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Recommended Books and Resources

For a very elementary introduction to the Standard Model, you could take a look at

the lectures on Particle Physics that I wrote for the CERN summer school. They cover

the subject in a great deal of detail, but without any real mathematical sophistication.

If you’re completely new to the wonderful world of subatomic particles, this is a good

place to get grounded.

Many undergraduate degrees have courses on particle physics that use quantum

mechanics and some elementary group theory, without fully embracing quantum field

theory. There are a number of good textbooks catering to these courses. Two that I

particularly like are:

• Halzen and Martin, “Quarks and Leptons”

• David Griffiths, “Introduction to Elementary Particles”

More advanced and really excellent books are:

• Cliff Burgess and Guy Moore “The Standard Model”

• Mark Thomson, “Modern Particle Physics”

• Matt Schwartz, “Quantum Field Theory and the Standard Model”

All three have different perspectives. Cliff and Guy’s book in particular is closely

aligned to the general theme of these lectures. Mark Thomson’s book includes many

more details about the specifics of particle interactions, while Matt’s book is a great

all-round QFT book that, as the title suggests, has an increasing focus on the Standard

Model as it proceeds.

Finally, if you’re serious about particle physics you should acquaint yourself with the

all-important Particle Data Group. They have various apps that you can download

and, for the more old-fashioned among you, books. Their booklet, available in the

download section of the webpage, is particularly useful. They’ll even mail you one for

free if you ask nicely.

In addition, there are many online lecture notes. You can find links to these on the

course webpage.
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0 Introduction

The “Standard Model” is the comically inadequate name that physicists give to the

greatest scientific theory of all time.

This theory is the poster child for success in reductionist science. It describes the

universe on the most fundamental level and correctly predicts the results of every

experiment that we have ever done, sometimes with unprecedented levels of accuracy.

There are parts of the theory that are stunningly beautiful, with different facets

sliding together like a perfect jigsaw, locked in place with a mathematical rigidity that

means large parts of the world we inhabit could not be any other way. But there

are other aspects of the theory that appear much less elegant, with a couple of dozen

parameters that cannot be predicted from first principles but only by measuring them

in experiment. These parameters don’t appear to be completely random; there are

patterns within them that surely hint at some structure that lies beyond the Standard

Model, a structure that we have yet to uncover.

Boiled down to its essence, the Standard Model describes a bunch of particles, in-

teracting with three forces. These forces are the strong nuclear force, the weak nuclear

force, and electromagnetism. The force of gravity is not part of the Standard Model

but it’s straightforward to include it by coupling to a dynamical, curved spacetime.

(Claims that the Standard Model is incompatible with general relativity are wildly

overblown. The two theories work perfectly well together at all energy scales that we

can currently probe by experiment. The difficulties only arise when energies approach

the Planck scale.)

Each force in the Standard Model is associated to a Lie group. The upshot is that

the Standard Model is built around the group

G = U(1)× SU(2)× SU(3) .

Why nature chose the numbers, 1,2, and 3 as the building blocks for her most important

theory is not known, but you can’t help but smile at the decision. Here SU(3) is

associated to the strong force and SU(2) is associated to the weak force and U(1) is

not associated to electromagnetism but, instead, to an electromagnetic-like force known

as hypercharge. It too plays a role in the weak force. The theory of electromagnetism

that we know and love can be found hiding within the SU(2)× U(1) factor.
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electron down quark up quark electron neutrino

1 9 4 ∼ 10−6

muon strange quark charm quark muon neutrino

207 186 2495 ∼ 10−6

tau bottom quark top quark tau neutrino

3483 8180 340,000 ∼ 10−6

Table 1. The fermions of the Standard Model

Despite the group theoretic similarities of each force, the resulting physics is wildly

different. That’s because quantum field theory is cool. It does wonderful and unex-

pected things. Part of the purpose of this course is to learn about these things and

why the dynamics of the strong, weak and electromagnetic forces all play very different

roles in our world.

These three forces interact with matter which, in the Standard Model, comes in the

form of 15 Weyl fermions which, collectively, go by the name of the electron, the up

quark, the down quark, and the neutrino. Why we give just four names to 15 fermions

is part of the story that we will unravel, but at heart it is to do with representation

theory of the group G.

At this point, one of the deepest facts about nature rears its head. The subtleties

of quantum field theory mean that this quartet of particles – the electron, neutrino,

and up and down quarks – have to come together as a collective. You don’t have a

choice. The theory with just, say, an electron and an up quark and no companions

makes no sense. On grounds of mathematical consistency alone, we’re obliged to have

this quartet of particles with their particular properties. This is where some of the

most beautiful aspects of the Standard Model can be found.

But then nature has a surprise, one which we’ve known about for almost a century

and yet we are seemingly no closer to understanding. Nature took that collection of

four particles and, for mysterious reasons, chose to replicate it twice over. This means

that the matter in our world is not made of 15 fermions with four different names, but

instead of 45 fermions with twelve different names. The names of these twelve particles

are shown in Table 1 together with their masses, relative to the electron mass which is

me ≈ 0.51 MeV .
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Figure 1. Again, the masses of the fermions of the Standard Model. Note that the ordering

of particles in each generation is switched.

Each of the three rows in Table 1 is referred to as a different generation. The particles

in each generation experience identical forces. So, for example, the electron, muon and

tau all have electric charge −1, the down, strange and bottom quarks all have electric

charge −1/3 and the up, charm and top quarks all have electric charge +2/3. All three

neutrinos are neutral.

Similarly, the six quarks all experience the strong force in the same way, while the

electron, muon, tau and neutrinos (which, collectively are referred to as leptons) are all

untouched by the strong force.

The masses of the particles are replicated in Figure 1. They span at least 11 orders

of magnitude, maybe more. (The masses of the neutrinos are not well constrained, as

shown in the figure.) Why these particular masses? Why this ordering of masses? We

have no idea. That’s one of the outstanding questions that we hope might be answered

by a deeper theory.

There is one final piece of the Standard Model that sits, lording over everything.

This is the Higgs boson. It is, in many ways, the thing that ties everything together.

In particular, all the masses listed above can be traced to the interactions of various

fermions with the Higgs field.

The Higgs is simultaneously both the simplest and the most complicated field in the

Standard Model. It is the simplest because it is the only fundamental (as far as we can

tell!) scalar field that we have so far observed, meaning that it is the only field to carry

zero spin. It is the most complicated because, in contrast to fermions and gauge fields,

scalar fields don’t come with many consistency requirements which means that there
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are a plethora of interaction terms that we can write down and the only way we have

to constrain their values is to go out and measure them. It’s here that we find the two

dozen or so parameters that we can’t yet explain. And it’s here that things get messy

and interesting.

This, then, is the Standard Model, part beauty, part beast. A glorious and astonish-

ingly successful theoretical edifice that, so far, has stood firm against everything that

experimenters have thrown at it. Yet few believe that it can really be the last word

in physics. The Standard Model, like the periodic table before it, surely holds clues

for what lies beyond. Our duty as physicists is to understand the Standard Model as

best we can, to learn its secrets and, if possible, to let it guide us to a still deeper

understanding of the world. The purpose of this course is to take you, at least part

way, on this journey.
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1 Symmetries

A large chunk of the structure of the Standard Model follows from understanding the

various symmetries at play. Among these symmetries are

• Poincaré symmetries of spacetime, which restrict us to scalars, fermions, and

gauge fields. These are the basic building blocks of the Standard Model.

• Gauge symmetries, better referred to as “gauge redundancies”. These dictate the

interactions of the spin 1 fields. Indeed, we’ve already seen that the Standard

Model is usually advertised by specifying the gauge group

G = U(1)× SU(2)× SU(3) . (1.1)

• Global symmetries. These act on the fermions and include baryon number and

lepton number, as well as various approximate flavour symmetries.

• Discrete symmetries. Prominent among these are parity, time-reversal, and charge

conjugation. These three symmetries are critically important in the structure of

the Standard Model because, we shall see, none of them are actually good sym-

metries of our universe! But this is one case where not having symmetries puts

even stronger constraints on the theory than having symmetries. This is because

of something called “anomaly cancellation” that will be described in Section 4.

Of these, the various global symmetries arise because of the specific matter content of

the Standard Model and so we will postpone a discussion of them until we have more

details in place. (We’ll first get there in Section 3 when we describe features of the

strong force.) However, the other three symmetries – Poincaré, gauge, and discrete –

are ingredients that arise in pretty much all relativistic field theories. For this reason,

it makes sense to explore them in some detail in preparation for what’s to come.

1.1 Spacetime Symmetries

On the length scales appropriate for particle physics, spacetime is effectively flat.

This means that the arena for our story is Minkowski space R1,3, equipped with the

Minkowski metric

ηµν = diag(+1,−1,−1,−1) . (1.2)

We label a point in Minkowski space as xµ = (x0, x1, x2, x3). The set of symmetries of

Minkowski space include Lorentz transformations of the form xµ → Λµ
νx

ν where

ΛTηΛ = η . (1.3)
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Embedded among these are a couple of discrete transformations: parity with Λ =

diag(1,−1,−1,−1) and time reversal with Λ = diag(−1, 1, 1, 1). These are important

enough that we will discuss them separately in Section 1.4. The transformations that

are continuously connected to the identity have det Λ = 1 and Λ0
0 > 0 and form the

Lorentz group SO(1, 3). (The restriction to Λ0
0 > 0 is sometimes written as SO+(1, 3).)

Our main goal in this section is to understand some things about the representa-

tions of the Lorentz group and its extension to the Poincaré group which also includes

spacetime translations. Among these representations, spinors are the most fiddly and

subtle and we will describe some of their properties in Section 1.2.

1.1.1 The Lorentz Group

Strictly speaking, the group SO(1, 3) doesn’t have any spinor representations. However,

there is a closely related group called Spin(1, 3) that does admit spinors. This is the

double cover, in the sense that

SO(1, 3) ∼= Spin(1, 3)/Z2 (1.4)

where that Z2 is related to the famous minus sign that spinors pick up under a 2π

rotation, a minus sign that vectors like xµ are oblivious to. The fact that there are

spinors in our world is the statement that the true symmetry group is Spin(1, 3) rather

than SO(1, 3).

The groups Spin(1, 3) and SO(1, 3) share the same Lie algebra so(1, 3). A Lorentz

transformation acting on a 4-vector can be written as

Λ = exp

(
− i

2
ωµνM

µν

)
(1.5)

where ωµν are six numbers that specify what Lorentz transformation we’re doing, while

Mµν = −Mνµ are a choice of six 4 × 4 suitable matrices that generate the different

Lorentz transformations. The matrix indices are suppressed in the above expressions;

in their full glory we would write (Mµν)ρσ. So, for example

(M01)ρσ = i

(
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

)
and (M12)ρσ = i

(
0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

)
. (1.6)

(Note that the generators differ by a factor of i from those defined in the Quantum

Field Theory lectures. This is compensated by an extra factor of i in the exponent

(1.5).) The matrices Mµν generate the algebra so(1, 3),

[Mµν ,Mρσ] = i (ηνρMµσ − ηνσMµρ + ηµσMνρ − ηµρMνσ) . (1.7)
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The six different Lorentz transformations naturally decompose into three rotations Ji
and three boosts Ki, defined by

Ji =
1

2
εijkMjk and Ki = M0i (1.8)

where the j, k = 1, 2, 3 indices are summed over, and ε123 = +1. The rotation matrices

are Hermitian, with J†i = Ji while the boost matrices are anti-Hermitian with K†i =

−Ki. This ensures that the rotations in (1.5) give rise to a compact group while the

boosts are non-compact. From the Lorentz algebra, we find that these generators obey

[Ji, Jj] = iεijkJk , [Ji, Kj] = iεijkKk , [Ki, Kj] = −iεijkJk . (1.9)

The rotations form an su(2) sub-algebra. That, of course, is to be expected and is

related to the fact that SO(3) ∼= SU(2)/Z2.

We can, however, find two mutually commuting su(2) algebras sitting inside so(1, 3).

For this we take the linear combinations

Ai =
1

2
(Ji + iKi) and Bi =

1

2
(Ji − iKi) . (1.10)

Both of these are Hermitian, with A†i = Ai and B†i = Bi. They obey

[Ai, Aj] = iεijkAk , [Bi, Bj] = iεijkBk , [Ai, Bj] = 0 . (1.11)

But we know all about representations of SU(2): they are labelled by an integer or

half-integer j ∈ 1
2
Z which, in the context of rotations, we call “spin”. The dimension

of the representation is then 2j + 1. The fact that we can find two su(2) sub-algebras

of the Lorentz algebra tells us that all representations must carry two such labels

(j1, j2) with j1, j2 ∈
1

2
Z . (1.12)

Moreover, we know that this representation must have dimension (2j1 + 1)(2j2 + 1).

