The Standard Model: Example Sheet 1

David Tong, January 2025

1. Show that $\sigma^{\mu\nu} = \frac{i}{4}(\sigma^{\mu}\bar{\sigma}^{\nu} - \sigma^{\nu}\bar{\sigma}^{\mu})$ satisfies the Lorentz algebra,

$$[\sigma^{\mu\nu}, \sigma^{\rho\sigma}] = i \left(\eta^{\nu\rho} \sigma^{\mu\sigma} - \eta^{\nu\sigma} \sigma^{\mu\rho} + \eta^{\mu\sigma} \sigma^{\nu\rho} - \eta^{\mu\rho} \sigma^{\nu\sigma} \right)$$

Hint: you may find it useful to first rewrite: $\sigma^{\mu\nu} = \frac{i}{2}(\eta^{\mu\nu} - \sigma^{\nu}\bar{\sigma}^{\mu})$. At some stage of the calculation, you may also find it useful to prove the result $(\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu}) = 2 \eta^{\mu\nu} \mathbb{1}_2$.

2. Under a Lorentz transformation, a left-handed Weyl spinor ψ_L and right-handed spinor ψ_R transform as

$$(\psi_L)_{\alpha} \to S_{\alpha}^{\ \beta}(\psi_L)_{\beta} \quad \text{and} \quad (\psi_R)_{\dot{\alpha}} \to (S^{\star})_{\dot{\alpha}}^{\ \beta}(\psi_R)_{\dot{\beta}}$$
(1)

with $S \in SL(2, \mathbb{C})$. (Here the dotted index $\dot{\alpha} = 1, 2$ is used to reflect the fact that these spinors transform in different representations. What we call $(\psi_R)_{\dot{\alpha}}$ here is called $\bar{\psi}_{\dot{\alpha}}$ in the Supersymmetry course.) Show that:

i) $(S^{-1})^{\ \alpha}_{\ \beta} = \epsilon^{\alpha\gamma} S^{\ \lambda}_{\gamma} \epsilon_{\lambda\beta}$

ii)
$$(\psi_L)^{\alpha} = \epsilon^{\alpha\beta}(\psi_L)_{\beta}$$
 transforms as $(\psi_L)^{\alpha} \to (\psi_L)^{\beta}(S^{-1})_{\beta}^{\alpha}$

- iii) $\psi_L \chi_L = (\psi_L)^{\alpha} (\chi_L)_{\alpha}$ is a Lorentz scalar.
- iv) $(\psi_R)^{\dot{\alpha}} = \epsilon^{\dot{\alpha}\dot{\beta}}(\psi_R)_{\dot{\beta}}$ transforms as $(\psi_R)^{\dot{\alpha}} \to (S^{-1\dagger})^{\dot{\alpha}}_{\ \dot{\beta}}(\psi_R)^{\dot{\beta}}$.
- v) $\bar{\psi}_R \psi_L = (\psi_R^{\star})^{\alpha} (\psi_L)_{\alpha}$ is a Lorentz scalar.
- **3.** Define $\sigma^{\mu\nu} = \frac{i}{4} (\sigma^{\mu} \bar{\sigma}^{\nu} \sigma^{\nu} \bar{\sigma}^{\mu})$ and $\bar{\sigma}^{\mu\nu} = \frac{i}{4} (\bar{\sigma}^{\mu} \sigma^{\nu} \bar{\sigma}^{\nu} \sigma^{\mu})$. Show that $\bar{\sigma}^{\mu\nu} = (\sigma^{\mu\nu})^{\dagger}$. Let $S = \exp\left(-\frac{i}{2}\omega_{\mu\nu}\sigma^{\mu\nu}\right)$

with $\omega_{\mu\nu}$ a collection of numbers that specify the Lorentz transformation. Show

$$S^{-1\dagger} = \exp\left(-\frac{i}{2}\omega_{\mu\nu}\bar{\sigma}^{\mu\nu}\right) \;.$$

(It suffices to show this for infinitesimal $\omega_{\mu\nu}$ and then use general properties of Lie groups.) As an aside: combined with the result from Questions 2iv), this shows that a Dirac spinor should be viewed as having indices $\psi^T = ((\psi_L)_{\alpha}, (\psi_R)^{\dot{\alpha}})$. **4.** A pair of Weyl spinors ψ_L and ψ_R have both a Dirac mass $M \in \mathbb{R}$ and Majorana masses $m_1, m_2 \in \mathbb{C}$. These appear in the Lagrangian as

$$\mathcal{L}_{\text{mass}} = -M(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L) + \frac{m_1}{2} \psi_L \psi_L + \frac{m_1^{\star}}{2} \bar{\psi}_L \bar{\psi}_L + \frac{m_2}{2} \psi_R \psi_R + \frac{m_2^{\star}}{2} \bar{\psi}_R \bar{\psi}_R \; .$$

What are the physical masses of fermionic particles in this theory?

