
2. My First Path Integral

ItÕs now time to understand a little better how to deal with the path integral

Z =
!

Dm(x) e! �F [m(x )] (2.1)

Our strategy Ð at least for now Ð will be to work in situations where the saddle point
dominates, with the integral giving small corrections to this result. In this regime, we
can think of the integral as describing the thermal ßuctuations of the order parameter
m(x) around the equilibrium conÞguration determined by the saddle point. As we will
see, this approach fails to work at the critical point, which is the regime weÕre most
interested in. We will then have to search for other techniques, which we will describe
in Section3.

Preparing the Scene

Before we get going, weÕre going to change notation. First, we will change the name of
our main character and write the magnetisation as

m(x) ! �(x)

If you want a reason for this, I could tell you that the change of name is in deference to
universality and the fact that the Þeld could describe many things, not just magnetisa-
tion. But the real reason is simply that Þelds in path integrals should have names like
�. (This is especially true in quantum Þeld theory wherem is reserved for the mass of
the particle.)

We start by setting B = 0; weÕll turnB back on in Section2.2. The free energy is
then

F [�(x)] =
!

ddx

"
1
2
↵2(T )�2 +

1
4
↵4(T )�4 +

1
2
�(T )(r�)2 + . . .

#

Roughly speaking, path integrals are trivial to do ifF [�(x)] is quadratic in �, and
possible to do if the higher order terms inF [�(x)] give small corrections. If the higher
order terms in F [�(x)] are important, then the path integral is typically impossible
without the use of numerics. Here weÕll start with the trivial, building up to the
ÒpossibleÓ in later chapters.
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To this end, throughout the rest of this chapter we will restrict attention to a free
energy that contains no terms higher than quadratic in�(x). We have to be a little
careful about whether we sit above or below the critical temperature. WhenT > Tc,
things are easy and we simply throw away all higher terms and work with

F [�(x)] =
1
2

!
ddx

$
�r� ·r� + µ2�2

%
(2.2)

whereµ2 = ↵2(T ) is positive.

A word of caution. We are ignoring the quartic terms purely on grounds of expedi-
ency: this makes our life simple. However, these terms become increasingly important
asµ2

⇠ ↵2(T ) ! 0 and we approach the critical point. This means that nothing we are
about to do can be trusted near the the critical point. Nonetheless, we will be able to
extract some useful intuition from what follows. We will then be well armed to study
critical phenomena in Section3.

When T < Tc, and ↵2(T ) < 0, we need to do a little more work. Now the saddle
point does not lie at� = 0, but rather at h�i = ±m0 given in (1.31). In particular, itÕs
crucial that we keep the quartic term because this rescues the Þeld from the upturned
potential it feels at the origin.

However, itÕs straightforward to take this into account. We simply compute the path
integral about the appropriate minimum by writing

÷�(x) = �(x) � h�i (2.3)

Substituting this into the free energy gives

F [÷�(x)] = F [m0] +
1
2

!
ddx

&
↵"

2(T ) ÷�2 + �(T )(r÷�)2 + . . .
'

(2.4)

where now the . . . include terms of order ÷�3 and ÷�4 and higher, all of which weÕve
truncated. Importantly, there are no terms linear in ÷�. In fact, this was guaranteed
to happen: the vanishing of the linear terms is equivalent to the requirement that the
equation of motion (1.30) is obeyed. The new quadratic coe!cient is

↵"
2(T ) = ↵2(T ) + 3m2

0↵4(T ) = �2↵2(T ) (2.5)

In particular, ↵"
2(T ) > 0.
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Practically, this means that we take the calculations that we do atT > Tc with the
free energy (2.2) and trivially translate them into calculations at T < Tc. We just
need to remember that weÕre working with a shifted� Þeld, and that we should take
µ2 = ↵"

2(T ) = |2↵2(T )|. Once again, the same caveats hold: our calculations should
not be trusted near the critical pointµ2 = 0.

2.1 The Thermodynamic Free Energy Revisited

For our Þrst application of the path integral, we will compute something straightforward
and a little bit boring: the thermodynamic free energy. There will be a little insight to
be had from the result of this, although the main purpose of going through these steps
is to prepare us for whatÕs to come.

WeÕve already found some contributions to the thermodynamic free energy. There is
the constant term F0(T ) and, if weÕre working atT < Tc, the additional contribution
F [m0] in (2.4). Here we are interested in further contributions toFthermo , coming from
ßuctuations of the Þeld. To keep the formulae simple, we will ignore these two earlier
contributions; you can always put them back in if you please.

