
6. Quantum Electrodynamics

In this section we finally get to quantum electrodynamics (QED), the theory of light

interacting with charged matter. Our path to quantization will be as before: we start

with the free theory of the electromagnetic field and see how the quantum theory gives

rise to a photon with two polarization states. We then describe how to couple the

photon to fermions and to bosons.

6.1 Maxwell’s Equations

The Lagrangian for Maxwell’s equations in the absence of any sources is simply

L = �1

4
Fµ⌫F

µ⌫ (6.1)

where the field strength is defined by

Fµ⌫ = @µA⌫ � @⌫Aµ (6.2)

The equations of motion which follow from this Lagrangian are

@µ

✓
@L

@(@µA⌫)

◆
= �@µF µ⌫ = 0 (6.3)

Meanwhile, from the definition of Fµ⌫ , the field strength also satisfies the Bianchi

identity

@�Fµ⌫ + @µF⌫� + @⌫F�µ = 0 (6.4)

To make contact with the form of Maxwell’s equations you learn about in high school,

we need some 3-vector notation. If we define Aµ = (�, ~A), then the electric field ~E and

magnetic field ~B are defined by

~E = �r�� @ ~A

@t
and ~B = r⇥ ~A (6.5)

which, in terms of Fµ⌫ , becomes

Fµ⌫ =

 
0 Ex Ey Ez

�Ex 0 �Bz By

�Ey Bz 0 �Bx

�Ez �By Bx 0

!
(6.6)

The Bianchi identity (6.4) then gives two of Maxwell’s equations,

r · ~B = 0 and
@ ~B

@t
= �r⇥ ~E (6.7)
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These remain true even in the presence of electric sources. Meanwhile, the equations

of motion give the remaining two Maxwell equations,

r · ~E = 0 and
@ ~E

@t
= r⇥ ~B (6.8)

As we will see shortly, in the presence of charged matter these equations pick up extra

terms on the right-hand side.

6.1.1 Gauge Symmetry

The massless vector field Aµ has 4 components, which would naively seem to tell us that

the gauge field has 4 degrees of freedom. Yet we know that the photon has only two

degrees of freedom which we call its polarization states. How are we going to resolve

this discrepancy? There are two related comments which will ensure that quantizing

the gauge field Aµ gives rise to 2 degrees of freedom, rather than 4.

• The field A0 has no kinetic term Ȧ0 in the Lagrangian: it is not dynamical. This

means that if we are given some initial data Ai and Ȧi at a time t0, then the field

A0 is fully determined by the equation of motion r · ~E = 0 which, expanding out,

reads

r2A0 +r · @
~A

@t
= 0 (6.9)

This has the solution

A0(~x) =

Z
d3x0 (r · @ ~A/@t)(~x 0)

4⇡|~x� ~x 0| (6.10)

So A0 is not independent: we don’t get to specify A0 on the initial time slice. It

looks like we have only 3 degrees of freedom in Aµ rather than 4. But this is still

one too many.

• The Lagrangian (6.3) has a very large symmetry group, acting on the vector

potential as

Aµ(x) ! Aµ(x) + @µ�(x) (6.11)

for any function �(x). We’ll ask only that �(x) dies o↵ suitably quickly at spatial

~x ! 1. We call this a gauge symmetry. The field strength is invariant under the

gauge symmetry:

Fµ⌫ ! @µ(A⌫ + @⌫�)� @⌫(Aµ + @µ�) = Fµ⌫ (6.12)
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So what are we to make of this? We have a theory with an infinite number of

symmetries, one for each function �(x). Previously we only encountered symme-

tries which act the same at all points in spacetime, for example  ! ei↵ for a

complex scalar field. Noether’s theorem told us that these symmetries give rise

to conservation laws. Do we now have an infinite number of conservation laws?

The answer is no! Gauge symmetries have a very di↵erent interpretation than

the global symmetries that we make use of in Noether’s theorem. While the

latter take a physical state to another physical state with the same properties,

the gauge symmetry is to be viewed as a redundancy in our description. That is,

two states related by a gauge symmetry are to be identified: they are the same

physical state. (There is a small caveat to this statement which is explained in

Section 6.3.1). One way to see that this interpretation is necessary is to notice

that Maxwell’s equations are not su�cient to specify the evolution of Aµ. The

equations read,

[⌘µ⌫(@
⇢@⇢)� @µ@⌫ ]A

⌫ = 0 (6.13)

But the operator [⌘µ⌫(@⇢@⇢)�@µ@⌫ ] is not invertible: it annihilates any function of

the form @µ�. This means that given any initial data, we have no way to uniquely

determine Aµ at a later time since we can’t distinguish between Aµ and Aµ+@µ�.

This would be problematic if we thought that Aµ is a physical object. However,

if we’re happy to identify Aµ and Aµ+@µ� as corresponding to the same physical

state, then our problems disappear.

Since gauge invariance is a redundancy of the system,
Gauge OrbitsGauge

Fixing

Figure 29:

we might try to formulate the theory purely in terms of

the local, physical, gauge invariant objects ~E and ~B. This

is fine for the free classical theory: Maxwell’s equations

were, after all, first written in terms of ~E and ~B. But it is

not possible to describe certain quantum phenomena, such

as the Aharonov-Bohm e↵ect, without using the gauge

potential Aµ. We will see shortly that we also require the

gauge potential to describe classically charged fields. To

describe Nature, it appears that we have to introduce quantities Aµ that we can never

measure.

The picture that emerges for the theory of electromagnetism is of an enlarged phase

space, foliated by gauge orbits as shown in the figure. All states that lie along a given
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line can be reached by a gauge transformation and are identified. To make progress,

we pick a representative from each gauge orbit. It doesn’t matter which representative

we pick — after all, they’re all physically equivalent. But we should make sure that we

pick a “good” gauge, in which we cut the orbits.

Di↵erent representative configurations of a physical state are called di↵erent gauges.

There are many possibilities, some of which will be more useful in di↵erent situations.

Picking a gauge is rather like picking coordinates that are adapted to a particular

problem. Moreover, di↵erent gauges often reveal slightly di↵erent aspects of a problem.

