤�1x) also solves the equations of motion. We can ensure that this

property holds by requiring that the action is Lorentz invariant. Let’s look at our

examples:

Example 1: The Klein-Gordon Equation

For a real scalar field we have �(x) ! �0(x) = �(⇤�1x). The derivative of the scalar

field transforms as a vector, meaning

(@µ�)(x) ! (⇤�1)⌫
µ
(@⌫�)(y)

where y = ⇤�1x. This means that the derivative terms in the Lagrangian density

transform as

Lderiv(x) = @µ�(x)@⌫�(x)⌘
µ⌫ �! (⇤�1)⇢

µ
(@⇢�)(y) (⇤

�1)�
⌫
(@��)(y) ⌘

µ⌫

= (@⇢�)(y) (@��)(y) ⌘
⇢�

= Lderiv(y) (1.27)

The potential terms transform in the same way, with �2(x) ! �2(y). Putting this all

together, we find that the action is indeed invariant under Lorentz transformations,

S =

Z
d4x L(x) �!

Z
d4x L(y) =

Z
d4y L(y) = S (1.28)

where, in the last step, we need the fact that we don’t pick up a Jacobian factor when

we change integration variables from
R
d4x to

R
d4y. This follows because det⇤ = 1.

(At least for Lorentz transformation connected to the identity which, for now, is all we

deal with).

Example 2: First Order Dynamics

In the first-order Lagrangian (1.15), space and time are not on the same footing. (L
is linear in time derivatives, but quadratic in spatial derivatives). The theory is not

Lorentz invariant.

In practice, it’s easy to see if the action is Lorentz invariant: just make sure all

the Lorentz indices µ = 0, 1, 2, 3 are contracted with Lorentz invariant objects, such

as the metric ⌘µ⌫ . Other Lorentz invariant objects you can use include the totally

antisymmetric tensor ✏µ⌫⇢� and the matrices �µ that we will introduce when we come

to discuss spinors in Section 4.
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Example 3: Maxwell’s Equations

Under a Lorentz transformation Aµ(x) ! ⇤µ

⌫
A⌫(⇤�1x). You can check that Maxwell’s

Lagrangian (1.21) is indeed invariant. Of course, historically electrodynamics was the

first Lorentz invariant theory to be discovered: it was found even before the concept of

Lorentz invariance.

1.3 Symmetries

The role of symmetries in field theory is possibly even more important than in particle

mechanics. There are Lorentz symmetries, internal symmetries, gauge symmetries,

supersymmetries.... We start here by recasting Noether’s theorem in a field theoretic

framework.

1.3.1 Noether’s Theorem

Every continuous symmetry of the Lagrangian gives rise to a conserved current jµ(x)

such that the equations of motion imply

@µj
µ = 0 (1.29)

or, in other words, @j 0/@t+r ·~j = 0.

A Comment: A conserved current implies a conserved charge Q, defined as

Q =

Z

R3

d3x j 0 (1.30)

which one can immediately see by taking the time derivative,

dQ

dt
=

Z

R3

d3x
@j

@t

0

= �
Z

R3

d3x r ·~j = 0 (1.31)

assuming that ~j ! 0 su�ciently quickly as |~x| ! 1. However, the existence of a

current is a much stronger statement than the existence of a conserved charge because

it implies that charge is conserved locally. To see this, we can define the charge in a

finite volume V ,

QV =

Z

V

d3x j 0 (1.32)

Repeating the analysis above, we find that

dQV

dt
= �

Z

V

d3x r ·~j = �
Z

A

~j · d~S (1.33)
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where A is the area bounding V and we have used Stokes’ theorem. This equation

means that any charge leaving V must be accounted for by a flow of the current 3-

vector ~j out of the volume. This kind of local conservation of charge holds in any local

field theory.

Proof of Noether’s Theorem: We’ll prove the theorem by working infinitesimally.