Throughout this calculation, weÕll setB = 0 so weÕre working with the free energy
(2.2). There is a simple trick to compute the partition function when the free en-
ergy is quadratic: we work in Fourier space. We write the Fourier transform of the
magnetisation Þeld as

�k =
!

ddx e! ik áx �(x)

Since our original Þeld�(x) is real, the Fourier modes obeys�?
k = �! k .

The k are wavevectors. Following the terminology of quantum mechanics, we will
refer to k as themomentum. At this stage, we should remember something about our
roots. Although weÕre thinking of�(x) as a continuous Þeld, ultimately it arose from
a lattice and so canÕt vary on very small distance scales. This means that the Fourier
modes must all vanish for suitably high momentum,

�k = 0 for |k | > "

Here " is called the ultra-violet (UV) cut-o! . In the present case, we can think of
" = ⇡/a, with a the distance between the boxes that we used to coarse grain when
Þrst deÞning�(x).
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We can recover our original Þeld by the inverse Fourier transform. ItÕs useful to have
two di#erent scenarios in mind. In the Þrst, we place the system in a Þnite spatial
volume V = Ld. In this case, the momenta take discrete values,

k =
2⇡
L

n n 2 Zd (2.6)

and the inverse Fourier transform is

�(x) =
1
V

(

k

eik áx �k (2.7)

Alternatively, if we send V ! 1, the sum overk modes becomes an integral and we
have

�(x) =
!

ddk

(2⇡)d
eik áx �k (2.8)

In what follows, weÕll jump backwards and forwards between these two forms. Ulti-
mately, we will favour the integral form. But there are times when it will be simpler
to think of the system in a Þnite volume as it will make us less queasy about some of
the formulae weÕll encounter.

For now, letÕs work with the form (2.8). We substitute this into the free energy to
Þnd

F [�k ] =
1
2

!
ddk1

(2⇡)d
ddk2

(2⇡)d

!
ddx

$
��k1 · k2 + µ2

%
�k 1�k 2 e

i(k 1+ k 2)áx

The integral over x is now straightforward and gives us a delta function

!
ddx ei(k 1+ k 2)áx = (2⇡)d�d(k1 + k2)

and the free energy takes the simple form

F [�k ] =
1
2

!
ddk

(2⇡)d
$
�k2 + µ2

%
�k�! k =

1
2

!
ddk

(2⇡)d
$
�k2 + µ2

%
�k�

?
k (2.9)

Now we can see the beneÞt of working in Fourier space: at quadratic order, the free
energy decomposes into individual�k modes. This is because the Fourier basis is the
eigenbasis of��r2 + µ2, allowing us to diagonalise this operator.
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To perform the functional integral, we also need to change the measure. Recall that
the path integral was originally an integral over�(x) for each value ofx labelling the
position of a box. Now it is an integral over all Fourier modes, which we write as

!
D�(x) =

)

k

"
N

!
d�kd�

?
k

#
(2.10)

where we should remember that�?
k = �! k because�(x) is real. IÕve included a nor-

malisation constantN in this measure. IÕll make no attempt to calculate this and,
ultimately, it wonÕt play any role because, having computed the partition function, the
Þrst thing we do is take the log and di#erentiate. At this point,N will drop out. In
later formulae, weÕll simply ignore it. But itÕs worth keeping it in for now.

Our path integral is now

Z =
)

k

N

!
d�kd�

?
k exp

*
�
�

2

!
ddk

(2⇡)d
$
�k2 + µ2

%
|�k |

2

+

If this still looks daunting, we just need to recall that in Þnite volume, the integral in
the exponent is really a sum over discrete momentum values,

Z =
)

k

N

!
d�kd�

?
k exp

,

�
�

2V

(

k

$
�k2 + µ2

%
|�k |

2

-

=
)

k

"
N

!
d�kd�

?
k exp

*
�

�

2V

$
�k2 + µ2

%
|�k |

2

+#

Note that the placement of brackets shifted in the two lines, because the sum in the
exponent got absorbed into the overall product. If this is confusing, it might be worth
comparing what weÕve done above to a simple integral of the form

.
dx dy e! x2! y2

=
(
.
dx e! x2

)(
.
dy e! y2

).

WeÕre left with something very straightforward: itÕs simply a bunch of decoupled
Gaussian integrals, one for each value ofk. Recall that Gaussian integral over a single
variable is given by

! + #

!#
dx e! x2/2a =

p
2⇡a (2.11)

Applying this for each k, we have our expression for the path integral

Z =
)

k

N

/
2⇡TV

�k2 + µ2
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where the square root is there, despite the fact that weÕre integrating over complex�k ,
because�?

k = �! k is not an independent variable. Note that we have a product over all
k. In Þnite volume, where the possiblek are discrete, thereÕs nothing Þshy going on.
But as we go to inÞnite volume, this will become a product over a continuous variable
k.