Here we’ll look at two di↵erent gauges:

• Lorentz Gauge: @µAµ = 0

To see that we can always pick a representative configuration satisfying @µAµ = 0,

suppose that we’re handed a gauge field A0
µ
satisfying @µ(A0)µ = f(x). Then we

choose Aµ = A0
µ
+ @µ�, where

@µ@
µ� = �f (6.14)

This equation always has a solution. In fact this condition doesn’t pick a unique

representative from the gauge orbit. We’re always free to make further gauge

transformations with @µ@µ� = 0, which also has non-trivial solutions. As the

name suggests, the Lorentz gauge3 has the advantage that it is Lorentz invariant.

• Coulomb Gauge: r · ~A = 0

We can make use of the residual gauge transformations in Lorentz gauge to pick

r · ~A = 0. (The argument is the same as before). Since A0 is fixed by (6.10), we

have as a consequence

A0 = 0 (6.15)

(This equation will no longer hold in Coulomb gauge in the presence of charged

matter). Coulomb gauge breaks Lorentz invariance, so may not be ideal for some

purposes. However, it is very useful to exhibit the physical degrees of freedom:

the 3 components of ~A satisfy a single constraint: r · ~A = 0, leaving behind just

2 degrees of freedom. These will be identified with the two polarization states of

the photon. Coulomb gauge is sometimes called radiation gauge.

3Named after Lorenz who had the misfortune to be one letter away from greatness.
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6.2 The Quantization of the Electromagnetic Field

In the following we shall quantize free Maxwell theory twice: once in Coulomb gauge,

and again in Lorentz gauge. We’ll ultimately get the same answers and, along the way,

see that each method comes with its own subtleties.

The first of these subtleties is common to both methods and comes when computing

the momentum ⇡µ conjugate to Aµ,

⇡0 =
@L
@Ȧ0

= 0

⇡i =
@L
@Ȧi

= �F 0i ⌘ Ei (6.16)

so the momentum ⇡0 conjugate to A0 vanishes. This is the mathematical consequence of

the statement we made above: A0 is not a dynamical field. Meanwhile, the momentum

conjugate to Ai is our old friend, the electric field. We can compute the Hamiltonian,

H =

Z
d3x ⇡iȦi � L

=

Z
d3x 1

2
~E · ~E + 1

2
~B · ~B � A0(r · ~E) (6.17)

So A0 acts as a Lagrange multiplier which imposes Gauss’ law

r · ~E = 0 (6.18)

which is now a constraint on the system in which ~A are the physical degrees of freedom.

Let’s now see how to treat this system using di↵erent gauge fixing conditions.

6.2.1 Coulomb Gauge

In Coulomb gauge, the equation of motion for ~A is

@µ@
µ ~A = 0 (6.19)

which we can solve in the usual way,

~A =

Z
d3p

(2⇡)3
~⇠(~p) eip·x (6.20)

with p20 = |~p|2. The constraint r · ~A = 0 tells us that ~⇠ must satisfy

~⇠ · ~p = 0 (6.21)
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which means that ~⇠ is perpendicular to the direction of motion ~p. We can pick ~⇠(~p) to

be a linear combination of two orthonormal vectors ~✏r, r = 1, 2, each of which satisfies

~✏r(~p) · ~p = 0 and

~✏r(~p) · ~✏s(~p) = �rs r, s = 1, 2 (6.22)

These two vectors correspond to the two polarization states of the photon. It’s worth

pointing out that you can’t consistently pick a continuous basis of polarization vectors

for every value of ~p because you can’t comb the hair on a sphere. But this topological

fact doesn’t cause any complications in computing QED scattering processes.

To quantize we turn the Poisson brackets into commutators. Naively we would write

[Ai(~x), Aj(~y)] = [Ei(~x), Ej(~y)] = 0

[Ai(~x), Ej(~y)] = i�j
i
�(3)(~x� ~y) (6.23)

But this can’t quite be right, because it’s not consistent with the constraints. We

still want to have r · ~A = r · ~E = 0, now imposed on the operators. But from the

commutator relations above, we see

[r · ~A(~x),r · ~E(~y)] = ir2 �(3)(~x� ~y) 6= 0 (6.24)

What’s going on? In imposing the commutator relations (6.23) we haven’t correctly

taken into account the constraints. In fact, this is a problem already in the classical

theory, where the Poisson bracket structure is already altered4. The correct Poisson

bracket structure leads to an alteration of the last commutation relation,

[Ai(~x), Ej(~y)] = i

✓
�ij �

@i@j
r2

◆
�(3)(~x� ~y) (6.25)

To see that this is now consistent with the constraints, we can rewrite the right-hand

side of the commutator in momentum space,

[Ai(~x), Ej(~y)] = i

Z
d3p

(2⇡)3

✓
�ij �

pipj
|~p| 2

◆
ei~p·(~x�~y) (6.26)

which is now consistent with the constraints, for example

[@iAi(~x), Ej(~y)] = i

Z
d3p

(2⇡)3

✓
�ij �

pipj
|~p| 2

◆
ipi e

i~p·(~x�~y) = 0 (6.27)

4For a nice discussion of the classical and quantum dynamics of constrained systems, see the small
book by Paul Dirac, “Lectures on Quantum Mechanics”
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We now write ~A in the usual mode expansion,

~A(~x) =

Z
d3p

(2⇡)3
1p
2|~p|

2X

r=1

~✏r(~p)
h
ar
~p
ei~p·~x + ar †

~p
e�i~p·~x

i

~E(~x) =

Z
d3p

(2⇡)3
(�i)

r
|~p|
2

2X

r=1

~✏r(~p)
h
ar
~p
ei~p·~x � ar †

~p
e�i~p·~x

i
(6.28)

where, as before, the polarization vectors satisfy

~✏r(~p) · ~p = 0 and ~✏r(~p) · ~✏s(~p) = �rs (6.29)

It is not hard to show that the commutation relations (6.25) are equivalent to the usual

commutation relations for the creation and annihilation operators,

[ar
~p
, as

~q
] = [ar †

~p
, as †

~q
] = 0

[ar
~p
, as †

~q
] = (2⇡)3�rs �(3)(~p� ~q) (6.30)

where, in deriving this, we need the completeness relation for the polarization vectors,

2X

r=1

✏i
r
(~p)✏j

r
(~p) = �ij � pipj

|~p| 2 (6.31)

You can easily check that this equation is true by acting on both sides with a basis of

vectors (~✏1(~p),~✏2(~p), ~p).