We’ll flesh out the meaning of these representations more below. But for now, we can

identify the simplest such representations just by counting: we have

(0, 0) : scalar

(1
2
, 0) : left-handed Weyl spinor

(0, 1
2
) : right-handed Weyl spinor

(1
2
, 1

2
) : vector (1.13)

(1, 0) : self-dual 2-form

(0, 1) : anti-self-dual 2-form
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What we call the physical spin of a particle is the quantum number under rotations ~J :

this is j = j1 + j2. The spin-statistics theorem ensures that particles with j ∈ Z are

bosons, while those with j ∈ Z+ 1
2

are fermions.

There’s something a little odd about our discovery of two su(2) sub-algebras. After

all, it certainly isn’t true that the Lorentz group is isomorphic to two copies of SU(2).

This is because SU(2) is a compact group: keep doing a rotation and you will eventually

get back to where you started. Indeed, two copies of the group SU(2) give the rotation

group of Euclidean space R4:

Spin(4) ∼= SU(2)× SU(2) with SO(4) ∼= Spin(4)/Z2 . (1.14)

In contrast, the Lorentz group is non-compact: keep boosting and you get further and

further from where you started. How does this manifest itself in the two su(2) algebras

that we’ve found in (1.11)?

The answer is a little subtle and is to be found in the reality properties of the

generators Ai and Bi. Recall that all integer, j ∈ Z, representations of SU(2) are real,

while all half-integer spin, j ∈ Z + 1
2
, are pseudoreal (which means that, while not

actually real, the representation is isomorphic to its complex conjugate). However, the

Ai and Bi in (1.11) do not have these properties. You can see in (1.6) that both Ji and

Ki are pure imaginary. This, in turn, means that the generators Ai and Bi are complex

conjugates of each other

(Ai)
? = −Bi . (1.15)

This is where the difference lies that distinguishes SO(4) from SO(1, 3). The Lie algebra

so(1, 3) does not contain two, mutually commuting copies of the real Lie algebra su(2),

but only after a suitable complexification. This means that certain complex linear

combinations of the Lie algebra su(2)× su(2) are isomorphic to so(1, 3). To highlight

this, the relationship between the two is sometimes written as

so(1, 3) ∼= su(2)× su(2)? . (1.16)

For our purposes, it means that the complex conjugate of a representation (j1, j2)

exchanges the two quantum numbers

(j1, j2)? = (j2, j1) . (1.17)

Both the scalar representation (0, 0) and the vector representation (1
2
, 1

2
) are real, while

the left- and right-handed Weyl spinors (1
2
, 0) and (0, 1

2
) are exchanged under complex
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conjugation. This last statement, which is important, will be elaborated upon in Sec-

tions 1.2 and 1.4. In the context of quantum field theory, if a field appears in a theory

then so too does its complex conjugate. This means that if you have a left-handed

spinor, you also have a right-handed complex conjugated spinor.

1.1.2 The Poincaré Group and its Representations

The continuous symmetries of Minkowski space comprise of Lorentz transformations

together with spacetime translations. Combined, these form the Poincaré group. Space-

time translations are generated, as usual, by the momentum 4-vector P µ. Their com-

mutation relations with themselves and with the Lorentz generators Mµν are given

by

[P µ, P ν ] = 0 and [Mµν , P σ] = i (P µηνσ − P νηµσ) . (1.18)

The latter of these is equivalent to the statement that P µ transforms as a 4-vector

under Lorentz transformations. These commutation relations should be considered in

conjunction with the Lorentz algebra (1.7),

[Mµν ,Mρσ] = i (ηνρMµσ − ηνσMµρ + ηµσMνρ − ηµρMνσ) . (1.19)

Together, (1.18) and (1.19) form the algebra of the Poincaré group.

Given an algebra, our next task is to explore its representations. There are different

ways that we could approach this. Ultimately, we will be interested in the way that

the Poincaré group acts on fields that make up the Standard Model. But first, to build

some intuition, we will understand how the Poincaré group acts on single particle states

in the Hilbert space.

To set the scene, let’s first recall how we construct irreducible representations of the

rotation group. We work with the algebra so(3) ∼= su(2) rather than the group. This

is, of course, defined by the familiar commutation relations

[Ji, Jj] = iεijkJk . (1.20)

To construct representations, the first thing we do is look to the Casimirs. These are

operators that commute with all generators of the group. For su(2), there is just a

single Casimir,

C =
3∑
i=1

J2
i . (1.21)
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Irreducible representations are labelled by the eigenvalue of the Casimir. For su(2),

the eigenvalue of J2 is j(j + 1) with the spin j taking values in j = 0, 1
2
, 1, . . .. Each

representation has dimension 2j + 1, with the states within a multiplet identified by

their eigenvalue under, say, J3 whose eigenvalue lies in the range |j3| ≤ j. The result is

the familiar one from quantum mechanics: states are labelled by two quantum numbers

|j, j3〉

Now let’s turn to the Poincaré group. The irreducible representations are what we

call “particles”. Again, they are characterised by the Casimirs. I won’t tell you how

to construct Casimirs, but will instead just present you with the result. First, we

introduce the Pauli-Lubański vector,

W µ =
1

2
εµνρσPνMρσ . (1.22)

This can be thought of as a relativistic version of angular momentum. You can eas-

ily check this commutes with momentum [Wµ, Pν ] = 0. The remaining non-trivial

commutation relations are somewhat more laborious to show:

[Wµ,Mνρ] = i(ηµνWρ − ηµρWν) and [Wµ,Wν ] = −iεµνρσW ρP σ . (1.23)

The last of these commutation relations is quadratic on the right-hand side and so we’re

not looking at a Lie algebra here, but something more complicated. (This is reminiscent

of the Runge-Lenz vector which is a conserved quantity for the Kepler problem; there

too, the Poisson bracket structure returns something quadratic on the right-hand side.)

The two Casimirs of the Poincaré group are formed from the momentum Pµ and the

Pauli-Lubański vector Wµ,

C1 = PµP
µ and C2 = WµW

µ . (1.24)

This is our starting point: representations of the Poincaré group are labelled by the

eigenvalues of C1 and C2, together with the eigenvalues of any other operators that

we can find to make a maximally commuting set, analogous to J3 for the angular

momentum.

The most important of these “other operators” is the momentum P µ itself. All states

will be labelled by the eigenvalue pµ which is simply the 4-momentum of the particle.

The first Casimir is then just the rest mass of the particle, C1 = pµp
µ = m2. By

acting with rotations and boosts Mµν , we can change the momentum to take any value

subject to the constraint pµp
µ = m2. In the rotation analogy, the different values of pµ

are like the different values of j3 in the multiplet. However, in contrast to rotations,
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representations of the Poincaré group will necessarily be infinite dimensional, labelled

(among other things) by the continuous variable pµ. This difference can be traced to

the fact that the Poincaré group is non-compact while the rotation group is compact.

What happens next depends on whether we’re dealing with massive or massless

particles. We describe each in turn, followed by a somewhat mysterious massless rep-

resentation that no one really knows what to make of.

Massive Representations

First, consider the situation when C1 = m2 6= 0. It’s fruitful to pick a representative

value of the momentum pµ and the simplest choice is to boost to the rest frame of the

particle so that pµ = (m, 0, 0, 0). In this frame, the Pauli-Lubański vector is

W 0 = 0 and W i = −mJ i . (1.25)

with J i the generators of rotations. Note that the rotation generators J i are precisely

those elements of the Lorentz algebra that don’t change the value of our chosen mo-

mentum pµ = (m, 0, 0, 0). That means that these generators J i must act on whatever

other degrees of freedom are carried by the particles. We want to ask: what are the

allowed extra degrees of freedom?

But this is a question that we already answered above because our problem has

reduced to finding a representation of the Lie algebra su(2), generated by J i. The

second quadratic Casimir of the Poincaré group is C2 = −m2J2 and so is specified by

the eigenvalue of J2 which, as we reviewed above, is j(j+ 1) for some j ∈ 1
2
Z. The full

multiplet is then filled out by the different values of j3 with |j3| ≤ j.

We’ve seen that, if we fix the momentum to the specific value pµ = (m, 0, 0, 0),

then we’re left with finding representations of the rotation group. But, importantly, it

doesn’t matter which value of the momentum we started with: had we picked a different

pµ (still with pµp
µ = m2), then we’d have got the same result. This suggests that we

can lift the SU(2) representation that we found for our given pµ to a representation of

the full Poincaré group. And, indeed, this is the case.

There is a theorem underlying this result which we won’t prove. Instead, I’ll just

give you some names of things. Once we fix the momentum pµ, the elements of the

Lorentz group that don’t change pµ form a group known as the little group. For massive

particles, the little group is SU(2). One can then show that representations of the little

group uplift to representations of the full Poincaré group. This is what’s known as an

induced representation.
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The upshot is something familiar: massive particles are characterised by their mass

m and spin j. Given these Casimirs, states in this representation of the Poincaré group

are labelled by |pµ, j3〉.

Massless Representations

The story is slightly different for massless particles, for which the first Casimir vanishes:

C1 = m2 = 0. We again choose a representative momentum. This time we can’t boost

to the rest frame, but we can choose the momentum to take the form pµ = (E, 0, 0, E)

where E is the energy of the particle. A short calculation shows that, in this frame,

the Pauli-Lubański now takes the form

Wµ = E


−M12

M23 −M02

M31 +M01

M12

 = E


−J3

J1 −K2

J2 +K1

J3

 . (1.26)

Here we’ve replaced the Mµν with the appropriate rotation generator Ji or boost gen-

erator Ki defined in (1.8). Once again, each of the components of Wµ leaves our initial

momentum pµ = (E, 0, 0, E) unchanged, a fact that you can check by looking at the

explicit form of the generators (1.6). In other words, these components of Wµ are once

again our little group. (This has happened twice now and it is no coincidence: the

structure of the Pauli-Lubański vector was designed so that this holds.)

What group do the components of W µ actually generate? We can look at their

commutation relations which, using (1.9), are

[W1,W2] = 0 , [W3,W2] = −iEW1 , [W3,W1] = iEW2 . (1.27)

This is the Euclidean group in R2, sometimes written as ISO(2), with W1 and W2 the

generators of translations and W3 the generator of rotations. Again, the little group

doesn’t act on our chosen pµ = (E, 0, 0, E), but it may act on any other degrees of

freedom that our state carries. Said differently, those other degrees of freedom must

fall into a representation of the 2d Euclidean group.

Here a subtlety rears its head. For reasons that we will explain below, things turn out

to be simplest if we consider representations of the little group on which the translation

generators W1 and W2 act trivially. If we ignore these translations, the remaining little

group is just the U(1) of rotations generated by J3. Representations of this U(1) are

labelled by a single eigenvalue h such that the states transform as

eiθJ3|h〉 = eihθ|h〉 . (1.28)
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The eigenvalue h is called the helicity and is the analog of spin for massless particles.

At times, we’ll be lazy and just refer to both as “spin”. For a general null p, the helicity

tells us the eigenvalue of the state under a rotation along the direction of motion,

eiθ p̂·J|pµ;h〉 = eihθ|pµ;h〉 . (1.29)

Because the U(1) generated by J3 was a subgroup U(1) ⊂ SU(2), we know that this

helicity is quantised to take values

h ∈ 1

2
Z . (1.30)

This is the statement that, under a rotation of θ = 2π, the states are either left the

same (for h ∈ Z) or pick up a minus sign (for h ∈ Z+ 1
2
).

There’s something missing in the story above. For massive representations, we’ve

seen that the states are labelled by m and j and fill out a multiplet |pµ, j3〉 with

|j3| ≤ j. This multiplet has dimension 2j + 1. (Ok, the multiplet is really infinite

dimensional because of the pµ, but for a fixed pµ the multiplet has dimension 2j + 1.)

However, for massless particles there is just a single state |pµ;h〉. This is because the

helicity describes the representation of the Abelian group U(1) generated by J3 rather

than the non-Abelian group SU(2) and irreducible representations of Abelian groups

are one-dimensional.

The problem with this is that it doesn’t fit with what we know about massless

particles. For example, the photon has helicity h = 1 and has two polarisation states,

as does a graviton with h = 2. A massless spinor with h = 1
2

also has two degrees of

freedom. Why aren’t we seeing this doubling in our representation theory analysis?

What we’re missing is the additional requirement that the spectrum of states is

invariant under CPT . These are discrete symmetries that we will look at more closely

in Section 1.4. For massive particles, this doesn’t buy us anything new: the set of

states |pµ, j〉 is already invariant under CPT . However, for massless particles CPT

flips h 7→ −h and tells us that massless states must come in pairs

|pµ;h〉 and |pµ;−h〉 . (1.31)

This is the origin of the two polarisation states of the photon or graviton, or the two

helicities of a massless Weyl spinor. Note that a massless scalar has helicity h = 0 and

so is CPT self-conjugate. This means that there’s no requirement from CPT to add

an additional degree of freedom in this case.
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Weird Continuous Spin Representations

We brushed over something above. When looking at massless representations, we

found that the little group coincides with the 2d Euclidean group (1.27). But then,

without justification, we restricted ourselves to representations on which the translation

generators W1 and W2 act trivially. Here we give the justification.