We can now compute the contribution of these thermal ßuctuations to the ther-
modynamic free energy. The free energy per unit volume is given byZ = e! �Fthermo

or,

Fthermo

V
= �

T

V
logZ = �

T

2V

(

k

log
*

2⇡TVN
2

�k2 + µ2

+

We can now revert back to the integral overk, rather than the sum by writing

Fthermo

V
= �

T

2

!
ddk

(2⇡)d
log

*
2⇡TVN

2

�k2 + µ2

+

This Þnal equation might make you uneasy since there an explicit factor of the volume
V remains in the argument, but weÕve sentV ! 1 to convert from

0
k to

.
ddk. At

this point, the normalisation factor N will ride to the rescue. However, as advertised
previously, none of these issues are particularly important since they drop out when we
compute physical quantities. LetÕs look at the simplest example.

2.1.1 The Heat Capacity

Our real interest lies in the heat capacity per unit volume,c = C/V . SpeciÞcally, we
would like to understand the temperature dependence of the heat capacity. This is
given by (1.15),

c =
�2

V

@2

@�2
logZ =

1
2

*
T 2 @

@T 2
+ 2T

@

@T

+ !
ddk

(2⇡)d
log

*
2⇡TVN

2

�k2 + µ2

+

The derivatives hit both the factor ofT in the numerator, and anyT dependence in the
coe!cients � and µ2. For simplicity, letÕs work atT > Tc. WeÕll take� constant and
µ2 = T � Tc. A little bit of algebra shows that the contribution to the heat capacity
from the ßuctuations is given by

c =
1
2

!
ddk

(2⇡)d

"
1�

2T
�k2 + µ2

+
T 2

(�k2 + µ2)2

#
(2.12)

The Þrst of these terms has a straightforward interpretation: it is the usual Ò12kBÓ per
degree of freedom that we expect from equipartition, albeit withkB = 1. (This can be
traced to the original � in e! �F .)
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The other two terms come from the temperature dependence inF [�(x)]. What
happens next depends on the dimensiond. LetÕs look at the middle term, proportional
to

! !

0
dk

kd! 1

�k2 + µ2

For d � 2, this integral diverges as we remove the UV cut-o# ". In contrast, when
d = 1 it is Þnite as " ! 1. When it is Þnite, we can easily determine the leading
order temperature dependence of the integral by rescaling variables. We learn that

! !

0
dk

kd! 1

�k2 + µ2
⇠

1
" d! 2 when d � 2

1/µ when d = 1
(2.13)

When d = 2, the term " 0 should be replaced by a logarithm. Similarly, the Þnal term
in (2.12) is proportional to

! !

0
dk

kd! 1

(�k2 + µ2)2
⇠

1
" d! 4 when d � 4

µd! 4 when d < 4

again, with a logarithm whend = 4.

What should we take from this? Whend � 4, the leading contribution to the heat
capacity involves a temperature independent constant, ", albeit a large one. This
constant will be the same on both sides of the transition. (The heat capacity itself is
not quite temperature independent as it comes with the factor ofT 2 from the numerator
of (2.12), but this doesnÕt do anything particularly dramatic.) In contrast, whend < 4,
the leading order contribution to the heat capacity is proportional toµd! 4. And, this
leads to something more interesting.

To see this interesting behaviour, we have to do something naughty. Remember that
our calculation above isnÕt valid near the critical point,µ2 = 0, because weÕve ignored
the quartic term in the free energy. Suppose, however, that we throw caution to the
wind and apply our result here anyway. We learn that, ford < 4, the heat capacity
diverges at the critical point. The leading order behaviour is

c ⇠ |T � Tc|
! ↵ with ↵ = 2 �

d

2
(2.14)

This is to be contrasted with our mean Þeld result which gives↵ = 0.
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As weÕve stressed, we canÕt trust the result (2.14). And, indeed, this is not the right
answer for the critical exponent. But it does give us some sense for how the mean Þeld
results can be changed by the path integral. It also gives a hint for why the critical
exponents are not a#ected whend � 4, which is the upper critical dimension.

2.2 Correlation Functions

The essential ingredient of Landau-Ginzburg theory Ð one that was lacking in the earlier
Landau approach Ð is the existence of spatial structure. With the local order parameter
�(x), we can start to answer questions about how the magnetisation varies from point
to point.