We derive the Hamiltonian by substituting (6.28) into (6.17). The last term vanishes

in Coulomb gauge. After normal ordering, and playing around with ~✏r polarization

vectors, we get the simple expression

H =

Z
d3p

(2⇡)3
|~p|

2X

r=1

ar †
~p
ar
~p

(6.32)

The Coulomb gauge has the advantage that the physical degrees of freedom are man-

ifest. However, we’ve lost all semblance of Lorentz invariance. One place where this

manifests itself is in the propagator for the fields Ai(x) (in the Heisenberg picture). In

Coulomb gauge the propagator reads

Dtr
ij
(x� y) ⌘ h0|TAi(x)Aj(y) |0i =

Z
d4p

(2⇡)4
i

p2 + i✏

✓
�ij �

pipj
|~p|2

◆
e�ip·(x�y) (6.33)

The tr superscript on the propagator refers to the “transverse” part of the photon.

When we turn to the interacting theory, we will have to fight to massage this propagator

into something a little nicer.
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6.2.2 Lorentz Gauge

We could try to work in a Lorentz invariant fashion by imposing the Lorentz gauge

condition @µAµ = 0. The equations of motion that follow from the action are then

@µ@
µA⌫ = 0 (6.34)

Our approach to implementing Lorentz gauge will be a little di↵erent from the method

we used in Coulomb gauge. We choose to change the theory so that (6.34) arises directly

through the equations of motion. We can achieve this by taking the Lagrangian

L = �1

4
Fµ⌫F

µ⌫ � 1

2
(@µA

µ)2 (6.35)

The equations of motion coming from this action are

@µF
µ⌫ + @⌫(@µA

µ) = @µ@
µA⌫ = 0 (6.36)

(In fact, we could be a little more general than this, and consider the Lagrangian

L = �1
4Fµ⌫F

µ⌫ � 1

2↵
(@µA

µ)2 (6.37)

with arbitrary ↵ and reach similar conclusions. The quantization of the theory is

independent of ↵ and, rather confusingly, di↵erent choices of ↵ are sometimes also

referred to as di↵erent “gauges”. We will use ↵ = 1, which is called “Feynman gauge”.

The other common choice, ↵ = 0, is called “Landau gauge”.)

Our plan will be to quantize the theory (6.36), and only later impose the constraint

@µAµ = 0 in a suitable manner on the Hilbert space of the theory. As we’ll see, we will

also have to deal with the residual gauge symmetry of this theory which will prove a

little tricky. At first, we can proceed very easily, because both ⇡0 and ⇡i are dynamical:

⇡0 =
@L
@Ȧ0

= �@µAµ

⇡i =
@L
@Ȧi

= @iA0 � Ȧi (6.38)

Turning these classical fields into operators, we can simply impose the usual commu-

tation relations,

[Aµ(~x), A⌫(~y)] = [⇡µ(~x), ⇡⌫(~y)] = 0

[Aµ(~x), ⇡⌫(~y)] = i⌘µ⌫ �(3)(~x� ~y) (6.39)
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and we can make the usual expansion in terms of creation and annihilation operators

and 4 polarization vectors (✏µ)�, with � = 0, 1, 2, 3.

Aµ(~x) =

Z
d3p

(2⇡)3
1p
2|~p|

3X

�=0

✏�
µ
(~p)

h
a�
~p
ei~p·~x + a� †

~p
e�i~p·~x

i

⇡µ(~x) =

Z
d3p

(2⇡)3

r
|~p|
2

(+i)
3X

�=0

(✏µ)�(~p)
h
a�
~p
ei~p·~x � a� †

~p
e�i~p·~x

i
(6.40)

Note that the momentum ⇡µ comes with a factor of (+i), rather than the familiar (�i)

that we’ve seen so far. This can be traced to the fact that the momentum (6.38) for the

classical fields takes the form ⇡µ = �Ȧµ + . . .. In the Heisenberg picture, it becomes

clear that this descends to (+i) in the definition of momentum.

There are now four polarization 4-vectors ✏�(~p), instead of the two polarization 3-

vectors that we met in the Coulomb gauge. Of these four 4-vectors, we pick ✏0 to be

timelike, while ✏1,2,3 are spacelike. We pick the normalization

✏� · ✏�0 = ⌘��
0

(6.41)

which also means that

(✏µ)
� (✏⌫)

�
0
⌘��0 = ⌘µ⌫ (6.42)

The polarization vectors depend on the photon 4-momentum p = (|~p|, ~p). Of the two

spacelike polarizations, we will choose ✏1 and ✏2 to lie transverse to the momentum:

✏1 · p = ✏2 · p = 0 (6.43)

The third vector ✏3 is the longitudinal polarization. For example, if the momentum lies

along the x3 direction, so p ⇠ (1, 0, 0, 1), then

✏0 =

 
1

0

0

0

!
, ✏1 =

 
0

1

0

0

!
, ✏2 =

 
0

0

1

0

!
, ✏3 =

 
0

0

0

1

!
(6.44)

For other 4-momenta, the polarization vectors are the appropriate Lorentz transforma-

tions of these vectors, since (6.43) are Lorentz invariant.

We do our usual trick, and translate the field commutation relations (6.39) into those

for creation and annihilation operators. We find [a�
~p
, a�

0

~q
] = [a� †

~p
, a�

0 †
~q

] = 0 and

[a�
~p
, a�

0 †
~q

] = �⌘��0 (2⇡)3 �(3)(~p� ~q) (6.45)
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The minus signs here are odd to say the least! For spacelike � = 1, 2, 3, everything

looks fine,

[a�
~p
, a�

0 †
~q

] = ���
0
(2⇡)3 �(3)(~p� ~q) �,�0 = 1, 2, 3 (6.46)

But for the timelike annihilation and creation operators, we have

[a0
~p
, a0 †

~q
] = �(2⇡)3 �(3)(~p� ~q) (6.47)

This is very odd! To see just how strange this is, we take the Lorentz invariant vacuum

|0i defined by

a�
~p
|0i = 0 (6.48)

Then we can create one-particle states in the usual way,

|~p,�i = a� †
~p

|0i (6.49)

For spacelike polarization states, � = 1, 2, 3, all seems well. But for the timelike

polarization � = 0, the state |~p, 0i has negative norm,

h~p, 0| ~q, 0i = h0| a0
~p
a0 †
~q
|0i = �(2⇡)3 �(3)(~p� ~q) (6.50)

Wtf? That’s very very strange. A Hilbert space with negative norm means negative

probabilities which makes no sense at all. We can trace this negative norm back to the

wrong sign of the kinetic term for A0 in our original Lagrangian: L = +1
2
~̇A2� 1

2Ȧ
2
0+ . . ..