We may always do this if we have a continuous symmetry. We say that the transfor-

mation

��a(x) = Xa(�) (1.34)

is a symmetry if the Lagrangian changes by a total derivative,

�L = @µF
µ (1.35)

for some set of functions F µ(�). To derive Noether’s theorem, we first consider making

an arbitrary transformation of the fields ��a. Then

�L =
@L
@�a

��a +
@L

@(@µ�a)
@µ(��a)

=


@L
@�a

� @µ
@L

@(@µ�a)

�
��a + @µ

✓
@L

@(@µ�a)
��a

◆
(1.36)

When the equations of motion are satisfied, the term in square brackets vanishes. So

we’re left with

�L = @µ

✓
@L

@(@µ�a)
��a

◆
(1.37)

But for the symmetry transformation ��a = Xa(�), we have by definition �L = @µF µ.

Equating this expression with (1.37) gives us the result

@µj
µ = 0 with jµ =

@L
@(@µ�a)

Xa(�)� F µ(�) (1.38)

1.3.2 An Example: Translations and the Energy-Momentum Tensor

Recall that in classical particle mechanics, invariance under spatial translations gives

rise to the conservation of momentum, while invariance under time translations is

responsible for the conservation of energy. We will now see something similar in field

theories. Consider the infinitesimal translation

x⌫ ! x⌫ � ✏⌫ ) �a(x) ! �a(x) + ✏⌫@⌫�a(x) (1.39)
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(where the sign in the field transformation is plus, instead of minus, because we’re doing

an active, as opposed to passive, transformation). Similarly, once we substitute a spe-

cific field configuration �(x) into the Lagrangian, the Lagrangian itself also transforms

as

L(x) ! L(x) + ✏⌫@⌫L(x) (1.40)

Since the change in the Lagrangian is a total derivative, we may invoke Noether’s

theorem which gives us four conserved currents (jµ)⌫ , one for each of the translations

✏⌫ with ⌫ = 0, 1, 2, 3,

(jµ)⌫ =
@L

@(@µ�a)
@⌫�a � �µ

⌫
L ⌘ T µ

⌫
(1.41)

T µ

⌫
is called the energy-momentum tensor. It satisfies

@µT
µ

⌫
= 0 (1.42)

The four conserved quantities are given by

E =

Z
d3x T 00 and P i =

Z
d3x T 0i (1.43)

where E is the total energy of the field configuration, while P i is the total momentum

of the field configuration.

An Example of the Energy-Momentum Tensor

Consider the simplest scalar field theory with Lagrangian (1.7). From the above dis-

cussion, we can compute

T µ⌫ = @µ� @⌫�� ⌘µ⌫L (1.44)

One can verify using the equation of motion for � that this expression indeed satisfies

@µT µ⌫ = 0. For this example, the conserved energy and momentum are given by

E =

Z
d3x 1

2 �̇
2 + 1

2(r�)
2 + 1

2m
2�2 (1.45)

P i =

Z
d3x �̇ @i� (1.46)

Notice that for this example, T µ⌫ came out symmetric, so that T µ⌫ = T ⌫µ. This

won’t always be the case. Nevertheless, there is typically a way to massage the energy

momentum tensor of any theory into a symmetric form by adding an extra term

⇥µ⌫ = T µ⌫ + @⇢�
⇢µ⌫ (1.47)

where �⇢µ⌫ is some function of the fields that is anti-symmetric in the first two indices so

�⇢µ⌫ = ��µ⇢⌫ . This guarantees that @µ@⇢�⇢µ⌫ = 0 so that the new energy-momentum

tensor is also a conserved current.
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A Cute Trick

One reason that you may want a symmetric energy-momentum tensor is to make con-

tact with general relativity: such an object sits on the right-hand side of Einstein’s

field equations. In fact this observation provides a quick and easy way to determine a

symmetric energy-momentum tensor. Firstly consider coupling the theory to a curved

background spacetime, introducing an arbitrary metric gµ⌫(x) in place of ⌘µ⌫ , and re-

placing the kinetic terms with suitable covariant derivatives using “minimal coupling”.

Then a symmetric energy momentum tensor in the flat space theory is given by

⇥µ⌫ = � 2p
�g

@(
p
�gL)

@gµ⌫

����
gµ⌫=⌘µ⌫

(1.48)

It should be noted however that this trick requires a little more care when working

with spinors.