Such spatial variations exist even in the ground state of the system. Mean Þeld
theory Ð which is synonymous with the saddle point of the path integral Ð tells us that
the expectation value of the magnetisation is constant in the ground state

h�(x)i =

1
0 T > Tc

±m0 T < Tc

(2.15)

This makes us think of the ground state as a calm ßuid, like the Cambridge mill pond
when the tourists are out of town. This is misleading. The ground state is not a single
Þeld conÞguration but, as always in statistical mechanics, a sum over many possible
conÞgurations in the thermal ensemble. This is what the path integral does for us.
The importance of these other conÞgurations will determine whether the ground state
is likely to contain only gentle ripples around the background (2.15), or ßuctuations so
wild that it makes little sense to talk about an underlying background at all.

These kind of spatial ßuctuations of the ground state are captured bycorrelation
functions. The simplest is the two-point functionh�(x)�(y)i, computed using the prob-
ability distribution ( 1.26). This tells us how the magnetisation at pointx is correlated
with the magnetisation at y . If, for example, there is an unusually large ßuctuation at
y , what will the magnitude of the Þeld most likely be atx?

Becauseh�(x)i takes di#erent values above and below the transition, it is often more
useful to compute theconnected correlation function,

h�(x)�(y)ic = h�(x)�(y)i � h�i2 (2.16)

If youÕre statistically inclined, this is sometimes called acumulant of the random vari-
able �(x).
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The path integral provides a particularly nice way to compute connected correlation
functions of this kind. We consider the system in the presence of a magnetic ÞeldB,
but now allow B(x) to also vary in space. We take the free energy to be

F [�(x)] =
!

ddx

"
�

2
(r�)2 +

µ2

2
�2(x) � B(x)�(x)

#
(2.17)

We can now think of the partition function as a functional ofB(x).

Z[B(x)] =
!

D� e! �F

For what itÕs worth,Z[B(x)] is related to the Legendre transform ofF [�(x)].

Now that Z depends on the functionB(x) it is a much richer and more complicated
object. Indeed, it encodes all the information about the ßuctuations of the theory.
Consider, for example, the functional derivative of logZ,

1
�

� logZ
�B(x)

=
1
�Z

�Z

�B(x)
=

1
Z

!
D� �(x) e! �F = h�(x)iB

Here IÕve put a subscriptB on h·iB to remind us that this is the expectation value
computed in the presence of the magnetic ÞeldB(x). If our real interest is in what
happens as we approach the critical point, we can simply setB = 0.

Similarly, if we can take two derivatives of logZ. Now when the second derivative
hits, it can either act on the exponente! �F , or on the 1/Z factor in front. The upshot
is that we get

1
�2

�2 logZ
�B(x)�B(y)

=
1

�2Z

�2Z

�B(x)�B(y)
�

1
�2Z2

�Z

�B(x)
�Z

�B(y)

or

1
�2

�2 logZ
�B(x)�B(y)

= h�(x)�(y)iB � h�(x)iBh�(y)iB

which is precisely the connected correlation function (2.16). In what follows, weÕll
mostly work above the critical temperature so thath�iB=0 = 0. In this case, we set
B = 0 to Þnd

1
�2

�2 logZ
�B(x)�B(y)

2
2
2
2
B=0

= h�(x)�(y)i (2.18)

All thatÕs left is for us to compute the path integralZ[B(x)].

Ð 40 Ð



2.2.1 The Gaussian Path Integral

As in our calculation of the thermodynamic free energy, we work in Fourier space. The
free energy is now a generalisation of (2.9),

F [�k ] =
!

ddk

(2⇡)d

&1
2

$
�k2 + µ2

%
�k�! k � B! k�k

'

whereBk are the Fourier modes ofB(x). To proceed, we complete the square, and
deÞne the shifted magnetisation

ö�k = �k �
Bk

�k2 + µ2

We can then write the free energy as

F [ö�k ] =
!

ddk

(2⇡)d

"
1
2

$
�k2 + µ2

%
|ö�k |

2
�

1
2

|Bk |
2

�k2 + µ2

#

Our path integral is

Z =
)

k

!
dö�kdö�?

k e! �F [ ö�k ]

where weÕve shifted the integration variable from�k to ö�k ; there is no Jacobian penalty
for doing this. WeÕve also dropped the normalisation constantN that we included in
our previous measure (2.10) on the grounds that it clutters equations and does nothing
useful.