At this point we should remember our constraint equation, @µAµ = 0, which, until

now, we’ve not imposed on our theory. This is going to come to our rescue. We will see

that it will remove the timelike, negative norm states, and cut the physical polarizations

down to two. We work in the Heisenberg picture, so that

@µA
µ = 0 (6.51)

makes sense as an operator equation. Then we could try implementing the constraint

in the quantum theory in a number of di↵erent ways. Let’s look at a number of

increasingly weak ways to do this

• We could ask that @µAµ = 0 is imposed as an equation on operators. But this

can’t possibly work because the commutation relations (6.39) won’t be obeyed

for ⇡0 = �@µAµ. We need some weaker condition.
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• We could try to impose the condition on the Hilbert space instead of directly

on the operators. After all, that’s where the trouble lies! We could imagine that

there’s some way to split the Hilbert space up into good states | i and bad states

that somehow decouple from the system. With luck, our bad states will include

the weird negative norm states that we’re so disgusted by. But how can we define

the good states? One idea is to impose

@µA
µ | i = 0 (6.52)

on all good, physical states | i. But this can’t work either! Again, the condition

is too strong. For example, suppose we decompose Aµ(x) = A+
µ
(x) +A�

µ
(x) with

A+
µ
(x) =

Z
d3p

(2⇡)3
1p
2|~p|

3X

�=0

✏�
µ
a�
~p
e�ip·x

A�
µ
(x) =

Z
d3p

(2⇡)3
1p
2|~p|

3X

�=0

✏�
µ
a� †
~p
e+ip·x (6.53)

Then, on the vacuum A+
µ
|0i = 0 automatically, but @µA�

µ
|0i 6= 0. So not even

the vacuum is a physical state if we use (6.52) as our constraint

• Our final attempt will be the correct one. In order to keep the vacuum as a good

physical state, we can ask that physical states | i are defined by

@µA+
µ
| i = 0 (6.54)

This ensures that

h 0| @µAµ | i = 0 (6.55)

so that the operator @µAµ has vanishing matrix elements between physical states.

Equation (6.54) is known as the Gupta-Bleuler condition. The linearity of the

constraint means that the physical states | i span a physical Hilbert space Hphys.

So what does the physical Hilbert space Hphys look like? And, in particular, have we

rid ourselves of those nasty negative norm states so that Hphys has a positive definite

inner product defined on it? The answer is actually no, but almost!

Let’s consider a basis of states for the Fock space. We can decompose any element

of this basis as | i = | T i |�i, where | T i contains only transverse photons, created by
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a1,2 †
~p

, while |�i contains the timelike photons created by a0 †
~p

and longitudinal photons

created by a3 †
~p
. The Gupta-Bleuler condition (6.54) requires

(a3
~p
� a0

~p
) |�i = 0 (6.56)

This means that the physical states must contain combinations of timelike and longi-

tudinal photons. Whenever the state contains a timelike photon of momentum ~p, it

must also contain a longitudinal photon with the same momentum. In general |�i will
be a linear combination of states |�ni containing n pairs of timelike and longitudinal

photons, which we can write as

|�i =
1X

n=0

Cn |�ni (6.57)

where |�0i = |0i is simply the vacuum. It’s not hard to show that although the condition

(6.56) does indeed decouple the negative norm states, all the remaining states involving

timelike and longitudinal photons have zero norm

h�m|�ni = �n0�m0 (6.58)

This means that the inner product on Hphys is positive semi-definite. Which is an

improvement. But we still need to deal with all these zero norm states.

The way we cope with the zero norm states is to treat them as gauge equivalent

to the vacuum. Two states that di↵er only in their timelike and longitudinal photon

content, |�ni with n � 1 are said to be physically equivalent. We can think of the gauge

symmetry of the classical theory as descending to the Hilbert space of the quantum

theory. Of course, we can’t just stipulate that two states are physically identical unless

they give the same expectation value for all physical observables. We can check that

this is true for the Hamiltonian, which can be easily computed to be

H =

Z
d3p

(2⇡)3
|~p|
 

3X

i=1

ai †
~p
ai
~p
� a0 †

~p
a0
~p

!
(6.59)

But the condition (6.56) ensures that h | a3 †
~p
a3
~p
| i = h | a0 †

~p
a0
~p
| i so that the contri-

butions from the timelike and longitudinal photons cancel amongst themselves in the

Hamiltonian. This also renders the Hamiltonian positive definite, leaving us just with

the contribution from the transverse photons as we would expect.

In general, one can show that the expectation values of all gauge invariant operators

evaluated on physical states are independent of the coe�cients Cn in (6.57).
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Propagators

Finally, it’s a simple matter to compute the propagator in Lorentz gauge. It is given

by

h0|T Aµ(x)A⌫(y) |0i =
Z

d4p

(2⇡)4
�i⌘µ⌫
p2 + i✏

e�ip·(x�y) (6.60)

This is a lot nicer than the propagator we found in Coulomb gauge: in particular, it’s

Lorentz invariant. We could also return to the Lagrangian (6.37). Had we pushed

through the calculation with arbitrary coe�cient ↵, we would find the propagator,

h0|T Aµ(x)A⌫(y) |0i =
Z

d4p

(2⇡)4
�i

p2 + i✏

✓
⌘µ⌫ + (↵� 1)

pµp⌫
p2

◆
e�ip·(x�y) (6.61)

6.3 Coupling to Matter

Let’s now build an interacting theory of light and matter. We want to write down

a Lagrangian which couples Aµ to some matter fields, either scalars or spinors. For

example, we could write something like

L = �1
4Fµ⌫F

µ⌫ � jµAµ (6.62)

where jµ is some function of the matter fields. The equations of motion read

@µF
µ⌫ = j⌫ (6.63)

so, for consistency, we require

@µj
µ = 0 (6.64)

In other words, jµ must be a conserved current. But we’ve got lots of those! Let’s look

at how we can couple two of them to electromagnetism.