Let’s look at representations of the 2d Euclidean group (1.27) for which translations

W1 and W2 act non-trivially. Because [W1,W2] = 0, we can simultaneously diagonalise

these generators so that they act on states |w1, w2〉 such that

Wi|w1, w2〉 = wi|w1, w2〉 for i = 1, 2 . (1.32)

The second Casimir is then

C2 = W µWµ = −(w2
1 + w2

2) . (1.33)

For the massless representations above, we assumed that w1 = w2 = 0. Now we

want to understand what happens when they are non-zero. Since C2 is fixed, we write

w1 = ρ cosα and w2 = ρ sinα with C2 = −ρ2 and we should think of the collection of

states |w1, w2〉 as parameterised by the angle α ∈ [0, 2π) with the action

W1|α〉 = ρ cosα|α〉 and W2|α〉 = ρ sinα|α〉 . (1.34)

It remains to determine the action of W3 = EJ3 on these states. This is given by

eiθJ3|α〉 = eihθ|α + θ〉 =⇒ J3|α〉 = h|α〉 − i d
dα
|α〉 . (1.35)

You can check that the actions (1.35) and (1.34) do indeed furnish a representation

of the 2d Euclidean algebra (1.27). But, from the perspective of particle physics, it’s

a very weird representation. This is because particle states |pµ, α;h〉 are labelled by

their momentum pµ and an additional angle α ∈ [0, 2π). This means that for every

choice of momentum pµ, there’s still an infinite dimensional Hilbert space, labelled by

the continuous parameter α rather than a discrete, bounded parameter like j3. Said

differently, it’s as if we have an uncountably infinite number of species of particle. These

are known as continuous spin representations.

We’ve certainly never observed particles corresponding to these states and they would

have very strange properties (such as infinite heat capacity). Nonetheless, one can’t

help but wonder if nature may make use of them somewhere.
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1.1.3 The Coleman-Mandula Theorem

It’s not unusual for quantum field theories to exhibit further continuous symmetries.

Say, a global U(1) symmetry that rotates the phase of a complex field, or perhaps

a non-Abelian SU(N) symmetry under which a multiplet of fields transforms. The

generators of these symmetries – which we’ll denote collectively as T – correspond to

some conserved charge and are always Lorentz scalars which means that they necessarily

commute with the Poincaré generators,

[P µ, T ] = [Mµν , T ] = 0 . (1.36)

One could ask: is it possible for something less trivial to happen, with the new genera-

tors transforming in some fashion under the Poincaré group? For example, this would

happen if the additional generators T themselves carried some spacetime index. If this

were possilble, the Poincaré group would be subsumed into a larger group. And that

sounds interesting.

A theorem due to Coleman and Mandula greatly restricts this possibility. Roughly

speaking, the theorem states that, in any spacetime dimension greater than d = 1 + 1,

the symmetry group of any interacting quantum field theory must factorise as

Poincaré × Internal . (1.37)

We won’t prove the Coleman-Mandula theorem here. The gist of the proof is to look at

2-to-2 scattering (meaning two incoming particles scatter into two outgoing particles).

Poincaré invariance already greatly restricts what can happen, with only the scatter-

ing angle left undetermined. Any internal symmetries that factorise, as in (1.37), put

restrictions on the kinds of interactions that are allowed, for example enforcing con-

servation of electric charge. But if the generators T were to carry a spacetime index

then they would put further constraints on the scattering angle itself and that would

be overly restrictive, at best allowing scattering to occur only at discrete angles. But

if one assumes that the scattering amplitudes are analytic functions of the angle then

the amplitude must vanish for all angles and the theory is free.

Like all no-go theorems in physics, the Coleman-Mandula theorem comes with a

number of underlying assumptions. Some of these are eminently reasonable, such as

locality and causality. But it may be possible to relax other assumptions to find inter-

esting loopholes to the Coleman-Mandula theorem. Two such loopholes have proven

to be extremely important.

• Conformal Invariance: The Coleman-Mandula theorem assumes that the the-

ory has a mass gap, meaning that all particles are massive. Indeed, the theorem
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is a statement about symmetries of the S-matrix which is really only well defined

for massive particles where we don’t have to worry about IR divergences. For

theories of massless particles something interesting can, and often does, happen.

The first interesting thing is that interacting massless theories typically exhibit

scale invariance. This means that physics is unchanged under the symmetry

xµ → λxµ. The associated symmetry generator is called D for “dilatation”. This

can only be a symmetry of a theory that has no dimensionful parameters, which

is the main reason it can occur only for massless theories.

The second interesting thing is more surprising. For reasons that are not en-

tirely understood, theories that exhibit scale invariance also exhibit a further

symmetry known as special conformal transformations of the form

xµ → xµ − aµx2

1− 2a · x+ a2x2
. (1.38)

This transformation depends on a vector parameter aµ and the associated gen-

erator is a 4-vector Kµ. The resulting conformal algebra extends the Poincaré

algebra (1.18) and (1.19) with the non-trivial commutators

[D,Kµ] = −iKµ , [D,P µ] = iP µ

[Kµ, P ν ] = 2i(Dηµν −Mµν) (1.39)

[Mµν , Kσ] = i (Kνηµσ −Kµηνσ) .

Interacting conformal field theories crop up in many places in physics. In their

Euclidean incarnation, they describe critical points, or second order phase transi-

tions, that were the focus of our lectures on Statistical Field Theory. In d = 1+1

dimensions the conformal group has rather more structure and a detailed intro-

duction can be found in the lectures on String Theory.

• Supersymmetry: The second loophole to the Coleman-Mandula theorem is su-

persymmetry. This is a symmetry that relates bosons to fermions. The generator

that enacts this magical transformation is denoted as Qα and carries a spacetime

spinor index α = 1, 2. (We will learn more about spinors in Section 1.2.) This

is exactly the kind of thing that the Coleman-Mandula theorem is supposed to

rule out. However, supersymmetry evades the theorem because the generators

Qα do not form a Lie algebra: instead they form what is known as a super-Lie

algebra, with the commutation relations of the Poincaré group (1.18) and (1.19)

augmented by the anti-commutation relation

{Qα, Q̄α̇} = 2σµαα̇Pµ . (1.40)
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Here σµαα̇ are a collection of 2×2 matrices defined in (1.44). (We’ll see a lot more

about what the α and α̇ spinor indices mean shortly.) You can learn (a lot!) more

about this algebra and its consequences for various field theories in the lectures

on Supersymmetry.

Neither conformal symmetry nor supersymmetry play a role in the Standard Model.

However, both arise in different ways when it comes to ideas for what lies beyond the

Standard Model.

1.2 Spinors

Scalars are basic. They have no internal structure and, as such, come with very little

baggage. There’s a lot of fun that we can have with them, largely by writing down

potentials that do interesting things, and we’ll see examples of this when we discuss

spontaneous symmetry breaking in Section 2. But there’s little that is subtle about

scalars: what you see is what you get.

In contrast, any field with higher spin is awash with subtleties. For massless spin

1 particles, like photons, these subtleties are all about gauge invariance and we will

discuss them in Section 1.3. Here our interest is in spin 1
2

particles, known as spinors.

These are the fields that describe all matter particles in the Standard Model, meaning

the quarks and leptons. They are subtle largely because anything that comes back to

itself with a minus sign after a 2π rotation is always going to be a little strange.

1.2.1 Dirac vs Weyl Spinors

We start by reviewing some features of spinors that we met in the lectures on Quantum

Field Theory. However, our focus is going to be a little different. In particular, to

prepare us for the Standard Model, we will need to look more closely at the properties

of Weyl spinors.

In the lectures on Quantum Field Theory, we learned about the 4-component Dirac

spinor ψ. This comes hand in hand with a collection of gamma matrices that obey the

Clifford algebra

{γµ, γν} = 2ηµν . (1.41)

The Clifford algebra admits a unique irreducible representation, up to conjugation.

But that “up to conjugation” caveat hides all manner of headaches as it provides

ample opportunity for physicists to use annoying conventions. Here we use the chiral
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basis of gamma matrices,

γµ =

(
0 σµ

σ̄µ 0

)
and γ5 =

(
1 0

0 −1

)
(1.42)

where we’ve introduced two collections of 2× 2 matrices,

σµ = (1, σi) and σ̄µ = (1,−σi) (1.43)

where σi with i = 1, 2, 3 are the familiar Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.44)

The bar on σ̄µ in (1.43) doesn’t denote complex conjugation: these are simply a different

collection of 2× 2 matrices from σµ.

In the Quantum Field Theory lectures, we showed that the generators of Lorentz

transformations for a Dirac spinor are

Sµν =
i

4
[γµ, γν ] =

(
σµν 0

0 σ̄µν

)
. (1.45)

(As with our earlier definition of Mµν , this differs by a factor of i from the conventions

in the Quantum Field Theory lectures.) Here we’ve defined

σµν =
i

4
(σµσ̄ν − σν σ̄µ)

σ̄µν =
i

4
(σ̄µσν − σ̄νσµ) . (1.46)

Because both of these expressions are anti-symmetrised in µ and ν, each is a collection

of six 2× 2 matrices.

The generators Sµν defined in (1.45) are block diagonal. This is telling us that they

are not an irreducible representation of the Lorentz algebra. Instead, it’s formed of two

distinct representations, one generated by σµν and the other generated by σ̄µν . Indeed,

you can check that each of these obeys the Lorentz algebra (1.5)

[σµν , σρσ] = i (ηνρσµσ − ηνσσµρ + ηµσσνρ − ηµρσνσ) (1.47)
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with a similar expression for σ̄µν . Correspondingly, the 4-component Dirac spinor ψ

also decomposes into two 2-component spinors

ψ =

(
ψL

ψR

)
. (1.48)

These are referred to as left-handed and right-handed spinors respectively. In the

language of our earlier table of representations (1.13), ψL sits in the (1
2
, 0) representation

while ψR sits in the (0, 1
2
) representation. A Dirac spinor is a combination of both

representations (1
2
, 0)⊕ (0, 1

2
).

Under a Lorentz transformation, a left-handed Weyl spinor transforms as

ψL → SψL with S = exp

(
− i

2
ωµνσ

µν

)
. (1.49)

Here ωµν are the same set of six numbers that specify the Lorentz transformation (1.5).

There is a similar expression for ψR, with σµν replaced by σ̄µν .

You can check that trσµν = 0 and so, using det(eA) = etrA, we have detS = 1. In

fact, S ∈ SL(2,C), and what we’ve done in constructing the Weyl spinor representation

of the Lorentz group is highlight the group isomorphism Spin(1, 3) ∼= SL(2,C).

(Left-Handed)? = Right-Handed

The two representations – one for a left-handed Weyl spinor, the other for a right-

handed Weyl spinor – are related by complex conjugation.

It’s not immediately obvious because, as we’ve seen, the generators are σµν and σ̄µν

and it’s not true that these generators are complex conjugates: (σµν)? 6= σ̄µν . To see

the relation, we need an additional conjugation by the anti-symmetric tensor

ε =

(
0 1

−1 0

)
. (1.50)

You can then check that

εT (σµν)?ε = σ̄µν . (1.51)

Operationally, the complex conjugation flips the sign of (σ2)? = −σ2 leaving the other

Pauli matrices alone: (σi)? = σi for i = 1, 3. But the conjugation by ε = iσ2 then flips

the sign of σi with i = 1, 3, leaving σ2 alone.
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This simple algebraic relation has an important physical implication. If you have a

left-handed particle described by a Weyl spinor ψL, then its anti-particle is described

by the conjugate spinor ψ†L (which we also write as ψ̄L) and is right-handed.

Building Scalars from Spinors

If we’re given two left-handed spinors, ψL and χL, then we can build a scalar. We’ll

adorn our spinors with indices, so we have (ψL)α and (χL)α with α = 1, 2. We also add

indices to our anti-symmetric matrix

εαβ =

(
0 1

−1 0

)
. (1.52)

We then define the scalar quantity

ψL χL := εαβ(ψL)β(χL)α = (ψL)2(χL)1 − (ψL)1(χL)2 . (1.53)

To see that this does indeed transform as a scalar, we look at

ψL χL → S γ
α S

δ
β ε

αβ(ψL)δ(χL)γ = (detS)εγδ(ψL)δ(χL)γ = ψL χL (1.54)

where, in the first equality we’ve used the fact that S γ
α S

δ
β ε

αβ = detS εγδ, which you

can confirm simply by checking all the cases γ, δ = 1, 2. In the second equality we’ve

used the fact that detS = 1.

This is an important lesson: you can form a scalar from two left-handed spinors. In

terms of the representation theory of the previous section, what we’re seeing here is

the tensor product (1
2
, 0)⊗ (1

2
, 0) = (0, 0)⊕ (1, 0), where the scalar (1.53) picks out the

singlet (0, 0).