1.3.3 Another Example: Lorentz Transformations and Angular Momentum

In classical particle mechanics, rotational invariance gave rise to conservation of angular

momentum. What is the analogy in field theory? Moreover, we now have further

Lorentz transformations, namely boosts. What conserved quantity do they correspond

to? To answer these questions, we first need the infinitesimal form of the Lorentz

transformations

⇤µ

⌫
= �µ

⌫
+ !µ

⌫
(1.49)

where !µ

⌫
is infinitesimal. The condition (1.24) for ⇤ to be a Lorentz transformation

becomes

(�µ
�
+ !µ

�
)(�⌫

⌧
+ !⌫

⌧
) ⌘�⌧ = ⌘µ⌫

) !µ⌫ + !⌫µ = 0 (1.50)

So the infinitesimal form !µ⌫ of the Lorentz transformation must be an anti-symmetric

matrix. As a check, the number of di↵erent 4⇥4 anti-symmetric matrices is 4⇥3/2 = 6,

which agrees with the number of di↵erent Lorentz transformations (3 rotations + 3

boosts). Now the transformation on a scalar field is given by

�(x) ! �0(x) = �(⇤�1x)

= �(xµ � !µ

⌫
x⌫)

= �(xµ)� !µ

⌫
x⌫ @µ�(x) (1.51)
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from which we see that

�� = �!µ

⌫
x⌫@µ� (1.52)

By the same argument, the Lagrangian density transforms as

�L = �!µ

⌫
x⌫@µL = �@µ(!µ

⌫
x⌫L) (1.53)

where the last equality follows because !µ

µ
= 0 due to anti-symmetry. Once again,

the Lagrangian changes by a total derivative so we may apply Noether’s theorem (now

with F µ = �!µ

⌫
x⌫L) to find the conserved current

j µ = � @L
@(@µ�)

!⇢

⌫
x⌫ @⇢�+ !µ

⌫
x⌫L

= �!⇢

⌫


@L

@(@µ�)
x⌫ @⇢�� �µ

⇢
x⌫ L

�
= �!⇢

⌫
T µ

⇢
x⌫ (1.54)

Unlike in the previous example, I’ve left the infinitesimal choice of !µ

⌫
in the expression

for this current. But really, we should strip it out to give six di↵erent currents, i.e. one

for each choice of !µ

⌫
. We can write them as

(J µ)⇢� = x⇢T µ� � x�T µ⇢ (1.55)

which satisfy @µ(J µ)⇢� = 0 and give rise to 6 conserved charges. For ⇢, � = 1, 2, 3,

the Lorentz transformation is a rotation and the three conserved charges give the total

angular momentum of the field.

Qij =

Z
d3x (xiT 0j � xjT 0i) (1.56)

But what about the boosts? In this case, the conserved charges are

Q0i =

Z
d3x (x0T 0i � xiT 00) (1.57)

The fact that these are conserved tells us that

0 =
dQ0i

dt
=

Z
d3x T 0i + t

Z
d3x

@T 0i

@t
� d

dt

Z
d3x xiT 00

= P i + t
dP i

dt
� d

dt

Z
d3x xiT 00 (1.58)

But we know that P i is conserved, so dP i/dt = 0, leaving us with the following conse-

quence of invariance under boosts:

d

dt

Z
d3x xiT 00 = constant (1.59)

This is the statement that the center of energy of the field travels with a constant

velocity. It’s kind of like a field theoretic version of Newton’s first law but, rather

surprisingly, appearing here as a conservation law.
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1.3.4 Internal Symmetries

The above two examples involved transformations of spacetime, as well as transforma-

tions of the field. An internal symmetry is one that only involves a transformation of

the fields and acts the same at every point in spacetime. The simplest example occurs

for a complex scalar field  (x) = (�1(x)+ i�2(x))/
p
2. We can build a real Lagrangian

by

L = @µ 
? @µ � V (| |2) (1.60)

where the potential is a general polynomial in | |2 =  ? . To find the equations of

motion, we could expand  in terms of �1 and �2 and work as before. However, it’s

easier (and equivalent) to treat  and  ? as independent variables and vary the action

with respect to both of them. For example, varying with respect to  ? leads to the

equation of motion

@µ@
µ +

@V ( ? )

@ ?
= 0 (1.61)

The Lagrangian has a continuous symmetry which rotates �1 and �2 or, equivalently,

rotates the phase of  :

 ! ei↵ or � = i↵ (1.62)

where the latter equation holds with ↵ infinitesimal. The Lagrangian remains invariant

under this change: �L = 0. The associated conserved current is

j µ = i(@µ ?) � i ?(@µ ) (1.63)

We will later see that the conserved charges arising from currents of this type have

the interpretation of electric charge or particle number (for example, baryon or lepton

number).