6.3.1 Coupling to Fermions

The Dirac Lagrangian

L =  ̄(i /@ �m) (6.65)

has an internal symmetry  ! e�i↵ and  ̄ ! e+i↵ ̄, with ↵ 2 R. This gives rise to

the conserved current jµ
V
=  ̄�µ . So we could look at the theory of electromagnetism

coupled to fermions, with the Lagrangian,

L = �1
4Fµ⌫F

µ⌫ +  ̄(i /@ �m) � e ̄�µAµ (6.66)
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where we’ve introduced a coupling constant e. For the free Maxwell theory, we have

seen that the existence of a gauge symmetry was crucial in order to cut down the

physical degrees of freedom to the requisite 2. Does our interacting theory above still

have a gauge symmetry? The answer is yes. To see this, let’s rewrite the Lagrangian

as

L = �1
4Fµ⌫F

µ⌫ +  ̄(i /D �m) (6.67)

where Dµ = @µ + ieAµ is called the covariant derivative. This Lagrangian is

invariant under gauge transformations which act as

Aµ ! Aµ + @µ� and  ! e�ie� (6.68)

for an arbitrary function �(x). The tricky term is the derivative acting on  , since this

will also hit the e�ie� piece after the transformation. To see that all is well, let’s look

at how the covariant derivative transforms. We have

Dµ = @µ + ieAµ 

! @µ(e
�ie� ) + ie(Aµ + @µ�)(e

�ie� )

= e�ie�Dµ (6.69)

so the covariant derivative has the nice property that it merely picks up a phase under

the gauge transformation, with the derivative of e�ie� cancelling the transformation

of the gauge field. This ensures that the whole Lagrangian is invariant, since  ̄ !
e+ie�(x) ̄.

Electric Charge

The coupling e has the interpretation of the electric charge of the  particle. This

follows from the equations of motion of classical electromagnetism @µF µ⌫ = j⌫ : we

know that the j0 component is the charge density. We therefore have the total charge

Q given by

Q = e

Z
d3x  ̄(~x)�0 (~x) (6.70)

After treating this as a quantum equation, we have

Q = e

Z
d3p

(2⇡)3

2X

s=1

(bs †
~p
bs
~p
� cs †

~p
cs
~p
) (6.71)

which is the number of particles, minus the number of antiparticles. Note that the

particle and the anti-particle are required by the formalism to have opposite electric
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charge. For QED, the theory of light interacting with electrons, the electric charge

is usually written in terms of the dimensionless ratio ↵, known as the fine structure

constant

↵ =
e2

4⇡~c ⇡ 1

137
(6.72)

Setting ~ = c = 1, we have e =
p
4⇡↵ ⇡ 0.3.

There’s a small subtlety here that’s worth elaborating on. I stressed that there’s a

radical di↵erence between the interpretation of a global symmetry and a gauge symme-

try. The former takes you from one physical state to another with the same properties

and results in a conserved current through Noether’s theorem. The latter is a redun-

dancy in our description of the system. Yet in electromagnetism, the gauge symmetry

 ! e+ie�(x) seems to lead to a conservation law, namely the conservation of electric

charge. This is because among the infinite number of gauge symmetries parameterized

by a function �(x), there is also a single global symmetry: that with �(x) = constant.

This is a true symmetry of the system, meaning that it takes us to another physical

state. More generally, the subset of global symmetries from among the gauge symme-

tries are those for which �(x) ! ↵ = constant as x ! 1. These take us from one

physical state to another.

Finally, let’s check that the 4⇥ 4 matrix C that we introduced in Section 4.5 really

deserves the name “charge conjugation matrix”. If we take the complex conjugation of

the Dirac equation, we have

(i�µ@µ � e�µAµ �m) = 0 ) (�i(�µ)?@µ � e(�µ)?Aµ �m) ? = 0

Now using the defining equation C†�µC = �(�µ)?, and the definition  (c) = C ?, we

see that the charge conjugate spinor  (c) satisfies

(i�µ@µ + e�µAµ �m) (c) = 0 (6.73)

So we see that the charge conjugate spinor  (c) satisfies the Dirac equation, but with

charge �e instead of +e.

6.3.2 Coupling to Scalars

For a real scalar field, we have no suitable conserved current. This means that we can’t

couple a real scalar field to a gauge field.
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Let’s now consider a complex scalar field '. (For this section, I’ll depart from our

previous notation and call the scalar field ' to avoid confusing it with the spinor). We

have a symmetry ' ! e�i↵'. We could try to couple the associated current to the

gauge field,

Lint = �i((@µ'
?)'� '?@µ')A

µ (6.74)

But this doesn’t work because

• The theory is no longer gauge invariant

• The current jµ that we coupled to Aµ depends on @µ'. This means that if we

try to compute the current associated to the symmetry, it will now pick up a

contribution from the jµAµ term. So the whole procedure wasn’t consistent.

We solve both of these problems simultaneously by remembering the covariant deriva-

tive. In this scalar theory, the combination

Dµ' = @µ'+ ieAµ' (6.75)

again transforms as Dµ' ! e�ie�Dµ' under a gauge transformation Aµ ! Aµ + @µ�

and ' ! e�ie�'. This means that we can construct a gauge invariant action for a

charged scalar field coupled to a photon simply by promoting all derivatives to covariant

derivatives

L = �1

4
Fµ⌫F

µ⌫ +Dµ'
?Dµ'�m2|'|2 (6.76)

In general, this trick works for any theory. If we have a U(1) symmetry that we wish to

couple to a gauge field, we may do so by replacing all derivatives by suitable covariant

derivatives. This procedure is known as minimal coupling.

6.4 QED

Let’s now work out the Feynman rules for the full theory of quantum electrodynamics

(QED) – the theory of electrons interacting with light. The Lagrangian is

L = �1

4
Fµ⌫F

µ⌫ +  ̄(i /D �m) (6.77)

where Dµ = @µ + ieAµ.