The anti-symmetric tensor εαβ is an invariant tensor for the group SL(2,C). In that

sense, it plays a role that is similar to the delta function δab for the group SO(N), or the

Minkowski metric ηµν for the group SO(1, 3). In particular, it allows us to form a scalar

product between two spinors as in (1.53). The fact that this product is anti-symmetric,

rather than symmetric, fits nicely with the fact that, in quantum field theory, spinors

are anti-commuting variables whose components are Grassmann-valued. This means

that we have,

ψL χL = (ψL)2(χL)1 − (ψL)1(χL)2 = −(χL)1(ψL)2 + (χL)2(ψL)1 = χL ψL . (1.55)

In particular, this means that we can form a scalar from just a single left-handed Weyl

spinor

ψL ψL = (ψL)2(ψL)1 − (ψL)1(ψL)2 = 2(ψL)2(ψL)1 . (1.56)

Again, there are similar expressions for right-handed spinors.
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There’s quite a bit more to say about the two different representations of the Lorentz

algebra and their properties. You can read about this (and the corresponding dotted

and undotted indices) in the first section of the lectures on Supersymmetry. But the

simple summary above will suffice for our purposes.

1.2.2 Actions for Spinors

Our next goal is to understand how to construct Lagrangians for spinors. Again, our

starting point will be the Dirac spinor that we met in Quantum Field Theory. There

we saw that the Lorentz invariant action is

SDirac = −
∫
d4x

(
iψ̄γµ∂µψ −Mψ̄ψ

)
. (1.57)

For a Dirac spinor, the bar notation means ψ̄ = ψ†γ0. Decomposed in terms of Weyl

fermions (1.48),

SDirac = −
∫
d4x

(
iψ̄Lσ̄

µ∂µψL + iψ̄Rσ
µ∂µψR −M(ψ̄RψL + ψ̄LψR)

)
. (1.58)

First an important, but trivial, notational point: the bar for a Weyl spinor means

something different from a bar for a Dirac spinor. It is simply a more elegant way of

writing ψ̄L = ψ†L.

Second, note that the mass term couples the left- and right-handed Weyl spinors.

Combining our observations above, we know that the complex conjugate ψ̄R is a left-

handed spinor, and so in writing ψ̄RψL we’ve combined two left-handed spinors into a

scalar. Similarly, ψ̄LψR combines two right-handed spinors into a scalar.

It’s worth pausing to look at the symmetries of the action (1.58). Crucially, these

symmetries are different for massless and massive fermions. In the absence of the mass

term, so M = 0, the action has a U(1)2 symmetry, under which the two fermions rotate

separately, ψL → eiαψL and ψR → eiβψR. When we turn on the mass term, only the

diagonal combination, with α = β survives. This is a general story, and one that will

be particularly important for understanding the Standard Model: massless fermions

always have more symmetries than massive fermions.

The mass in (1.58) can take values M ∈ R. (There’s no positivity requirement.)

Upon quantisation, with M 6= 0, we get a particle of spin +1
2

and charge +1 under the

surviving U(1), together with a distinct anti-particle of spin +1
2

and charge −1, both

with mass |M |.
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The mass term in (1.58) which combines two different spinors, ψL and ψR, is known

as a Dirac mass. It’s not the only thing we can write down. Suppose that we have just

a left-handed spinor ψL. Then it’s perfectly possible to write down an action with a

mass term,

SWeyl = −
∫
d4x

(
iψ̄Lσ̄

µ∂µψL +
m

2
ψLψL +

m?

2
ψ̄Lψ̄L

)
. (1.59)

This is known as a Majorana mass. Here we can take m ∈ C.

Again, the massive theory has less symmetry than the massless theory, with the U(1)

that rotates the phase of ψL broken when m 6= 0. This means that there’s no U(1)

quantum number to distinguish particles from anti-particles and, upon quantisation,

the theory describes a single spin 1
2

particle with mass |m| that is now its own anti-

particle.

Because the Majorana mass term explicitly breaks the U(1) symmetry, it is not

allowed if the U(1) is gauged. Relatedly, it’s not possible to write down such a term

for any fermion ψL that transforms in a complex representation of a gauge group. It

is, however, possible to write down such terms for fermions in real representations.

1.3 Gauge Invariance

In the Standard Model, forces are associated to massless spin 1 particles, known col-

lectively as gauge bosons. As we now explain, much of the dynamics of these forces is

fixed by gauge invariance.

1.3.1 Maxwell Theory

The key ideas of gauge invariance are familiar from electromagnetism. There, the

fundamental field is the 4-vector Aµ(x), known as the gauge potential. Crucially, not all

components of Aµ(x) are physical: instead, we should identify any two gauge potentials

that are related by a gauge transformation of the form

Aµ → Aµ + ∂µα (1.60)

for any function α(x). The transformation (1.60) is sometimes called a gauge symmetry.

It’s not a good name. A “symmetry” describes a situation in which two physically

distinct configurations share the same physics. But that’s not what’s going on in

(1.60). Instead, the two configurations related by a gauge transformation describe the

same physical configuration. A fairly decent analogy is to think of two gauge potentials

that are related by (1.60) in the same way as you would view two different coordinate

systems. A much better name would be gauge redundancy.
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As we proceed, we’ll see that a great deal of the structure of the Standard Model

is determined by the requirements of gauge invariance. Yet, in many ways, this is a

strange idea on which to rest our most important theories of physics. Gauge invariance

is, at heart, merely an ambiguity in how we choose to present the laws of physics. Why

should it play such an important role?

One reason is that the ambiguity allows us to demonstrate various properties that

we care about but which, naively, might appear incompatible. These properties include

Lorentz invariance and locality and, in the quantum theory, unitarity. We already got

a glimpse of this in the lectures on Quantum Field Theory when we quantised Maxwell

theory. One choice of gauge makes unitarity manifest while another makes Lorentz

invariance manifest. The gauge ambiguity allows us to flit from one choice to another,

allowing us to both have our cake and eat it.

Relatedly, we know that the photon has two polarisation states. But try writing down

a field which describes the photon that has only two indices and which transforms nicely

under the SO(1, 3) Lorentz group; its not possible. So instead we introduce the field

Aµ which makes Lorentz invariance manifest and then use the gauge symmetry to kill

two of four resulting states.

The physical information in Aµ can be found in the field strength

Fµν = ∂µAν − ∂νAµ . (1.61)

The field strength is invariant under the gauge transformation (1.60). The field strength

houses the electric field E and the magnetic field B. If we write Aµ = (φ,A), then we

have

E = −∇φ− ∂A

∂t
and B = ∇×A . (1.62)

The dynamics of the gauge field is described by the action

SMaxwell = −1

4

∫
d4x FµνF

µν . (1.63)

The resulting equations of motion are

∂µF
µν = 0 . (1.64)

This coincides with two of the Maxwell equations: Gauss’ law ∇ ·E = 0 and Ampère’s

law ∇×B = ∂E/∂t. The other two follow immediately from constructing Fµν in terms

of the gauge potential. To see this, we first introduce the dual field strength

?F µν =
1

2
εµνρσFρσ . (1.65)
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This is similar to Fµν , but with E and B swapped (one of them with a minus sign).

Then, by the anti-symmetry of εµνρσ, together with the definition (1.61), we have the

Bianchi identity

∂µ
?F µν = 0 . (1.66)

Expanding this out gives the remaining two Maxwell equations: the one that says

magnetic monopoles don’t exist ∇·B = 0, and the law of induction ∇×E+∂B/∂t = 0.

The necessity to keep gauge invariance means that it’s not possible to augment

the action (1.63) with a mass term of the form m2AµA
µ. This would break gauge

invariance and cause trouble down the line. Naively, this would appear to guarantee

that the photon must always be massless. In fact, there is a way to give the photon a

mass, known as the Higgs mechanism. This will be discussed in Section 2.3.

Coupling to Matter

Underlying electromagnetism is a U(1) gauge group. That’s not so obvious in the

description above, where the “symmetry” (really redundancy) manifests itself only as

a shift of the gauge field (1.60) depending on a function α(x). However, the U(1)ness

of electromagnetism becomes more apparent when we couple to charged fields.

Fields that are charged under electromagnetism are necessarily complex. Consider,

for example, a complex scalar field φ(x) of charge e. When the gauge field transforms

as (1.60), the scalar field has a corresponding transformation

φ→ eieαφ . (1.67)

Here we see the group emerging more clearly, with eieα(x) ∈ U(1). Because the trans-

formation parameter α(x) is a function, we really have a U(1) symmetry/redundancy

for each point x in space. This is what it means to have a U(1) “gauge group”: it is a

much larger group than the global symmetries that appear elsewhere.

We can construct theories that are invariant under the transformation (1.67) by

replacing partial derivatives with the covariant derivative

Dµφ = ∂µφ− ieAµφ . (1.68)

This has the nice property that Dµφ transforms covariantly under a gauge transforma-

tion, a fact that requires a couple of quick lines of calculation:

Dµφ → (∂µ − ieAµ − ie∂µα) eieαφ

= eieα (∂µ − ieAµ)φ

= eieαDµφ . (1.69)
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The key to this calculation is that the derivative hitting ∂µ(eieα) exactly cancels the

shift of the gauge field (1.60). Taking the complex conjugate of (1.68), we have

Dµφ† = (∂µ + ieAµ)φ† . (1.70)

From this, we see that the meaning of the covariant derivative Dµ depends on the object

it’s hitting: it’s −ieAµ for the scalar in (1.68), but +ieAµ for the conjugate scalar in

(1.70). You can check that, under a gauge transformation, Dµφ† → e−ieαDµφ†. This

ensures that we can form a gauge invariant action

Sscalar =

∫
d4x

(
Dµφ†Dµφ− V (|φ|)

)
(1.71)

where we take the potential to depend only on |φ|2 = φ†φ. In particular, this means

that we disallow terms in the potential of the form φ2 + φ† 2 which are real but are not

gauge invariant.

If we have multiple scalar fields, then they can carry different charges. When the

gauge group is U(1), these charges should be integer multiples of each other, meaning

that each field transforms as

φ→ eieqαφ with q ∈ Z . (1.72)

It is possible to write down theories in which the charges q are not integer valued. (For

example, one could imagine one scalar field with q = 1 and another with q =
√

2.)

Strictly, the gauge group should be viewed as R in this case, rather than U(1). The

differences between a U(1) gauge group and an R gauge group are rather subtle, and

manifest themselves only in the presence of magnetic monopoles, or in spacetimes of

non-trivial topology. We won’t get into these issues here.

Everything that we’ve said above for scalars also holds for fermions, both Weyl and

Dirac. In either case, we replace the partial derivatives in the relevant action (either

(1.59) or (1.58)) with covariant derivatives and off we go.

1.3.2 A Refresher on Lie Algebras

There is an important extension of Maxwell theory in which the gauge group U(1) is

replaced by a compact Lie group G. Here we give a lightning review of the relevant

aspects of Lie groups and Lie algebras.
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A Lie group is a group that is also a differentiable manifold1. This means, among

other things, that a group element is labelled by some continuous parameters. We’ve

already met examples of Lie groups in both the rotation group and the Poincaré group.

Lie groups have the property that, for elements continuously connected to the iden-

tity, we can write each U ∈ G as

U = eiθ
ATA (1.73)

Here the θA are just numbers that tell us which group element we’re working with,

while the TA are generators of the group. If you like, the T a tell us the infinitesimal

action of the group, with U ≈ 1 + iθATA + O(θ2) when θ is small. A general group

element (1.73) can then be constructed by exponentiating the infinitesimal action.

It turns out that, with the exception of some global information, the structure of the

Lie group is captured in the behaviour of those infinitesimal generators TA. They form

the associated Lie algebra g, given by

[TA, TB] = ifABCTC . (1.74)

Here A,B,C = 1, . . . , dimG and fABC are the fully anti-symmetric structure constants

which distill the information about the group G. The factor of i on the right-hand side

is taken to ensure that the generators are Hermitian: (TA)† = TA.

(Mathematicians usually prefer the convention where there is no i on the right-hand

side and the generators are anti-Hermitian, largely because there are examples like

SO(N) where everything in the game is real and a factor of i makes things needlessly

complex. In contrast, physicists tend to include the factor of i on the right-hand side

because they’re usually working in the realm of quantum mechanics where things will

ultimately become complex anyway.)

The TA in (1.74) are abstract objects but we will shortly want to identify them with

matrices. This means, among other things, that we want the commutator in (1.74) to

have the same properties as matrix commutation, among them the Jacobi identity

[TA, [TB, TC ]] + [TB, [TC , TA]] + [TC , [TA, TB]] = 0 . (1.75)

This puts constraints on the structure constants fabc which must, in turn, obey

fADEfBCD + fBDEfCAD + fCDEfABD = 0 . (1.76)

1For many physicists, Lie groups are the only groups they know. A mathematician friend of mine

told me that a physicist’s definition of a finite group is a Lie group without manifold structure.
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G SU(N) SO(N) Sp(N) E6 E7 E8 F4 G2

dimG N2 − 1 1
2
N(N − 1) N(2N + 1) 78 133 248 52 14

dimF N N 2N 27 56 248 6 7

Table 2. The classification of compact, semi-simple Lie algebras G, together with their

dimension and the dimension of the fundamental representation F .