5*. The Lie algebra-valued gauge potential $A_{\mu} = A_{\mu}^{A}T^{A}$ transforms under a gauge symmetry G as

$$A_{\mu} \to \Omega A_{\mu} \Omega^{-1} + \frac{i}{q} \Omega \partial_{\mu} \Omega^{-1}$$

where g is the coupling and $\Omega(x) = e^{ig\alpha(x)} \in G$ with $\alpha(x) = \alpha^A(x)T^A$. Show that:

- i) the field strength $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} ig[A_{\mu}, A_{\nu}]$ transforms as $F_{\mu\nu} \to \Omega F_{\mu\nu}\Omega^{-1}$.
- ii) under an infinitesimal gauge transformation $\delta A_{\mu} = \mathcal{D}_{\mu} \alpha$ where the covariant derivative is defined by $\mathcal{D}_{\mu} \alpha = \partial_{\mu} \alpha - ig[A_{\mu}, \alpha]$.
- iii) under an infinitesimal gauge transformation $\delta F_{\mu\nu} = [\mathcal{D}_{\mu}, \mathcal{D}_{\nu}]\alpha = ig[\alpha, F_{\mu\nu}].$
- iv) the field strength obeys the Bianchi identity $\mathcal{D}_{\mu}^{*}F^{\mu\nu} = 0$.
- v) the action

$$S = -\frac{1}{2} \int d^4x \, \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}$$

is gauge invariant.

vi) the equation of motion that follows by varying the action with respect to the fields A^A_{μ} is $\mathcal{D}_{\mu}F^{\mu\nu} = 0$.

A scalar ϕ in the fundamental **N** representation of SU(N) transforms as $\phi \to \Omega \phi$. How does the covariant derivative $\mathcal{D}_{\mu}\phi = \partial_{\mu}\phi - igA_{\mu}\phi$ transform?

6*. The chiral basis of gamma matrices is

$$\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} \quad \text{and} \quad \gamma^{5} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

with $\sigma^{\mu} = (1, \sigma^{i})$ and $\bar{\sigma}^{\mu} = (1, -\sigma^{i})$. For a Dirac spinor, $\bar{\psi} = \psi^{\dagger} \gamma^{0}$. The equation of motion for a U(1) gauge field coupled to a Dirac fermion is

$$\partial_{\nu}F^{\mu\nu} = e\bar{\psi}\gamma^{\mu}\psi \; .$$

Use the transformation properties of a Dirac spinor under C, P, and T, to derive the corresponding transformation properties of A_{μ} that ensure this equation remains invariant.

The *theta term* is an extra term that can be added to the Maxwell (or Yang-Mills) action. For Maxwell theory, it takes the form

$$S_{\theta} = \int d^4x \ F_{\mu\nu}{}^{\star}F^{\mu\nu}$$

How does this transform under C, P, and T?

7. Show that $\bar{\psi}\psi$ and $i\bar{\psi}\gamma^5\psi$ are both real. Consider the mass term

$$\mathcal{L}_{
m mass} = \ m_1 ar{\psi} \psi + i m_2 ar{\psi} \gamma^5 \psi \; .$$

Using the chiral basis of gamma matrices, write this mass term in terms of Weyl spinors, with $\psi^T = (\psi_L, \psi_R)$. Find a transformation of ψ_L and ψ_R such that this theory is invariant under parity. How does parity act on the Dirac spinor?

8. In d = 2 + 1 dimensions, with signature (+, -, -), we can take the basis of purely imaginary 2×2 gamma matrices $\gamma^{\mu} = (\sigma^2, i\sigma^1, i\sigma^3)$. A massive Dirac fermion has action

$$S = -\int d^d x \, \left(i\bar{\psi}\gamma^\mu \partial_\mu \psi - M\bar{\psi}\psi \right) \,.$$

Parity is defined as $P : x^1 \mapsto -x^1$, with x^0 and x^2 untouched. Why is this the right definition, rather than the more usual $\mathbf{x} \to -\mathbf{x}$?

Find an action of parity, charge conjugation, and time reversal for a massless fermion that leaves the action invariant. Which of these symmetries are broken by the mass term?