The route we take now depends on the gauge choice. If we worked in Lorentz gauge

previously, then we can jump straight to Section 6.5 where the Feynman rules for QED

are written down. If, however, we worked in Coulomb gauge, then we still have a bit of

work in front of us in order to massage the photon propagator into something Lorentz

invariant. We will now do that.
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In Coulomb gauge r · ~A = 0, the equation of motion arising from varying A0 is now

�r2A0 = e † ⌘ ej0 (6.78)

which has the solution

A0(~x, t) = e

Z
d3x0 j0(~x 0, t)

4⇡|~x� ~x 0| (6.79)

In Coulomb gauge we can rewrite the Maxwell part of the Lagrangian as

LMaxwell =

Z
d3x 1

2
~E2 � 1

2
~B2

=

Z
d3x 1

2(
~̇A+rA0)

2 � 1
2
~B2

=

Z
d3x 1

2
~̇A 2 + 1

2(rA0)
2 � 1

2
~B2 (6.80)

where the cross-term has vanished using r · ~A = 0. After integrating the second term

by parts and inserting the equation for A0, we have

LMaxwell =

Z
d3x


1
2
~̇A 2 � 1

2
~B 2 +

e2

2

Z
d3x0 j0(~x)j0(~x

0)

4⇡|~x� ~x 0|

�
(6.81)

We find ourselves with a nonlocal term in the action. This is exactly the type of

interaction that we boasted in Section 1.1.4 never arises in Nature! It appears here as

an artifact of working in Coulomb gauge: it does not mean that the theory of QED is

nonlocal. For example, it wouldn’t appear if we worked in Lorentz gauge.

We now compute the Hamiltonian. Changing notation slightly from previous chap-

ters, we have the conjugate momenta,

~⇧ =
@L

@ ~̇A
= ~̇A

⇡ =
@L
@ ̇

= i † (6.82)

which gives us the Hamiltonian

H =

Z
d3x


1
2
~̇A 2 + 1

2
~B2 +  ̄(�i�i@i +m) � e~j · ~A+

e2

2

Z
d3x0 j

0(~x)j0(~x 0)

4⇡|~x� ~x 0|

�

where ~j =  ̄~� and j0 =  ̄�0 .

– 140 –



6.4.1 Naive Feynman Rules

We want to determine the Feynman rules for this theory. For fermions, the rules are

the same as those given in Section 5. The new pieces are:

• We denote the photon by a wavy line. Each end of the line comes with an i, j =

1, 2, 3 index telling us the component of ~A. We calculated the transverse photon

propagator in (6.33): it is and contributes Dtr
ij
=

i

p2 + i✏

✓
�ij �

pipj
|~p|2

◆

• The vertex contributes �ie�i. The index on �i contracts with the

index on the photon line.

• The non-local interaction which, in position space, is given by
x y

contributes a factor of
i(e�0)2�(x0 � y0)

4⇡|~x� ~y|

These Feynman rules are rather messy. This is the price we’ve paid for working in

Coulomb gauge. We’ll now show that we can massage these expressions into something

much more simple and Lorentz invariant. Let’s start with the o↵ending instantaneous

interaction. Since it comes from the A0 component of the gauge field, we could try to

redefine the propagator to include a D00 piece which will capture this term. In fact, it

fits quite nicely in this form: if we look in momentum space, we have

�(x0 � y0)

4⇡|~x� ~y| =

Z
d4p

(2⇡)4
eip·(x�y)

|~p|2 (6.83)

so we can combine the non-local interaction with the transverse photon propagator by

defining a new photon propagator

Dµ⌫(p) =

8
>>>><

>>>>:

+
i

|~p|2 µ, ⌫ = 0

i

p2 + i✏

✓
�ij �

pipj
|~p|2

◆
µ = i 6= 0, ⌫ = j 6= 0

0 otherwise

(6.84)

With this propagator, the wavy photon line now carries a µ, ⌫ = 0, 1, 2, 3 index, with

the extra µ = 0 component taking care of the instantaneous interaction. We now need

to change our vertex slightly: the �ie�i above gets replaced by �ie�µ which correctly

accounts for the (e�0)2 piece in the instantaneous interaction.
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The D00 piece of the propagator doesn’t look a whole lot di↵erent from the transverse

photon propagator. But wouldn’t it be nice if they were both part of something more

symmetric! In fact, they are. We have the following:

Claim: We can replace the propagator Dµ⌫(p) with the simpler, Lorentz invariant

propagator

Dµ⌫(p) = �i
⌘µ⌫
p2

(6.85)

Proof: There is a general proof using current conservation. Here we’ll be more pedes-

trian and show that we can do this for certain Feynman diagrams. In particular, we

focus on a particular tree-level diagram that contributes to e�e� ! e�e� scattering,

/
q

p /

p

q

⇠ e2[ū(p0)�µu(p)]Dµ⌫(k) [ū(q
0)�⌫u(q)] (6.86)

where k = p� p0 = q0 � q. Recall that u(~p) satisfies the equation

( /p�m)u(~p) = 0 (6.87)

Let’s define the spinor contractions ↵µ = ū(~p 0)�µu(~p) and �⌫ = ū(~q 0)�⌫u(~q). Then

since k = p� p0 = q0 � q, we have

kµ↵
µ = ū(~p 0)( /p� /p

0
)u(~p) = ū(~p 0)(m�m)u(~p) = 0 (6.88)

and, similarly, k⌫�⌫ = 0. Using this fact, the diagram can be written as

↵µDµ⌫�
⌫ = i

 
~↵ · ~�
k2

� (~↵ · ~k)(~� · ~k)
k2|~k|2

+
↵0�0

|~k|2

!

= i

 
~↵ · ~�
k2

� k2
0↵0�0

k2|~k|2
+
↵0�0

|~k|2

!

= i

 
~↵ · ~�
k2

� 1

k2|~k|2
(k2

0 � k2)↵0�0

!