We will be interested in simple, compact Lie groups. Here “simple” means that we don’t

have any trivial U(1) factors floating around that commute with everything else. We

can always include such factors if we wish (and we will wish for the Standard Model)

but we’ll be best served if we ignore them at this stage. Meanwhile, “compact” means

that if you continue to rotate in the group then you ultimately come back to where you

started from (or close to where you started from). For example, the group of rotations

is compact, while the Lorentz group is non-compact because if you keep boosting in a

given direction then you just move faster and faster.

There is a classification of simple compact Lie algebras. The possible options for the

group G, together with the dimension of the group, are shown in Table 22. All of these

groups are referred to as non-Abelian meaning that things don’t commute with each

other. In contrast, U(1) is an Abelian group.

As we mentioned above, the TA in (1.74) are initially viewed as just abstract ob-

jects. But it’s interesting to ask when they can take a more concrete form in the guise

of matrices. These are the representations of the algebra. For each algebra, there is an

infinite list of numbers which are the dimensions of the matrices that can be used to

represent it. The smallest such (non-trivial) matrix is called the fundamental represen-

tation and we will denote it as F . The dimension of F for each Lie group G are also

shown in Table 2.

In what follows, we will (with a slight abuse of notation) use TA to refer to the

generators of the fundamental representation. When we have occasion to use other

representations R, we will refer to the generators as TA(R) (In later sections, we’ll also

refer to these as TAR .). In fact, for the Standard Model we will only need two different

representations: the fundamental and the adjoint. The adjoint is a representation that

2We’re using the convention Sp(1) = SU(2). Other authors sometimes write Sp(2N), or even

USp(2N) to refer to what we’ve called Sp(N), preferring the argument to refer to the dimension of

the fundamental representation F rather than the rank of the Lie algebra g.
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has dimension dim(adj) = dimG with the generators given by

TA(adj)BC = −ifABC . (1.77)

Don’t be lulled into thinking that you don’t need to consider other representations:

they will appear in other situations, including when we discuss flavour symmetry in

QCD in Section 3.

The Lie algebra comes with what, in fancy language, is called a Killing form. But,

by the time we’re thinking about matrices, this Killing form is just the trace. The

generators of any simple Lie algebra obey TrTA = 0. (This is what it means for the

Lie algebra to be “simple”.) We take the generators in the fundamental representation

F to satisfy

TrTATB =
1

2
δAB . (1.78)

This can be viewed as tantamount to fixing the normalisation of the structure con-

stants fABC . Having fixed the normalisation in the fundamental representation, other

representations TA(R) will have different normalisations.

Before we proceed, an example. The simplest non-Abelian Lie group is SU(2), which

has dim(SU(2)) = 3 and structure constants given by fABC = εABC . In this case, the

fundamental representation is (up to an overall normalisation) the 2× 2 Pauli matrices

TA =
1

2
σA . (1.79)

These indeed obey [TA, TB] = iεABCTC , together with the normalisation condition

(1.78).

The group SU(3) also plays a prominent role in the Standard Model. (In fact, as we

will see, it plays two prominent roles!) We will describe the structure constants and

the generators in Section 3.

1.3.3 Yang-Mills Theory

Now we can turn to some physics. Yang-Mills theory is a generalisation of Maxwell

theory in which the group U(1) is replaced by a simple, compact Lie group G. To

specify the Yang-Mills theory, we need only specify the choice of G together with

a coupling constant g > 0 that will dictate the strength of the interactions. (The

coupling constant g plays the same role as the charge e in Maxwell theory. As we will

later see, the phrase “coupling constant” is not particularly accurate because it will

turn out not to be constant!)
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For each element of the algebra, we introduce a gauge field AAµ with A = 1, . . . , dimG.

These are then packaged into the Lie algebra-valued gauge potential

Aµ = AAµT
A (1.80)

A down-to-earth perspective is to think of the TA as matrices in the fundamental

representation. This means, for example, that for G = SU(N), the gauge potential Aµ
is a 4-vector where each component is a traceless N ×N matrix.

The fields AAµ are collectively referred to as gauge bosons. (They have other, more

specific, names in the Standard Model when we apply these ideas to the two nuclear

forces.) As in Maxwell theory, not all the information in Aµ is physical and any two

field configurations related by a gauge transformation should be viewed as equivalent.

This time, however, the gauge transformation is a little more intricate.

The action of the gauge symmetry is associated to a Lie group valued function over

spacetime,

Ω(x) ∈ G . (1.81)

The set of all such transformations is known as the gauge group. As in Maxwell theory,

we will sometimes be sloppy and refer to the Lie group G as the gauge group, but

strictly speaking it is the much bigger group of maps from spacetime into G. The

action on the gauge field is

Aµ → ΩAµΩ−1 +
i

g
Ω ∂µΩ−1 . (1.82)

The first term is the expected transformation for an adjoint-valued field. The second,

inhomogeneous, term is an additional piece that is characteristic of gauge transforma-

tions.

To make contact with gauge transformations in electromagnetism, suppose that we

have G = U(1) and write Ω(x) = eieα(x). Then, using the fact that everything com-

mutes, we have

ΩAµΩ−1 +
i

e
Ω∂µΩ−1 = Aµ + ∂µα (1.83)

and the gauge transformation (1.82) reproduces the familiar gauge transformation of

Maxwell theory.
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As in Maxwell theory, we can construct a field strength. Here too there is an extra

ingredient arising from the fact that Aµ is a matrix and the generalisation of (1.61) is

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (1.84)

In contrast to Maxwell theory, the field strength includes a non-linear term, propor-

tional to the coupling g. This will prove to be important: it is this non-linear term that

makes Yang-Mills theory significantly richer and more interesting than Maxwell theory.

Like Aµ, the field strength is a Lie algebra-valued field and we could also expand it as

Fµν = FA
µνT

A.

So far, I’ve not explained why (1.84) is the right field strength. The main reason is

that it transforms nicely under the gauge transformation (1.82)

Fµν → ΩFµν Ω−1 . (1.85)

To see this, you could just plug (1.82) into (1.84) but it’s mildly laborious; we will offer

a shortcut to this result presently.

The transformation (1.85) means that, in contrast to electromagnetism, the Yang-

Mills “electric field” Ei = F0i and “magnetic field” Bi = −1
2
εijkFjk are not gauge

invariant. To construct something physical, you can multiply together some number of

Ei and Bj and then take the trace, which ensures that the Ω and Ω−1 in (1.85) cancel

and you get something gauge invariant. (You need something that is at least quadratic

in Fµν because, for simple Lie groups, TrFµν = 0.)

The gauge transformations above involve the Lie group valued object Ω(x). But one

of the key properties of Lie groups is that their structure is largely determined by the

elements that are infinitesimally close to the identity. This suggests that it’s fruitful to

look at gauge transformations that are everywhere close to the identity. These can be

written as

Ω(x) ≈ 1 + igαA(x)TA + . . . (1.86)

where the αA are taken to be everywhere small. From (1.82), the infinitesimal trans-

formation of the gauge field is Aµ → Aµ + δAµ with

δAµ = ∂µα− ig[Aµ, α] (1.87)

where α = αATA is the Lie algebra-valued infinitesimal transformation. It’s convenient

to write this as δAµ = Dµα where the covariant derivative is defined to be

Dµα = ∂µα− ig[Aµ, α] . (1.88)

This is the covariant derivative acting on the Lie algebra-valued (i.e. adjoint) field α.

We’ll soon see different covariant derivatives acting on other representations.

– 30 –



Now we can check how infinitesimal gauge transformations act on the field strength

(1.84). We have

δFµν = ∂µδAν − ∂νδAµ − ig[Aµ, δAν ]− ig[δAµ, Aν ]

= DµδAν −DνδAµ
= [Dµ,Dν ]α . (1.89)

We see that we’re left with the task of computing the commutator of two covariant

derivatives, acting on the adjoint field α. This is a worthwhile and straightforward

calculation. We have

[Dµ,Dν ]α = −ig[Fµν , α] . (1.90)

This gives δFµν = ig[α, Fµν ] which is indeed the expected infinitesimal gauge transfor-

mation arising from (1.85).

The Yang-Mills Action

The dynamics of the Yang-Mills field is the obvious generalisation of the Maxwell action,

SYM = −1

2

∫
d4x TrF µνFµν . (1.91)

Naively, the only difference lies in that overall trace, which ensures that the action

is invariant under gauge transformations (1.85). This also accounts for the overall

normalisation of the action, which comes with a factor of 1/2 rather than the 1/4 seen

in (1.63) because an additional factor of 1/2 comes from the trace in (1.78). This means

that the Yang-Mills and Maxwell action come with the same normalisation.

However, the key difference between the two actions is buried in our notation: while

the Maxwell action is quadratic in Aµ, the Yang-Mills action includes terms that are

cubic and quartic in Aµ, both coming from the commutator in the definition of the

field strength (1.84).

The classical equations of motion are derived by minimizing the action with respect

to each gauge field Aaµ. It is a simple exercise to check that they are given by

DµF µν = 0 . (1.92)

Here the covariant derivative is defined as in (1.88): DµF µν = ∂µF
µν − ig[Aµ, F

µν ].

These are the Yang-Mills equations. In contrast to the Maxwell equations, they are

non-linear. This means that the Yang-Mills fields interact with themselves.
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There is also a Bianchi identity that follows from the definition (1.84) of Fµν in terms

of the gauge field. This is best expressed by first introducing the dual field strength

?F µν =
1

2
εµνρσFρσ . (1.93)

and noting that this obeys the identity

Dµ?F µν = 0 . (1.94)

Both (1.92) and (1.94) are non-linear equations. However, the non-linearities come in

the form of commutators like [Aµ, Aν ]. This means that if we focus on field configura-

tions that sit purely within a subgroup U(1) ⊂ G, then the commutators vanish and

the equations reduce to those of Maxwell theory. So although the general solutions to

the Yang-Mills equations are surely complicated, we can always import any solution to

Maxwell theory and embed it in some U(1). In particular, Yang-Mills theory admits

solutions akin to electromagnetic waves that travel at the speed of light.

Although we can always embed solutions of Maxwell theory in the Yang-Mills field,

there’s nothing that tells us that these solutions are stable. For that, one has to work

harder and look at fluctuations of the other fields that do not live in your favourite

U(1). (For what it’s worth, a constant electric field is stable in Yang-Mills theory, while

a constant magnetic field is unstable.) We won’t discuss these stability issues further in

these lectures, largely because our interest lies in what happens in quantum Yang-Mills

rather than in the classical theory.

Just as for Maxwell theory, the need to keep gauge invariance means that we can’t

add a mass term like AµA
µ or TrAµA

µ to the action (1.91). This strongly suggests

that quantum Yang-Mills is, like Maxwell theory, a theory of massless particles. This

strong suggestion is, it turns out, completely wrong! When we quantise the Yang-Mills

action (1.91), we find a theory of interacting massive particles, rather than massless

particles. The reason for this can be traced to the interaction terms in Yang-Mills,

but is not fully understood. Indeed, proving it from first principles remains one of the

most important open problems in mathematical physics. We will discuss this further

in section 3.

Coupling to Matter

As with electromagnetism, we can couple the Yang-Mills field to matter. We do this

by requiring that the matter fields live in some representation R of the gauge group.

This means that the matter fields come in some vector of dimension dimR.
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For each such representation, we have generators TA(R) which we can think of as

square matrices of dimension dimR. Dressed resplendent in all their indices, they take

the form

TA(R)ab with a, b = 1, . . . , dimR and A = 1, . . . , dimG . (1.95)

Consider a scalar field in the representation R. Under a gauge transformation Ω(x) =

eigα
A(x)TA , the scalar transforms as

φa → (ΩR)abφ
b with (ΩR)ab =

(
exp

(
igαATA(R)

))a
b
. (1.96)

Some representations R are real, and some are complex. For example, the fundamen-

tal representation of SU(N) is complex, and so φ must be a complex N -dimensional

vector. Meanwhile, the adjoint representation of any group G is always real and, cor-

respondingly, φ can be real.

To write down an action for φ that is invariant under the gauge transformation (1.96),

we follow our Maxwellian noses and construct the covariant derivative,

Dµφa = ∂µφ
a − igAAµ TA(R)abφ

b . (1.97)

Under a gauge transformation, this covariant derivative transforms, as the name sug-

gests, covariantly, meaning

Dµφa → (ΩR)abDµφb . (1.98)

We will later see that all matter fields in the Standard Model transform in the fun-

damental representation. For SU(N), this means that we can think of φa as an N -

component complex vector, with a = 1, . . . , N , and write the covariant derivative in

terms of the N ×N matrix-valued gauge field Aµ = AAµT
A,

Dµφa = ∂µφ
a − ig(Aµ)abφ

b . (1.99)

This expression differs from our previous covariant derivative (1.88) because φ is in

the fundamental representation, while α in (1.88) was in the adjoint. This highlights

something we’ve stressed previously: the meaning of the covariant derivative depends

on the representation of the object on which it acts. Once again, covariant derivatives

do not commute. This time, for covariant derivatives acting on fundamental fields, we

find

[Dµ,Dν ] = −igFµν . (1.100)

This should be compared to the analogous result (1.90) for covariant derivatives acting

on adjoint-valued fields.
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As before, it’s useful to check some of the formulae for infinitesimal gauge trans-

formations. We have δAµ = Dµα, as in (1.87) and, from (1.96), δφ = igαφ. Then,

suppressing the a = 1, . . . , N index, the covariant derivative (1.99) transforms as

δ(Dµφ) = ∂µδφ− ig δAµφ− igAµ δφ
= ig∂µ(αφ)− ig(Dµα)φ+ g2Aµαφ

= igα (∂µφ− igAµφ)

= igαDµφ. (1.101)

This is, indeed, the infinitesimal version of the gauge transformation (1.98).