The path integral now gives

Z[B(x)] = e! �Fthermo exp
*
�

2

!
ddk

(2⇡)d
|Bk |

2

�k2 + µ2

+

The Þrst term e! �Fthermo is just the contribution we saw before. It does not depend on
the magnetic ÞeldB(x) and wonÕt contribute to the correlation function. (SpeciÞcally,
it will drop out when we di#erentiate logZ.) The interesting piece is the dependence
on the Fourier modesBk . To get back to real spaceB(x), we simply need to do an
inverse Fourier transform. We have

Z[B(x)] = e! �Fthermo exp
*
�

2

!
ddxddy B(x)G(x � y)B(y)

+
(2.19)

where

G(x) =
!

ddk

(2⇡)d
e! ik áx

�k2 + µ2
(2.20)
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WeÕre getting there. Di#erentiating the partition function as in (2.18), we learn that
the connected two-point function is

h�(x)�(y)i =
1
�
G(x � y) (2.21)

We just need to do the integral (2.20).

Computing the Fourier Integral

To start, note that the integral G(x) is rotationally invariant, and so G(x) = G(r) with
r = |x |. We write the integral as

G(r) =
1
�

!
ddk

(2⇡)d
e! ik áx

k2 + 1/⇠2

where weÕve introduced a length scale

⇠2 =
�

µ2
(2.22)

This is called the correlation length and it will prove to be important as we move
forwards. WeÕll discuss it more in Section2.2.3.

To proceed, we use a trick. We can write

1
k2 + 1/⇠2

=
! #

0
dt e! t(k2+1 /⇠2)

Using this, we have

G(r) =
1
�

!
ddk

(2⇡)d

! #

0
dt e! ik áx ! t(k2+1 /⇠2)

=
1
�

!
ddk

(2⇡)d

! #

0
dt e! t(k + ix/2t)2

e! r2/4t! t/⇠2

=
1

�(4⇡)d/2

! #

0
dt t! d/2e! r2/4t! t/⇠2

(2.23)

where, in going to the last line, weÕve simply done thed Gaussian integrals overk.
At this point there are a number of di#erent routes. We could invoke some special-
functionology and note that we can massage the integral into the form of a Bessel
function

K⌫(z) =
1
2

! #

0
dt t⌫! 1e! z(t+1 /t)/2
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whose properties you can Þnd in some dog-eared mathematical methods textbook.
However, our interest is only in the behaviour ofG(r) in various limits, and for this
purpose it will su!ce to perform the integral ( 2.23) using a saddle point. We ignore
overall constants, and write the integral as

G(r) ⇠
! #

0
dt e! S(t) with S(t) =

r2

4t
+

t

⇠2
+

d

2
logt

The saddle pointt = t? sits at S"(t?) = 0. We then approximate the integral as

G(r) ⇠
! #

0
dt e! S(t! )+ S!! (t! )t2/2 =

3
⇡

2S""(t?)
e! S(t! )

For us the saddle lies at

S"(t?) = 0 ) t? =
⇠2

2

,

�
d

2
+

/
d2

4
+

r2

⇠2

-

There are two di#erent limits that we are interested in:r � ⇠ and r ⌧ ⇠. WeÕll deal
with them in turn:

r � ⇠: In this regime, we havet? ⇡ r⇠/2. And soS(t?) ⇡ r/⇠ + ( d/2) log(r⇠/2).
One can also check thatS""(t?) ⇡ 2/r⇠3. The upshot is that the asymptotic form of the
integral scales as

G(r) ⇠
1

⇠d/2! 3/2

e! r/⇠

rd/2! 1/2
r � ⇠

At large distance scales, the correlation function falls o# exponentially.

r ⌧ ⇠: In the other regime, the saddle point lies att? ⇡ r2/2d, giving S(t?) ⇡

d+ ( d/2) log(r2/2d) and S""(t?) ⇡ 2d3/r4. Putting this together, we see that forr ⌧ ⇠,
the fall-o# is only power law at short distances,

G(r) ⇠
1

rd! 2
r ⌧ ⇠

We learn that the correlation function changes its form at the distances scaler ⇠ ⇠,
with the limiting form

h�(x)�(y)i ⇠

4
55556

55557

1
rd! 2

r ⌧ ⇠

e! r/⇠

r(d! 1)/2
r � ⇠

(2.24)

This is known as theOrnstein-Zernickecorrelation.
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2.2.2 The Correlation Function is a GreenÕs Function

The result (2.24) is important and we weÕll delve a little deeper into it shortly. But
Þrst, it will prove useful to redo the calculation above in real space, rather than Fourier
space, to highlight some of the machinery hiding behind our path integral.