= � i

k2
↵ · � = ↵µ

✓
� i⌘µ⌫

k2

◆
�⌫ (6.89)
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which is the claimed result. You can similarly check that the same substitution is legal

in the diagram
p

q

p

q

/

/

⇠ e2[v̄(~q)�µu(~p)]Dµ⌫(k)[ū(~p
0)�⌫v(~q 0)] (6.90)

In fact, although we won’t show it here, it’s a general fact that in every Feynman dia-

gram we may use the very nice, Lorentz invariant propagator Dµ⌫ = �i⌘µ⌫/p2. ⇤

Note: This is the propagator we found when quantizing in Lorentz gauge (using the

Feynman gauge parameter). In general, quantizing the Lagrangian (6.37) in Lorentz

gauge, we have the propagator

Dµ⌫ = � i

p2

✓
⌘µ⌫ + (↵� 1)

pµp⌫
p2

◆
(6.91)

Using similar arguments to those given above, you can show that the pµp⌫/p2 term

cancels in all diagrams. For example, in the following diagrams the pµp⌫ piece of the

propagator contributes as

⇠ ū(p0)�µu(p) kµ = ū(p0)( /p� /p 0)u(p) = 0

⇠ v̄(p)�µu(q) kµ = ū(p)( /p+ /q 0)u(q) = 0 (6.92)

6.5 Feynman Rules

Finally, we have the Feynman rules for QED. For vertices and internal lines, we write

• Vertex: �ie�µ

• Photon Propagator: � i⌘µ⌫
p2 + i✏

• Fermion Propagator:
i( /p+m)

p2 �m2 + i✏

For external lines in the diagram, we attach

• Photons: We add a polarization vector ✏µin/✏
µ

out for incoming/outgoing photons.

In Coulomb gauge, ✏0 = 0 and ~✏ · ~p = 0.

• Fermions: We add a spinor ur(~p)/ūr(~p) for incoming/outgoing fermions. We add

a spinor v̄r(~p)/vr(~p) for incoming/outgoing anti-fermions.
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6.5.1 Charged Scalars

“Pauli asked me to calculate the cross section for pair creation of scalar

particles by photons. It was only a short time after Bethe and Heitler

had solved the same problem for electrons and positrons. I met Bethe

in Copenhagen at a conference and asked him to tell me how he did the

calculations. I also inquired how long it would take to perform this task;

he answered, “It would take me three days, but you will need about three

weeks.” He was right, as usual; furthermore, the published cross sections

were wrong by a factor of four.”

Viki Weisskopf

The interaction terms in the Lagrangian for charged scalars come from the covariant

derivative terms,

L = Dµ 
† Dµ = @µ 

†@µ � ieAµ( 
†@µ �  @µ †) + e2AµA

µ † (6.93)

This gives rise to two interaction vertices. But the cubic vertex is something we haven’t

seen before: it contains kinetic terms. How do these appear in the Feynman rules?

After a Fourier transform, the derivative term means that the interaction is stronger

for fermions with higher momentum, so we include a momentum factor in the Feynman

rule. There is also a second, “seagull” graph. The two Feynman rules are

p
q

� ie(p+ q)µ and + 2ie2⌘µ⌫

The factor of two in the seagull diagram arises because of the two identical particles

appearing in the vertex. (It’s the same reason that the 1/4! didn’t appear in the

Feynman rules for �4 theory).

6.6 Scattering in QED

Let’s now calculate some amplitudes for various processes in quantum electrodynamics,

with a photon coupled to a single fermion. We will consider the analogous set of

processes that we saw in Section 3 and Section 5. We have
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Electron Scattering

Electron scattering e�e� ! e�e� is described by the two leading order Feynman dia-

grams, given by

//

q,r

p,s

p,s /

q,r

/

+

p,s //

//q,r

q,r

p,s

= �i(�ie)2
✓
[ūs

0
(~p 0)�µus(~p)] [ūr

0
(~q 0)�µur(~q)]

(p0 � p)2

� [ūs
0
(~p 0)�µur(~q)] [ūr

0
(~q 0)�µus(~p)]

(p� q0)2

◆

The overall �i comes from the �i⌘µ⌫ in the propagator, which contract the indices on

the �-matrices (remember that it’s really positive for µ, ⌫ = 1, 2, 3).

Electron Positron Annihilation

Let’s now look at e�e+ ! 2�, two gamma rays. The two lowest order Feynman

diagrams are,

p /

/q

q,r

p,s

ε

ε
µ
2

ν
1

+

ε1
ν

p /

ε
µ
2

/q

q,r

p,s

= i(�ie)2 v̄r(~q)

✓
�µ( /p� /p 0 +m)�⌫
(p� p0)2 �m2

+
�⌫( /p� /q 0 +m)�µ
(p� q0)2 �m2

◆
us(~p)✏⌫1(~p

0)✏µ2(~q
0)

Electron Positron Scattering

For e�e+ ! e�e+ scattering (sometimes known as Bhabha scattering) the two lowest

order Feynman diagrams are

//

q,r

p,s

p,s /

q,r

/

+

p,s //

//q,r

p,s

q,r

= �i(�ie)2
✓
� [ūs

0
(~p 0)�µus(~p)] [v̄r(~q)�µvr

0
(~q 0)]

(p� p0)2

+
[v̄r(~q)�µus(~p)] [ūs

0
(~p 0)�µvr

0
(~q 0)]

(p+ q)2

◆

Compton Scattering

The scattering of photons (in particular x-rays) o↵ electrons e�� ! e�� is known

as Compton scattering. Historically, the change in wavelength of the photon in the
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scattering process was one of the conclusive pieces of evidence that light could behave

as a particle. The amplitude is given by,

outε /qεin q ()( )

u(p) u(p)/
−

+

εin q)( outε /q( )

u(p) u(p)/
−

= i(�ie)2ūr
0
(~p 0)

✓
�µ( /p+ /q +m)�⌫
(p+ q)2 �m2

+
�⌫( /p� /q 0 +m)�µ
(p� q0)2 �m2

◆
us(~p) ✏⌫in ✏

µ

out

This amplitude vanishes for longitudinal photons. For example, suppose ✏in ⇠ q. Then,

using momentum conservation p+ q = p0 + q0, we may write the amplitude as

iA = i(�ie)2ūr
0
(~p 0)

 
/✏out( /p+ /q +m) /q

(p+ q)2 �m2
+

/q( /p
0 � /q +m) /✏out

(p0 � q)2 �m2

!
us(~p)

= i(�ie)2ūr
0
(~p 0) /✏outu

s(~p)

✓
2p · q

(p+ q)2 �m2
+

2p0 · q
(p0 � q)2 �m2

◆
(6.94)

where, in going to the second line, we’ve performed some �-matrix manipulations,

and invoked the fact that q is null, so /q /q = 0, together with the spinor equations

( /p � m)u(~p) and ū(~p 0)( /p 0 � m) = 0. We now recall the fact that q is a null vector,

while p2 = (p0)2 = m2 since the external legs are on mass-shell. This means that the

two denominators in the amplitude read (p + q)2 �m2 = 2p · q and (p0 � q)2 �m2 =

�2p0 · q. This ensures that the combined amplitude vanishes for longitudinal photons

as promised. A similar result holds when /✏out ⇠ q0.