With covariant derivatives that transform nicely, it’s straightforward to write down

an action for the matter fields. As in electromagnetism, we just need to replace the

partial derivatives in the action with covariant derivatives and we have something gauge

invariant. This holds for scalars, Weyl fermions, and Dirac fermions.

A Rescaling

Above we’ve written the action so that the coupling constant g multiplies the non-

linear terms. This means, in particular, that it makes an appearance in the field

strength (1.84). It also appears, perhaps rather strangely, as the inverse 1/g in the

gauge transformation (1.82).

There is a different way to normalise the gauge field that, for many purposes, turns

out to be more natural. We define the new gauge field

Ãµ = gAµ and F̃µν = ∂µÃν − ∂νÃµ − i[Ãµ, Ãν ] . (1.102)

We also define the rescaled gauge parameter α̃ = gα, so that the group element is

Ω = eiα̃. This then eliminates the gauge coupling from all kinematic quantities like the

field strength and covariant derivatives. The only place that the coupling shows up is

in an overall coefficient multiplying the entire action,

SYM = −1

2

∫
d4x TrF µνFµν = − 1

2g2

∫
d4x Tr F̃ µνF̃µν . (1.103)

In the first way of writing things, the coupling constant g sits in front of the non-linear

terms, making it clear that it governs the strength of interactions. But it also governs

the strength of interactions in the second way of writing things. To see this, note that

in the Euclidean path integral, we sum over all field configurations weighted by e−S/~.

With the rescaling above, g2 sits in the same place in the action as ~, which suggests
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that g2 → 0 will be a classical limit. Heuristically you should think that, for g2 small,

we pay a large price for field configurations that do not minimize the action; in this

way, the path integral is dominated by the classical configurations. In contrast, when

g2 → ∞, the Yang-Mills action disappears completely. This is the strong coupling

regime, where all field configurations are unsuppressed and contribute equally to the

path integral.

The Analogy with General Relativity

General Relativity is rightly lauded for the way it places geometry into the heart of

physics. But the other laws of physics, which combine to form the Standard Model, are

no less geometrical. Rather than arising from the geometry of spacetime, they instead

arise from a slightly more subtle object known as a fibre bundle.

We won’t describe the mathematics of fibre bundles in any detail in these lectures,

but will instead just point out some analogies between the gauge theories discussed

above and the differential geometry that underlies general relativity.

One of the key ideas in general relativity is diffeomorphism invariance. This is

the statement that physical quantities should not depend on the coordinates that we

choose to describe them. Such coordinate transformations are analogous to gauge

transformations in Yang-Mills theory.

One of the most important objects in general relativity is the Levi-Civita connection

Γµρν . Famously, this is not a tensor. Under a coordinate transformation x→ x̃, with

Ωµ
ν =

∂xµ

∂x̃ν
, (1.104)

the Levi-Civita connection transforms as

Γµρν → (Ω−1)µτΩ
σ
ρΩ

λ
νΓ

τ
σλ + (Ω−1)µτΩ

σ
ρ∂σΩτ

ν . (1.105)

The first term is how a tensor would transform. The second term is independent of Γ

and is the characteristic transformation of a connection. But this looks very similar to

the transformation of the gauge field (1.82),

Aµ → ΩAµΩ−1 +
i

g
Ω ∂µΩ−1 (1.106)

where, again, there is a transformation that befits a tensor, supplemented with the

additional derivative term ∂Ω. Indeed, this analogy can be made more precise, and

mathematicians refer to the gauge field Aµ as a connection. Both connections find
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their natural home inside covariant derivatives. In gauge theory, this is the Dµ that

we’ve already met, while in general relativity it is the object that acts naturally on

vector fields Y , with (∇νY )µ = ∂νY
µ + ΓµνρY

ρ and is then extended to act on other

tensor fields.

Given a Levi-Civita connection, one can construct the Riemann curvature tensor

Rσ
ρµν . Rearranging some of the indices this can be written as

(Rµν)
σ
ρ = ∂µΓσνρ − ∂νΓσµρ + ΓλνρΓ

σ
µλ − ΓλµρΓ

σ
νλ . (1.107)

Again, we see an immediate similarity with the construction of the field strength in

Yang-Mills (1.84) which, including the a, b = 1, . . . , dimF indices, reads

(Fµν)
a
b = ∂µ(Aν)

a
b − ∂ν(Aµ)ab − ig(Aµ)ac(Aν)

c
b + ig(Aν)

a
c(Aµ)cb . (1.108)

Mathematicians refer to both the Riemann tensor and the field strength Fµν as the

curvature.

1.4 C,P, and T

Discrete symmetries play a crucial role in understanding the structure of the Standard

Model. There are three that are particularly important: parity, charge conjugation, and

time reversal. In this section, we describe each of these in turn. We end by explaining

why the combination of all three is necessarily a symmetry of any local, relativistic

quantum field theory.

1.4.1 Parity

Parity is an inversion of the spatial coordinates,

P : (t,x) 7→ (t,−x) . (1.109)

This can be viewed as a Lorentz transformation, but not one that is continuously

connected to the identity. Roughly speaking, the action of parity mimics what a system

looks like reflected in the mirror. More precisely, a reflection is implemented by, say,

R : (x, y, z) 7→ (x, y,−z). The parity transformation (1.109), which is a reflection

followed by a rotation by 180◦, has the advantage that it treats all spatial coordinates

on the same footing.
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(As an aside: one disadvantage of the parity transformation P : x 7→ −x is that it

only works when the number of spatial dimensions is odd. For example, in d = 2 + 1

dimensions, the transformation (x, y) 7→ (−x,−y) is just a rotation by 180◦. For this

reason, if you’re discussing quantum field theories in different dimensions, it’s better to

talk about reflections which flip the sign of just one spatial direction, rather than parity

which flips all of them. In these lectures, we’ve got no interest in dimension hopping:

our interest is strictly in the Standard Model and so we keep with the conventional

definition of parity (1.109).)

We would like to understand the circumstances under which a quantum field theory

is invariant under parity, and how the fields transform. When we come to discuss the

weak force in Section 5, we will find that the laws of our universe are not invariant

under parity. This is a shocking statement. It means that given a solution to the

equations of motion, the parity reflected evolution is not a solution!

First, let’s ask how electromagnetic fields transform under parity. For this, we can

look at the covariant derivative which, regardless of the object it acts on, takes the

schematic form

Dµ = ∂µ − iAµ . (1.110)

This ties the behaviour of the gauge field to that of the derivative. Under a parity

transformation ∂0 is left unaffected, while the spatial derivatives ∂i change sign. This

tells us that parity must act as

P : A0(t,x) 7→ +A0(t,−x) and P : Ai(t,x) 7→ −Ai(t,−x) . (1.111)

Tracing this through to the definitions of the electric field E = −∇φ − ∂A/∂t and

magnetic field B = ∇×A, we have

P : E(t,x) 7→ −E(t,−x) and P : B(t,x) 7→ +B(t,−x) . (1.112)

Vectors like E, which transform under parity in the same way as x are deemed worthy

to keep the name “vector”. Meanwhile, vectors like B which don’t pick up a minus sign

under parity are said to be pseudovectors. The most familiar examples of pseudovectors

are the magnetic field and angular momentum L = x×p. These are also the two kinds

of vectors that exhibit the most counterintuitive behaviour when we’re undergraduates.

This is not a coincidence.
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In the quantum theory, the parity transformation is enacted by a unitary operator

on the Hilbert space that we also call P . The fields Aµ(x) are now also operators and

the transformation (1.111) becomes

PA0(t,x)P † = A0(t,−x) and PAi(t,x)P † = −Ai(t,−x) . (1.113)

In what follows, we will flit between the description of parity and other discrete sym-

metries as a map, as in (1.111), and as an operator acting on a Hilbert space, as in

(1.113).

Next, we turn to spinors. It can be somewhat fiddly to figure out how spinors

transform under various discrete symmetries, but it’s a topic that will play a crucial

role as we proceed. The equation of motion for a left-handed massless Weyl spinor ψL
is

σ̄µ∂µψL = 0 (1.114)

where σ̄ = (1,−σi). Under a parity transformation, the spatial derivative changes sign

and the Weyl equation (1.114) is not invariant. This is important: if we have just a

single left-handed Weyl spinor ψL then this theory is not invariant under parity.

We can rescue the situation if, in addition to our left-handed Weyl spinor ψL, we

also have a right-handed Weyl spinor ψR. This obeys the equation of motion

σµ∂µψR = 0 (1.115)

where σµ = (1, σi). The different minus signs in σµ and σ̄µ mean that we can compen-

sate for a parity transformation if we also exchange left- and right-handed spinors, so

that

PψL(t,x)P † = ψR(t,−x) and PψR(t,x)P † = ψL(t,−x) . (1.116)

There are also options to put different minus signs (and even phases) on the right-hand

side as we describe below.

As we’ve seen in Section 1.2.1, the two spinors ψL and ψR naturally sit in a Dirac

spinor ψ = (ψL, ψR)T . The action of parity on Weyl spinors (1.116) translates into the

action on the Dirac spinor

Pψ(t,x)P † = γ0ψ(t,−x) with γ0 =

(
0 1

1 0

)
. (1.117)
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In the lectures on Quantum Field Theory, we saw that a stationary fermion is associated

to a solution to the Dirac equation, where the spinor degrees of freedom take the form

ψ = (ξ, ξ)T . Here ξ is some 2-component spinor the tells us the orientation of the

spin of the particle. Meanwhile, the solution corresponding to an anti-fermion takes

the form ψ = (ξ,−ξ)T . This means that the fermion has intrinsic parity +1 while the

anti-fermion has intrinsic parity −1.

Terms in the action are always constructed out of an even number of fermions. Given

the transformation (1.117), we can look at the fate of various fermion bilinears under

parity. You can check, for example, that

P : ψ̄ψ 7→ ψ̄ψ and P : ψ̄γ5ψ 7→ −ψ̄γ5ψ (1.118)

where we’ve suppressed the all-important spinor indices. We say that ψ̄ψ transforms as

a scalar while ψ̄γ5ψ transforms as a pseudoscalar. Similarly, you can check that ψ̄γµψ

is a vector while ψ̄γ5γµψ is a pseudovector.

You shouldn’t be too dogmatic about insisting that (1.116) and (1.117) are the

definitive action of parity. Suppose that you have a Dirac fermion with action

S =

∫
d4x

(
iψ̄γµ∂µψ −Mψ̄ψ

)
. (1.119)

Then this is invariant under parity with the transformation (1.117). Suppose, in con-

trast, that you’re given the action

S =

∫
d4x

(
iψ̄γµ∂µψ −Mψ̄γ5ψ

)
. (1.120)

This is not invariant under (1.117) because the mass term is parity odd. Nonetheless,

that doesn’t mean that the theory doesn’t have parity symmetry. We just need to look

more carefully. You can check that the action (1.120) is invariant under the redefined

parity transformation

P ′ψ(t,x)P ′ † = γ5γ0ψ(t,−x) . (1.121)

In terms of Weyl fermions, this inserts an extra minus sign on the right-hand side of

one of the transformations in (1.116). Ultimately, given a theory the aim is to find

some parity transformation of the fields that leaves the action, and hence the equation

of motion, invariant.
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So far, we haven’t discussed the action of parity on scalar fields. These are more

malleable. Given a scalar field φ, the kinetic terms are invariant under either

Pφ(t,x)P † = ±φ(t,−x) . (1.122)

In other words, the kinetic terms don’t distinguish between scalar (the plus sign) or

pseudoscalar (the minus sign). Typically, this gets fixed when we look at the interaction

of the scalar field with fermions. For example, a Yukawa term of the form φψ̄ψ means

that the scalar φ is parity even under the transformation (1.117) while a Yukawa term

of the form φψ̄γ5ψ means that φ is parity odd under (1.117).

There are various pay-offs from understanding the way that parity is implemented

in a theory. If a theory is invariant under parity then, as we’ve seen, we can assign

transformation laws to the various fields. But, after quantisation, these fields give rise

to particles. That means that different species of particles can be thought of as parity

even or parity odd. Moreover, this concept of parity is conserved in all interactions and,

like all conservation laws, this puts constraints on the kind of things that can happen.