To set some foundations, we start with a multi-dimensional integral overn variables.
Suppose thaty is ann-dimensional vector. The simple Gaussian integral now involves
an invertible n⇥ n matrix G,

! + #

!#
dny e! 1

2 y áG" 1y = det 1/2(2⇡G)

This result follows straighforwardly from the single-variable Gaussian integral (2.11),
by using a basis that diagonalisesG. Similarly, if we introduce ann-dimensional vector
B , we can complete the square to Þnd

! + #

!#
dny e! 1

2 y áG" 1y + B áy = det 1/2(2⇡G) e
1
2 B áGB (2.25)

Now letÕs jump to the inÞnite dimensional, path integral version of this. Throughout
this section, weÕve been working with a quadratic free energy

F [�(x)] =
!

ddx

"
1
2
�(r�)2 +

1
2
µ2�2(x) + B(x)�(x)

#
(2.26)

We can massage this into the form of the exponent in (2.25) by writing

F [�(x)] =
!

ddx

!
ddy

1
2
�(x)G! 1(x , y)�(y) +

!
ddx B(x)�(x)

where weÕve introduced the ÒinÞnite dimensional matrixÓ, more commonly known as
an operator

G! 1(x , y) = �d(x � y)
$
��r2

y + µ2
%

(2.27)

Note that this is the operator that appears in the saddle point evaluation of the free
energy, as we saw earlier in (1.30).

Given the operatorG! 1, what is the inverse operatorG(x , y)? We have another
name for the inverse of an operator: it is called aGreenÕs functions. In the present
case,G(x , y) obeys the equation

(��r2
x + µ2)G(x , y) = �d(x � y)
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By translational symmetry, we haveG(x , y) = G(x � y). You can simply check that
the GreenÕs function is indeed given in Fourier space by our previous result (2.20)

G(x) =
!

ddk

(2⇡)d
e! ik áx

�k2 + µ2

This route led us to the same result we had previously. Except we learn something
new: the correlation function is the same thing as the GreenÕs function,h�(x)�(y)i =
�! 1G(x , y), and hence solves,

(��r2 + µ2) h�(x)�(0)i =
1
�
�d(x)

This is telling us that if we perturb the system at the origin then, for a free energy of
the quadratic form (2.26), the correlator h�(x)�(0)i responds by solving the original
saddle point equation.

There is one further avatar of the correlation function that is worth mentioning: it
is related to the susceptibility. Recall that previously we deÞned the susceptibility in
(1.19) as � = @m/@B. Now, we have a more reÞned version of susceptibility which
knows about the spatial structure,

�(x , y) =
�h�(x)i
�B(y)

But, from our discussion above, this is exactly the correlation function�(x , y) =
�h�(x)�(y)i. We can recover our original, coarse grained susceptibility as

� =
!

ddx �(x , 0) = �

!
ddx h�(x)�(0)i (2.28)

The two point correlation function will play an increasingly important role in later
calculations. For this reason it is given its own name: it is called thepropagator.
Propagators of this kind also arose in the lectures onQuantum Field Theory. In that
case, the propagator was deÞned for a theory in Minkowski space, which led to an
ambiguity (of integration contour) and a choice of di#erent propagators: advanced,
retarded or Feynman. In the context of Statistical Field Theory, we are working in
Euclidean space and there is no such ambiguity.
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2.2.3 The Correlation Length

LetÕs now look a little more closely at the expression (2.24) for the correlation function
which, in two di#erent regimes, scales as

h�(x)�(y)i ⇠

4
55556

55557

1
rd! 2

r ⌧ ⇠

e! r/⇠

r(d! 1)/2
r � ⇠

(2.29)

where r = |x � y |. The exponent contains a length scale,⇠, called the correlation
length, deÞned in terms of the parameters in the free energy as⇠2 = �/µ2.

We see from (2.29) that all correlations die o# quickly at distancesr � ⇠. In contrast,
for r ⌧ ⇠ there is only a much slower, power-law fall-o#. In this sense,⇠ provides a
characteristic length scale for the ßuctuations. In a given thermal ensemble, there will
be patches where the magnetisation is slightly higher, or slightly lower than the average
hmi. The size of these patches will be no larger than⇠.

Recall that, close to the critical point,µ2
⇠ |T�Tc|. This means that as we approach

T = Tc, the correlation length diverges as

⇠ ⇠
1

|T � Tc|
1/2

(2.30)

This is telling us that system will undergo ßuctuations of arbitrarily large size. This is
the essence of a second order phase transition, and as we move forward we will try to
better understand these ßuctuations.

Numerical Simulations of the Ising Model

ItÕs useful to get a sense for what these ßuctuations look like. We start in the disordered
phase withT > Tc. In the Þgures you can see two typical conÞgurations that contribute
to the partition function of the Ising model5. The up spins are shown in yellow, the
down spins in blue.