Photon Scattering

In QED, photons no longer pass through each other unimpeded.

Figure 30:

At one-loop, there is a diagram which leads to photon scattering.

Although naively logarithmically divergent, the diagram is actually

rendered finite by gauge invariance.

Adding Muons

Adding a second fermion into the mix, which we could identify as a

muon, new processes become possible. For example, we can now have processes such

as e�µ� ! e�µ� scattering, and e+e� annihilation into a muon anti-muon pair. Using

our standard notation of p and q for incoming momenta, and p0 and q0 for outgoing
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momenta, we have the amplitudes given by

µ
−

µ
−

e
−

e
−

⇠ 1

(p� p0)2
and

µ

µ

e

e

−

+ +

−

⇠ 1

(p+ q)2
(6.95)

6.6.1 The Coulomb Potential

We’ve come a long way. We’ve understood how to compute quantum amplitudes in

a large array of field theories. To end this course, we use our newfound knowledge to

rederive a result you learnt in kindergarten: Coulomb’s law.

To do this, we repeat our calculation that led us to the Yukawa force in Sections

3.5.2 and 5.7.2. We start by looking at e�e� ! e�e� scattering. We have

//

q,r

p,s

p,s /

q,r

/

= �i(�ie)2
[ū(~p 0)�µu(~p)] [ū(~q 0)�µu(~q)]

(p0 � p)2
(6.96)

Following (5.49), the non-relativistic limit of the spinor is u(p) !
p
m

 
⇠

⇠

!
. This

means that the �0 piece of the interaction gives a term ūs(~p)�0ur(~q) ! 2m�rs, while

the spatial �i, i = 1, 2, 3 pieces vanish in the non-relativistic limit: ūs(~p)�iur(~q) ! 0.

Comparing the scattering amplitude in this limit to that of non-relativistic quantum

mechanics, we have the e↵ective potential between two electrons given by,

U(~r) = +e2
Z

d3p

(2⇡)3
ei~p·~r

|~p|2 = +
e2

4⇡r
(6.97)

We find the familiar repulsive Coulomb potential. We can trace the minus sign that

gives a repulsive potential to the fact that only the A0 component of the intermediate

propagator ⇠ �i⌘µ⌫ contributes in the non-relativistic limit.

For e�e+ ! e�e+ scattering, the amplitude is

//

q,r

p,s

p,s /

q,r

/

= +i(�ie)2
[ū(~p 0)�µu(~p)] [v̄(~q)�µv(~q 0)]

(p0 � p)2
(6.98)

– 147 –



The overall + sign comes from treating the fermions correctly: we saw the same minus

sign when studying scattering in Yukawa theory. The di↵erence now comes from looking

at the non-relativistic limit. We have v̄�0v ! 2m, giving us the potential between

opposite charges,

U(~r) = �e2
Z

d3p

(2⇡)3
ei~p·~r

|~p|2 = � e2

4⇡r
(6.99)

Reassuringly, we find an attractive force between an electron and positron. The di↵er-

ence from the calculation of the Yukawa force comes again from the zeroth component

of the gauge field, this time in the guise of the �0 sandwiched between v̄�0v ! 2m,

rather than the v̄v ! �2m that we saw in the Yukawa case.

The Coulomb Potential for Scalars

There are many minus signs in the above calculation which somewhat obscure the

crucial one which gives rise to the repulsive force. A careful study reveals the o↵ending

sign to be that which sits in front of the A0 piece of the photon propagator �i⌘µ⌫/p2.

Note that with our signature (+���), the propagating Ai have the correct sign, while

A0 comes with the wrong sign. This is simpler to see in the case of scalar QED, where

we don’t have to worry about the gamma matrices. From the Feynman rules of Section

6.5.1, we have the non-relativistic limit of scalar e�e� scattering,

//

q,r

p,s

p,s /

q,r

/

= �i⌘µ⌫(�ie)2
(p+ p0)µ(q + q0)⌫

(p0 � p)2
! �i(�ie)2

(2m)2

�(~p� ~p 0)2

where the non-relativistic limit in the numerator involves (p+p0) ·(q+q0) ⇡ (p+p0)0(q+

q0)0 ⇡ (2m)2 and is responsible for selecting the A0 part of the photon propagator rather

than the Ai piece. This shows that the Coulomb potential for spin 0 particles of the

same charge is again repulsive, just as it is for fermions. For e�e+ scattering, the

amplitude picks up an extra minus sign because the arrows on the legs of the Feynman

rules in Section 6.5.1 are correlated with the momentum arrows. Flipping the arrows

on one pair of legs in the amplitude introduces the relevant minus sign to ensure that

the non-relativistic potential between e�e+ is attractive as expected.
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6.7 Afterword

In this course, we have laid the foundational framework for quantum field theory. Most

of the developments that we’ve seen were already in place by the middle of the 1930s,

pioneered by people such as Jordan, Dirac, Heisenberg, Pauli and Weisskopf 5.

Yet by the end of the 1930s, physicists were ready to give up on quantum field theory.

The di�culty lies in the next terms in perturbation theory. These are the terms that

correspond to Feynamn diagrams with loops in them, which we have scrupulously

avoided computing in this course. The reason we’ve avoided them is because they

typically give infinity! And, after ten years of trying, and failing, to make sense of this,

the general feeling was that one should do something else. This from Dirac in 1937,

Because of its extreme complexity, most physicists will be glad to see the

end of QED

But the leading figures of the day gave up too soon. It took a new generation of postwar

physicists — people like Schwinger, Feynman, Tomonaga and Dyson — to return to

quantum field theory and tame the infinities. The story of how they did that will be

told in next term’s course.

5For more details on the history of quantum field theory, see the excellent book “QED and the
Men who Made it” by Sam Schweber.
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