Perhaps surprisingly, it turns out that things are even more constrained when parity

is not a symmetry of the theory! This is for a much more subtle reason known as an

anomaly. We will discuss this in Section 4.

1.4.2 Charge Conjugation

Charge conjugation is an operation that switches particles with their anti-particles. If

a theory is invariant under charge conjugation, then the laws of physics that govern

particles coincide with those that govern anti-particles.

This time we start with a complex scalar field φ, coupled to electromagnetism. It will

prove simplest to look at actions, rather than equations of motion. Charge conjugation

exchanges particles and anti-particles, so we want it to act as

C : φ 7→ ±φ† . (1.123)

The ± ambiguity is like the ambiguity in the action of parity (1.122) and, as in that

case, will typically be fixed by the interactions with other fields. In contrast, there’s

no ambiguity about the action on the gauge field, which is fixed by looking at the

covariant derivatives, Dµφ = (∂µ− ieAµ)φ and Dµφ† = (∂µ + ieAµ)φ†. This means that

any transformation (1.123) must be accompanied by

C : Aµ 7→ −Aµ . (1.124)
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As for parity, we can also think of charge conjugation as a quantum operator C, in which

case (1.123) and (1.124) are replaced by CφC† = ±φ† and CAµC
† = −Aµ respectively.

For non-Abelian gauge fields, charge conjugation acts as CAµC
† = −A†µ.

Again, the story for spinors is a little more fiddly. We’ll start by looking at a Dirac

spinor, rather than a Weyl spinor. The Dirac equation is

iγµ(∂µ − ieAµ)ψ −Mψ = 0 . (1.125)

We will look for an action of charge conjugation that transforms the spinor to

C : ψ 7→ Cψ? . (1.126)

Here C on the right-hand side is a 4 × 4 matrix that allows for the possibility that

the components of the spinor get mixed up under charge conjugation. Note that we’ve

written the transformed spinor as ψ?, rather than ψ†, to emphasise that it remains a

“column vector” rather than a “row vector”. (Of course, it’s not really a vector at all.

It’s a spinor!)

The question is: what choice of C ensures that the transformation (1.126), combined

with (1.124), is a symmetry? First, we take the complex conjugate of the equation of

motion (1.125):

−i(γµ)?(∂µ + ieAµ)ψ? −Mψ? = 0 . (1.127)

This is the equation that ψ? obeys. Next, we compare this to what we get if we act

with charge conjugation on the original equation (1.125):

iγµ(∂µ + ieAµ)Cψ? −MCψ? = 0

=⇒ iC†γµC(∂µ + ieAµ)ψ? −Mψ? = 0 . (1.128)

We see that (1.128) coincides with (1.127) provided that the charge conjugation matrix

C obeys

C†γµC = −(γµ)? . (1.129)

The charge conjugation matrix depends on your chosen basis of gamma matrices. For

the chiral basis of gamma matrices (1.42), all gamma matrices are real except for γ2

which is pure imaginary. This means that we should take C = ±iγ2, and the action of

charge conjugation is

C : ψ 7→ ±iγ2ψ? with γ2 =

(
0 σ2

−σ2 0

)
. (1.130)
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For theories that are invariant under charge conjugation, we can assign an eigenvalue

C = ±1 to each particle, usually referred to as C-parity. As with actual parity, P ,

this new quantum number restricts the possible interactions. For example, it turns out

that the neutral pion π0 has C = +1 while, from (1.124), the photon necessarily has

C = −1. This means that the decay to two photons, π0 −→ γ + γ, is allowed (and

indeed, happens over 98% of the time). But the decay to three photons, π0 −→ γ+γ+γ

is forbidden on symmetry grounds.

If we decompose the Dirac fermion into its two Weyl components, ψ = (ψL, ψR)T ,

then we can read off from (1.130) the action of charge conjugation on Weyl spinors,

C : ψL 7→ ±iσ2ψ?R and C : ψR 7→ ∓iσ2ψ?L . (1.131)

We see that charge conjugation, like parity, involves an exchange of two Weyl spinors.

A theory with just a single Weyl fermion is invariant under neither parity nor charge

conjugation. However, there’s still hope if we combine the two symmetries. We can

take the combined action from (1.116) and (1.131) to be

CP : ψL(t,x) 7→ ∓iσ2ψ?L(t,−x) and CP : ψR(t,x) 7→ ±iσ2ψ?R . (1.132)

A Weyl fermion coupled to a gauge field is invariant under CP. However, as we will see

later, it’s quite possible for this symmetry to be violated by other interaction terms

(for example, Yukawa interactions between fermions and scalars).

1.4.3 Time Reversal

Our final discrete symmetry is time reversal, which acts on spacetime coordinates as

T : (t,x) 7→ (−t,x) . (1.133)

There’s a subtlety in implementing time reversal symmetry in quantum theories. This

manifests itself already in the simplest quantum mechanical systems like, say, a free

particle moving in R3. The Schrödinger equation for the wavefunction Ψ takes the form

i
∂Ψ

∂t
= −∇2Ψ . (1.134)

Now compare this to the heat equation that describes how conserved quantities, such

as temperature T , diffuse in a system

∂T

∂t
= ∇2T . (1.135)
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The heat equation most certainly isn’t time reversal invariant since the left-hand side

picks up a minus sign, while the right-hand side does not. That’s to be expected: after

all, diffusion is a process that increases entropy and there’s a clear arrow of time as

things spread out. In contrast, there’s no increase in entropy for a single quantum

particle and we do expect the physics to be invariant under time reversal. Yet the

Schrödinger equation is almost identical to the heat equation in structure. How can

one be time reversal invariant, and the other not?

Almost identical, but not quite. The key is that factor of i in the Schrödinger

equation that is not there in the heat equation. Suppose that Ψ(t) is a solution to

the Schrödinger equation. Then Ψ(−t) is not a solution but the factor of i means that

Ψ?(−t) is. That’s the clue that we need: time reversal in quantum mechanics acts as

T : Ψ(t) 7→ Ψ?(−t) . (1.136)

Viewed as an operator acting on the Hilbert space, this complex conjugation translates

into the requirement that T is an anti-unitary operator, rather than the more familiar

unitary operator. This means that, acting on states, we have

T (α|ψ1〉+ β|ψ2〉) = α?T |ψ1〉+ β?T |ψ2〉 . (1.137)

In addition, the operator obeys

〈Tψ1|Tψ2〉 = 〈ψ1|ψ2〉? . (1.138)

See the lectures on Topics in Quantum Mechanics for more discussion of the action of

the time reversal in quantum mechanics.

This anti-linear behaviour changes some of the transformation properties of fields.

For example, you might naively think, following (1.111), that A0 would be odd under

time reversal and Ai even. But, in fact, it’s the opposite way around because there’s an

additional factor of i in the covariant derivative Dµ = ∂µ− ieAµ which gets conjugated.

It means that the action of time reversal on the gauge field is

T : A0(t,x) 7→ +A0(−t,x) and T : Ai(t,x) 7→ −Ai(−t,x) . (1.139)

Tracing this through to the electric field E = −∇A0 − ∂A/∂t and magnetic field

B = ∇×B, we have

T : E(t,x) 7→ +E(−t,x) and T : B(t,x) 7→ −B(−t,x) . (1.140)

This makes sense: it’s the same transformation that we get from the Lorentz force law

mẍ = q(E + ẋ×B).
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What about fermions? Once again, the action of time reversal can mix the different

components of a Dirac spinor. As we now show, it turns out that (for our chiral basis

of gamma matrices (1.42)) the correct transformation is

T : ψ(t,x) 7→ Θψ(−t,x) where Θ = γ1γ3. (1.141)

As for other transformations, we could also include a minus sign on the right-hand

side. To see that (1.141) is indeed a symmetry, consider the action of time reversal

on the Dirac equation (1.125). Remembering that time reversal also acts by complex

conjugation (so, for example, changes γµ to (γµ)?), we have

−i
(
− (γ0)?D0 + (γi)?Di

)
Θψ −MΘψ = 0

=⇒ iΘ−1
(
(γ0)?D0 − (γi)?Di

)
Θψ −Mψ = 0. (1.142)

This gives us back the original Dirac equation if the matrix Θ obeys

Θ−1(γ0)?Θ = γ0 and Θ−1(γi)?Θ = −γi . (1.143)

It’s simple to check that, for the chiral basis of gamma matrices (1.42), Θ = γ1γ3

does the job. We can also translate this to the action on the component Weyl spinors

ψ = (ψL, ψR)T ,

T : ψL(t,x) 7→ iσ2ψL(−t,x) and T : ψR(t,x) 7→ iσ2ψR(−t,x) . (1.144)

We see that time reversal, like CP, does not mix the left- and right-handed Weyl spinors.

What would it mean for a quantum field theory to break time-reversal invariance?

It sounds rather cool. In practice, however, a breaking of time reversal manifests itself

in rather mundane ways. One simple example is the presence of an electric dipole

moment for particles. Recall from the lectures on Electromagnetism that an electric

dipole moment arises from two, equal and opposite, closely separated charges and gives

rise to an electric field that drops off as 1/r3.

The dipole moment points in a particular direction. For an elementary particle,

this direction must align with the spin otherwise the particle would pick a preferred

direction in space and so break Lorentz invariance. But the spin and dipole moment

transform differently under both parity and time-reversal. To see this, recall that spin

S is a form of angular momentum L = mx × ẋ, which is even under parity and odd

under time reversal. Hence, we have

P : S 7→ S and T : S 7→ −S

P : E 7→ −E and T : E 7→ E . (1.145)
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This means that discovery of a dipole moment for a fundamental particle would imply

that the laws of physics break both parity and time reversal invariance. The search

for the electric dipole moment of the neutron remains one of the most direct ways to

test for time-reversal breaking in the strong nuclear force. So far, no such breaking has

been found. (We discuss this further in Section 3.4.) As we will see later, the weak

force does break both parity P and, to a lesser extent, time reversal T . This results in

a theoretical prediction for the electric dipole moment of the electron, albeit one that

is far below current experimental bounds.

1.4.4 CPT

There are theories that are invariant under our three discrete symmetries, C, P and

T , and other theories that break them. As we will see, the Standard Model is in the

latter class and all three symmetries are broken.

However, there is a theorem that says that all relativistic quantum field theories

must necessarily be invariant under the combined action of CPT . In other words, if

you look at anti-particles in the mirror, with their motion reversed, then you will have

a symmetry on your hands.

One somewhat workaday proof of the CPT theorem is to simply write down all

possible Lorentz invariant terms and check that they are indeed invariant under CPT.

As we’ve seen, the most subtle transformations are those of spinors. For example,

combining our previous results (1.117), (1.126) and (1.141), we find that a Dirac spinor

is transformed by the anti-unitary operation

CPT : ψ(x) 7→ −γ5ψ?(−x) with γ5 =

(
1 0

0 −1

)
. (1.146)

You can check that all fermion bilinears are invariant under this transformation. For

example,

ψ̄ψ = ψ†γ0ψ 7→ ψTγ5γ0γ5ψ? = −ψTγ0ψ? = ψ̄ψ (1.147)

where, in the final equality, we reordered the fermions and picked up a minus sign for

our troubles due to their Grassmann nature. The pseudoscalar ψ̄γ5ψ is also invariant

by a similar argument, while both ψ̄γµψ and ψ̄γµγ5ψ transform as vectors, rather than

pseudovectors (meaning that they pick up minus signs) which ensures that any kinetic

term we write down is invariant. (For this, you will need to use the fact that γT1 = −γ1

and γT3 = −γ3 while γT0 = γ0 and γT2 = γ2.)
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A slightly more elegant, but not entirely convincing, demonstration of CPT follows

from Wick rotating to Euclidean space. Here we sketch the basic idea. The full Lorentz

group in Minkowski space is really O(1, 3) and contains four disconnected components,

with the actions of parity and time reversal taking us from one component to the other.

In contrast, in Euclidean space the group becomes O(4) and this contains only two

disconnected components. If you follow the Lorentzian CPT under a Wick rotation,

it becomes simply a rotation in SO(4), i.e. a transformation that is connected to the

identity. (The need to include C here is roughly because particles are like anti-particles

travelling backwards in time.) This means that if your Euclidean theory is to have

SO(4) rotational invariance, then your Lorentzian theory must enjoy CPT .

The statement that CPT is a symmetry of all relativistic quantum field theories is

something that we can test. Here’s an example from neutrino physics. We will learn

later that neutrinos oscillate from one flavour to another as they travel through space.