On the left, the temperature is T1 > Tc, while on the right the temperature is
T2 > T1 > Tc. In both pictures, the spins look random. And yet, you can see by
eye that there is something di#erent between the two pictures; on the right, when the

5These images were generated by the Metropolis algorithm using a mathematica programme created
by Daniel Schroeder. ItÕs well worth playing with to get a feel for whatÕs going on. Ising simulations,
in various formats, can be found on his webpagehttp://physics.weber.edu/thermal/computer.html .
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Figure 16: Spins with when T > T c Figure 17: Spins whenT � Tc

temperature is higher, the spins are more Þnely intertwined, with a yellow spin likely
to have a blue dot sitting right next to it. Meanwhile, on the left, the randomness is
coarser.

What youÕre seeing here is the correlation length at work. In each picture,⇠ sets the
typical length scale of ßuctuations. In the right-hand picture, where the temperature
is higher, the correlation length is smaller.

There is a similar story in the ordered phase, withT < Tc. Once again, we show
two conÞgurations below. Now the system must choose between one of the two ground
states; here the choice is that the yellow, up spins are dominant. The left-hand con-
Þguration has temperatureT "

1 < Tc, and the right-hand conÞguration temperature
T "

2 < T "
1 < Tc. We see that sizes of the ßuctuations around the ordered phase become

smaller the further we sit from the critical point.

Figure 18: Spins with when T < T c Figure 19: Spins whenT ⌧ Tc
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Figure 20: T = Tc

Finally, we can ask what happens when we sit at the critical pointT = Tc. A typical
conÞguration is shown in Figure20. Although it may not be obvious, there is now
no characteristic length scale in the picture. Instead, ßuctuations occur on all length
scales, big and small6. This is the meaning of the diverging correlation length⇠ ! 1.

Critical Opalescence

There is a nice experimental realisation of these large ßuctuations, which can be seen
in liquid-gas transitions or mixing transitions between two di#erent ßuids. (Both of
these lie in the same universality class as the Ising model.) As we approach the second
order phase transition, transparent ßuids become cloudy, an e#ect known ascritical
opalescence7. WhatÕs happening is that the size of the density ßuctuations is becoming
larger and larger, until they begin to scatter visible light.

More Critical Exponents

We saw in previous sections that we get a number of power-laws at critical points,
each of which is related to a critical exponent. The results above give us two further
exponents to add to our list. First, we have a correlation length⇠ which diverges at
the critical point with power (2.30)

⇠ ⇠
1

|T � Tc|
⌫

where⌫ =
1
2

6The best demonstration that IÕve seen of this scale invariance at the critical point isthis Youtube
video by Douglas Ashton.

7You can see a number of videos showing critical opalescence on Youtube. For example,here.
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Similarly, we know that the correlation function itself is a power law at the critical
point, with exponent

h�(x)�(y)i ⇠
1

rd! 2+ ⌘
where⌘ = 0

Each of these can be thought of as a mean Þeld prediction, in the sense that we are
treating the path integral only in quadratic order, which neglects important e#ects near
the critical point. Given our previous discussion, it may not come as a surprise to learn
that these critical exponents are correct whend � 4. However, they are not correct in
lower dimensions. Instead one Þnds

MF d = 2 d = 3

⌘ 0 1
4 0.0363

⌫ 1
2 1 0.6300

This gives us another challenge, one we will rise to in Section3.

2.2.4 The Upper Critical Dimension

WeÕre Þnally in a position to understand why the mean Þeld results hold in high di-
mensions, but are incorrect in low dimensions. Recall our story so far: whenT < Tc,
the saddle point suggests that

h�(x)i = ±m0

Meanwhile, there are ßuctuations around this mean Þeld value described, at long dis-
tances, by the correlation function (2.29). In order to trust our calculations, these
ßuctuations should be smaller than the background around which theyÕre ßuctuating.
In other words, we requireh�2

i ⌧ h�i2.

ItÕs straightforward to get an estimate for this. We know that the ßuctuations decay
after a distancer � ⇠. We can gain a measure of their importance if we integrate over
a ball of radius⇠. WeÕre then interested in the ratio

R =

. ⇠

0 ddx h�(x)�(0)i
. ⇠

0 ddx m2
0

⇠
1

m2
0 ⇠

d

! ⇠

0
dr

rd! 1

rd! 2
⇠

⇠2! d

m2
0

In order to trust mean Þeld theory, we require that this ratio is much less than one.
This is the Ginzburg criterion. We can anticipate trouble as we approach a critical
point, for here ⇠ diverges andm0 vanishes. According to mean Þeld theory, these two
quantities scale as

m0 ⇠ |T � Tc|
1/2 and ⇠ ⇠ |T � Tc|

! 1/2
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results which can be found, respectively, in (1.31) and (2.30). This means that the
ratio R scales as

R ⇠ |T � Tc|
(d! 4)/2

We learn that, as we approach the critical point, mean Þeld Ð which, in this context,
means computing small ßuctuations around the saddle point Ð appears trustworthy
only if

d � dc = 4

This is the upper critical dimension for the Ising model. Actually, at the critical di-
mensiond = 4 there is a logarithmic divergence inR and so we have to treat this case
separately; weÕll be more careful about this in the Section3.