Non-Abelian Internal Symmetries

Consider a theory involving N scalar fields �a, all with the same mass and the La-

grangian

L =
1

2

NX

a=1

@µ�a@
µ�a �

1

2

NX

a=1

m2�2
a
� g

 
NX

a=1

�2
a

!2

(1.64)

In this case the Lagrangian is invariant under the non-Abelian symmetry group G =

SO(N). (Actually O(N) in this case). One can construct theories from complex fields

in a similar manner that are invariant under an SU(N) symmetry group. Non-Abelian

symmetries of this type are often referred to as global symmetries to distinguish them

from the “local gauge” symmetries that you will meet later. Isospin is an example of

such a symmetry, albeit realized only approximately in Nature.
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Another Cute Trick

There is a quick method to determine the conserved current associated to an internal

symmetry �� = ↵� for which the Lagrangian is invariant. Here, ↵ is a constant real

number. (We may generalize the discussion easily to a non-Abelian internal symmetry

for which ↵ becomes a matrix). Now consider performing the transformation but where

↵ depends on spacetime: ↵ = ↵(x). The action is no longer invariant. However, the

change must be of the form

�L = (@µ↵)h
µ(�) (1.65)

since we know that �L = 0 when ↵ is constant. The change in the action is therefore

�S =

Z
d4x �L = �

Z
d4x ↵(x) @µh

µ (1.66)

which means that when the equations of motion are satisfied (so �S = 0 for all varia-

tions, including �� = ↵(x)�) we have

@µh
µ = 0 (1.67)

We see that we can identify the function hµ = j µ as the conserved current. This way

of viewing things emphasizes that it is the derivative terms, not the potential terms,

in the action that contribute to the current. (The potential terms are invariant even

when ↵ = ↵(x)).

1.4 The Hamiltonian Formalism

The link between the Lagrangian formalism and the quantum theory goes via the path

integral. In this course we will not discuss path integral methods, and focus instead

on canonical quantization. For this we need the Hamiltonian formalism of field theory.

We start by defining the momentum ⇡a(x) conjugate to �a(x),

⇡a(x) =
@L
@�̇a

(1.68)

The conjugate momentum ⇡a(x) is a function of x, just like the field �a(x) itself. It

is not to be confused with the total momentum P i defined in (1.43) which is a single

number characterizing the whole field configuration. The Hamiltonian density is given

by

H = ⇡a(x)�̇a(x)� L(x) (1.69)

where, as in classical mechanics, we eliminate �̇a(x) in favour of ⇡a(x) everywhere in

H. The Hamiltonian is then simply

H =

Z
d3x H (1.70)
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An Example: A Real Scalar Field

For the Lagrangian

L = 1
2 �̇

2 � 1
2(r�)

2 � V (�) (1.71)

the momentum is given by ⇡ = �̇, which gives us the Hamiltonian,

H =

Z
d3x 1

2⇡
2 + 1

2(r�)
2 + V (�) (1.72)

Notice that the Hamiltonian agrees with the definition of the total energy (1.45) that

we get from applying Noether’s theorem for time translation invariance.

In the Lagrangian formalism, Lorentz invariance is clear for all to see since the action

is invariant under Lorentz transformations. In contrast, the Hamiltonian formalism is

not manifestly Lorentz invariant: we have picked a preferred time. For example, the

equations of motion for �(x) = �(~x, t) arise from Hamilton’s equations,

�̇(~x, t) =
@H

@⇡(~x, t)
and ⇡̇(~x, t) = � @H

@�(~x, t)
(1.73)

which, unlike the Euler-Lagrange equations (1.6), do not look Lorentz invariant. Nev-

ertheless, even though the Hamiltonian framework doesn’t look Lorentz invariant, the

physics must remain unchanged. If we start from a relativistic theory, all final answers

must be Lorentz invariant even if it’s not manifest at intermediate steps. We will pause

at several points along the quantum route to check that this is indeed the case.
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