For dimensionsd < 4, mean Þeld theory predicts its own demise. WeÕll see how to
make progress in Section3.

2.3 The Analogy with Quantum Field Theory

There is a very close analogy between the kinds of Þeld theories weÕre looking at here,
and those that arise in quantum Þeld theory. This analogy is seen most clearly in
FeynmanÕs path integral approach to quantum mechanics8. Correlation functions in
both statistical and quantum Þeld theories are captured by partition functions

Statistical Field Theory: Z =
!

D� e! �
!
ddx F (�)

Quantum Field Theory: Z =
!

D� e
i
!

!
ddx L (�)

You donÕt need to be a visionary to see the similarities. But there are also some
di#erences: the statistical path integral describes a system ind spatial dimensions,
while the quantum path integral describes a system ind spacetimedimensions, ord�1
spatial dimensions.

The factor of i in the exponent of the quantum path integral can be traced to the
fact that it describes a system evolving in time, and means that it has more subtle
convergence properties than its statistical counterpart. In practice, to compute any-
thing in the quantum partition function, one tends to rotate the integration contour
and work with Euclidean time,

⌧ = it (2.31)

8You will see this in next termÕsAdvanced Quantum Field Theorycourse.
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This is known as aWick rotation. After this, the quantum and statistical partition
functions are mathematically the same kind of objects

Z =
!

D� e
i
! S[�]

! Z =
!

D� e! SE [�]/!

where SE[�] is the Euclidean action, and is analogous to the free energy in statisti-
cal mechanics. If the original actionS[�] was Lorentz invariant, then the Euclidean
action SE[�] will be rotationally invariant. Suddenly, the d = 4 dimensional Þeld the-
ories, which seemed so unrealistic in the statistical mechanics context, take on a new
signiÞcance.

By this stage, the only di#erence between the two theories is the words we drape
around them. In statistical mechanics, the path integral captures the thermal ßuc-
tuations of the local order parameter, with a strength controlled by the temperature
�; in quantum Þeld theory the path integral captures the quantum ßuctuations of the
Þeld�, with a strength controlled by ! . This means that many of the techniques we
will develop in this course can be translated directly to quantum Þeld theory and high
energy physics. Moreover, as we will see in the next section, much of the terminology
has its roots in the applications to quantum Þeld theory.

Note that the second order phase transition occurs in our theory when the coe!cient
of the quadratic term, vanishes:µ2 = 0. From the perspective of quantum Þeld theory,
a second order phase transition describes massless particles.

Given that the similarities are so striking, one could ask if there are any di#erences
between statistical and quantum Þeld theories. The answer is yes: there are some
quantum Þeld theories which, upon Wick rotation, do not have real Euclidean actions.
Perhaps the simplest example is Maxwell (or Yang-Mills) theory, with the addition of
a Òtheta termÓ, proportional to✏µ⌫⇢�Fµ⌫F⇢�. This gives rise to subtle e#ects in the
quantum theory. However, because it contains a single time derivative, it becomes
imaginary in the ⌧ variable (2.31) and, correspondingly, there is no interpretation of
e! SE [�] as probabilities in a thermal ensemble.

A Di!erent Perspective on the Lower Critical Dimension

A statistical Þeld theory in d = 1 spatial dimensions is related to quantum Þeld
theory in d = 0 spatial dimensions. But we have a name for this: we call it quantum
mechanics.
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Viewed in this way, the lower critical dimension be-

!

" !! "

Figure 21:

comes something very familiar. Consider the quartic po-
tential V (x) shown in the Þgure. Classical considerations
suggest that there are two ground states, one for each of the
minima. But we know that this is not the way things work
in quantum mechanics. Instead, there is a unique ground
state in which the wavefunction has support in both min-
ima, but with the expectation value hxi = 0. Indeed, the
domain wall calculation that we described in Section1.3.3is the same calculation that
one uses to describe quantum tunnelling using the path integral.

Dressed in fancy language, we could say that quantum tunnelling means that theZ2

symmetry cannot be spontaneously broken in quantum mechanics. This translates to
the statement that there are no phase transitions ind = 1 statistical Þeld theories.
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