So, for example, a muon neutrino νµ will have some probability to convert into an

electron neutrino νe, a process that we write as

νµ −→ νe . (1.148)

We could also consider the CP conjugate process, namely

ν̄µ −→ ν̄e . (1.149)

There is no reason for the amplitudes for these two processes to be equal if CP is

broken. However, there is also the time reversed process of (1.148)

νe −→ νµ . (1.150)

This too may have a different amplitude to (1.148) if time reversal is broken. However,

CPT tells us that the amplitude for (1.149) and the amplitude for (1.150) are necessarily

equal. Indeed, all experimental tests so far have failed to find any violation of CPT.
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2 Broken Symmetries

Global symmetries have two important roles to play in physics. First, they lead to

conservation laws through Noether’s theorem. Second, if the symmetry is non-Abelian

then it leads to a degeneracy in the spectrum, as the states of the theory necessarily

furnish a representation of the symmetry. This is familiar from the quantum treatment

of the hydrogen atom where states sit in multiplets of the SO(3) rotation group of

dimension 2l + 1 where l is the angular momentum.

But there are other ways in which symmetries can affect the dynamics of a theory.

And this happens when symmetries are “broken”.

There are actually two different meanings to the phrase “broken symmetry”, both

of which arise in the context of the Standard Model. The first, sometimes called

explicit breaking, is when there are terms in the action that are not invariant under the

symmetry. Strictly speaking, this is the same as not having a symmetry at all. But

the symmetry can still be a useful fiction if the terms that break it are, in some sense,

small so that we have an approximate symmetry. In this case, it might be that some

quantity is almost conserved, meaning that violations of the conservation law happen

rarely. Or it could be that the degenerate multiplets that arose when the symmetry

was exact are split by some small amount. This happens, for example, if we place the

hydrogen atom in a magnetic field so that the rotation symmetry is broken. Then the

2l+1 states which were previously all degenerate get slightly split by the Zeeman effect.

In the Standard Model, we will see several examples of approximate symmetries,

including isospin and its extension to an SU(3) flavour symmetry known as the eightfold

way, as well as chiral symmetry. Both of these will be explained in section 3.

The second meaning of the term “broken symmetry” refers to a more subtle and,

ultimately, more powerful phenomenon. This arises when the theory is invariant under

a symmetry, but the ground state is not. This situation is referred to as spontaneous

symmetry breaking. The purpose of this section is to explain when this happens and

what the consequences are.

Spontaneous symmetry breaking is one of those lovely ideas that crosses into many

different areas of physics. It was one of the major themes of the lectures on Statistical

Field Theory where it underlies Landau’s theory of phase transitions. It also arises

in many places in condensed matter physics, from magnets to superconductors. For

example, sound waves in a solid can be viewed as the consequence of spontaneous
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breaking of translation symmetry by the underlying lattice. Spontaneous symmetry

breaking also occurs in at least two different contexts in the Standard Model.

2.1 Discrete Symmetries

The idea of spontaneous symmetry breaking is not something new: it appears in some

simple classical mechanics systems.

Consider a real, classical degree of freedom φ(t) with action given by

S =

∫
dt

(
1

2
φ̇2 − V (φ)

)
with V (φ) =

m2

2
φ2 +

λ

4
φ4 . (2.1)

In Newtonian mechanics, we would think of φ(t) as the position of a particle and usually

denote it as x(t). We’re going to avoid calling the degree of freedom x because we’ll

soon make the leap to field theory where x becomes an argument of the field, φ(x, t).

But you should feel free to think of φ(t) as the position of a particle.

The potential (2.1) enjoys a discrete Z2 symmetry under which

Z2 : φ 7→ −φ . (2.2)

In classical mechanics, where φ is the position of the particle, this symmetry is called

“parity” but we’ll avoid this name because, again, in the context of field theory parity

acts differently (as we saw in Section 1.4).

We will assume that λ > 0. In that case, the issue of spontaneous symmetry breaking

is all about the sign of the first term in the potential. When m2 > 0, the potential

has a minimum at φ = 0. This is the one point that is invariant under the symmetry

φ 7→ −φ and we say that the symmetry is unbroken.

In contrast, if m2 < 0 then the φ2 term in

(2.1) comes with a negative coefficient and the

point φ = 0 is now a local maximum rather

than a minimum, as shown in the figure. This

is the double well potential. The minimum lies

at

φ = ±v ≡ ±
√
−m

2

λ
. (2.3)

We see that two related things occur. First, there is not a unique ground state: there

are two. Second, neither ground state is invariant under the Z2 symmetry (2.2). In-

stead, the symmetry exchanges the two ground states. This is our first, admittedly
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somewhat trivial, example of spontaneous symmetry breaking. But there is an impor-

tant lesson that will carry over to more complicated situations: if a discrete symmetry

is spontaneously broken, then the theory has multiple, ground states with a potential

barrier between them. Acting with the symmetry then transforms us among the ground

states.

Suppose that you sit in one of the two ground states, and look only at small oscilla-

tions about the minimum. What do you see? We write the potential (2.1) as

V (φ) =
λ

4
(φ2 − v2)2 + constant . (2.4)

We take ourselves to sit near the ground state φ = +v and expand

φ(t) = v + σ(t) . (2.5)

We can then substitute this back into the potential (2.4) to get

V (σ) =
λ

4
(2vσ + σ2)2 = λ

(
v2σ2 + vσ3 +

σ4

4

)
+ constant . (2.6)

We see that, while the full potential V (φ) has the Z2 symmetry, if you’re trapped near

one of the minima then you know nothing about it. The action for small oscillations

includes the σ3 term and most certainly isn’t invariant under σ 7→ −σ. This is the

sense in which the Z2 symmetry is hidden, or broken, about any given ground state.

The consequence of the symmetry, when broken, is only to generate multiple ground

states.

2.1.1 Quantum Tunnelling

The discussion above is straightforward enough and holds for classical particle me-

chanics. But quantum mechanics brings an extra twist. This is because there is no

spontaneous symmetry breaking in quantum mechanics! The ground state is always

invariant under the Z2 symmetry. In fact, all energy eigenstates are invariant under

the Z2 symmetry.

You might be tempted to construct a ground state that is localised near one or other

of the minima, say a wavefunction of the form

ψleft(φ) ≈ exp

(
−
√
λv

2
(φ+ v)2

)
or ψright(φ) ≈ exp

(
−
√
λv

2
(φ− v)2

)
. (2.7)

But neither of these are eigenstates of the Z2 symmetry, and neither are eigenstates

of the Hamiltonian. Indeed, if you were to place the system in, say, ψleft(φ) then the

wavefunction will leak through the barrier in a process known as quantum tunnelling.
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Figure 2. On the left: the ground state of the double well potential. On the right: the first

excited state.

Instead, the true ground state wavefunction takes the approximate form

ψground(φ) ≈ ψleft(φ) + ψright(φ) . (2.8)

The ground state has no zeros other than at φ → ±∞. Meanwhile, the first excited

state is

ψexcited(φ) ≈ ψleft(φ)− ψright(φ) . (2.9)

This has a single node, meaning that it crosses the axis once. The nth excited state has

n nodes. (See the lectures on Quantum Mechanics for more discussion of these facts.)

The ground state and first excited state are shown in Figure 2.

There is another way to see tunnelling that will prove useful when we turn to quantum

field theory shortly. We want to compute the amplitude for a particle to start in one

minimum, say φ = −v, and end up at the other minimum φ = +v. We can do this

using the path integral. After Wick rotating to work with imaginary time τ = it, we

have

〈+v|e−Hτ | −v〉 =

∫
Dφ e−SE [φ] . (2.10)

Here SE[φ] is the “Euclidean action”, meaning that is differs from (2.1) by a minus

sign.

SE[φ] =

∫
dτ

(
1

2
φ̇2 + V (φ)

)
. (2.11)
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To compute the amplitude (2.10), we should

evaluate the path integral on paths that start

in the left-hand vacuum and end up at the

right-hand vacuum. We can get some intu-

ition for this by noting that the Euclidean ac-

tion (2.11) simply flips the sign of the potential

term, so if we wished to view it as a classical

mechanics system then it describes a particle rolling in the inverted potential −V (φ).

We’re then looking for paths that start perched on the left-hand peak, roll down to the

minimum, and then rise again to end on the right-hand peak, as shown in the figure.

The path integral instructs us to integrate over all such paths. But, in the saddle

point approximation, we expect the dominant contribution to come from paths that

obey the classical equation of motion,

φ̈ = λφ(φ2 − v2) . (2.12)

This equation has a rather nice analytic solu-

tion that does what we want, namely

φcl(τ) = v tanh

(√
λv2

2
τ

)
. (2.13)

The profile is shown in the figure to the right.

It interpolates from φ = −v to φ = +v, with

the interesting stuff happening over a time pe-

riod ∆τ ∼ 1/
√
λv2 ∼ 1/|m|. We can evaluate the Euclidean action (2.11) on this

solution to get

Scl =

∫ +∞

−∞
dτ

(
1

2
φ̇2

cl + λ(φ2
cl − v2)2

)
=
λv4

2

∫ +∞

−∞
dτ

1

cosh4(
√
λv2/2τ)

=
2

3

√
2λv3 . (2.14)

This can be viewed as a measure of how difficult it is to tunnel under the barrier. As

the barrier gets bigger (so λ increases) or the minima get further apart (so v2 increases),

the classical action Scl also increases. This then gives our first guess at the amplitude

to tunnel from one minimum to the other,

lim
τ→∞
〈+v|e−Hτ | −v〉 = Ke−Scl . (2.15)
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Here K is some overall constant that masks all manner of sins that we’ve swept under

the rug. In fact, to do this calculation correctly, we should really be summing over

trajectories that bounce back and forth many times. One then finds, in the limit of

large T , that you have just as much chance of being in the vacuum φ = −v as you do of

being in the vacuum +v. This is the statement that there is no spontaneous symmetry

breaking in quantum mechanics. Moreover, you find that the energy difference between

the ground state and first excited state is given by

Eexcited − Eground ≈
√
λv2e−Scl . (2.16)

The splitting of the two states is exponentially suppressed.

With these ideas in mind, we can now return to what we really care about: quantum

field theory.

2.1.2 Discrete Symmetry Breaking in Quantum Field Theory

We now extend our double well discussion to field theory. Now φ(x) is a function of

spacetime. The action (2.1) is replaced by

S =

∫
d4x

(
1

2
∂µφ ∂

µφ− V (φ)

)
with V (φ) =

m2

2
φ2 +

λ

4
φ4 . (2.17)

Again, we have a Z2 symmetry φ 7→ −φ and, when m2 < 0, we have a double well

potential with two minima at φ = ±v = ±
√
−m2/λ. We want to ask: is this symmetry

spontaneously broken or not?

Quantum field theory is an extension of quantum mechanics (the clue is in the name)

so we might think that tunnelling would again mean that there is no spontaneous sym-

metry breaking. But that’s not the way things work. This is one situation where field

theory differs from quantum mechanics and our classical intuition is better. The quan-

tum field theory really does have two ground states, in which the vacuum expectation

value of the field is given by

〈φ〉 = ±v . (2.18)

To see why quantum field theory is different from common or garden quantum me-

chanics, we can return to the tunnelling calculation that we saw above. We can again

compute the amplitude to go from one putative ground state to another,

〈+v|e−Hτ | −v〉 =

∫
Dφ e−SE [φ] . (2.19)
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The Euclidean action SE[φ] is now

SE[φ] =

∫
dτd3x

(
1

2
∂µφ ∂

µφ+ V (φ)

)
. (2.20)

In the saddle point approximation, the amplitude is dominated by the classical solutions

which obey

∂2φ = λφ(φ2 − v2) . (2.21)

This is the same as (2.12), but with the φ̈ term replaced by the Laplacian on (Euclidean)

spacetime, ∂2 = ∂2
τ +∇2. We still have the same solution as before,

φcl(τ) = v tanh

(√
λv2

2
τ

)
. (2.22)

The field varies in (Euclidean) time τ but is constant in space. So far, everything runs

in parallel to the quantum mechanics argument. But now we compute the classical

action of this solution. It is

S =

∫
dτd3x

(
1

2
∂µφcl ∂

µφcl + V (φcl)

)
= VScl . (2.23)

Here Scl is the quantum mechanical action (2.14) while V is the volume of space. But, if

we’re working in uncompactified Minkowski space then V =∞. This means that both

the tunnelling amplitude (2.15) and the energy splitting of the ground states (2.16) are

proportional to

e−VScl → 0 as V → ∞ . (2.24)

It’s obvious what’s going on here. In quantum field theory, the ground state of the

field in one minimum is, say, φ(x) = +v for all x. If you want to tunnel to the other

minimum, φ(x) = −v, then you have to shift the value of the field at every point in

space. But that takes effort and quantum tunnelling is not up to the task. It costs an

infinite amount of action and so does not occur.

This means that while discrete symmetries cannot be spontaneously broken in quan-

tum mechanics, they can be broken in quantum field theory. The suppression is by the

volume factor, so if we’re working with quantum field theory on some compact space,

rather than infinite volume Minkowski space, then tunnelling reappears. However, if

the space is macroscopically large then the suppression factor e−V Scl may be so tiny

that, for all intents and purposes, we can think of the symmetry as broken.
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The upshot of this argument is that the quantum field theory (2.17) in d = 3 + 1

dimensions (and, indeed, in any dimension greater than d = 0 + 1) has two ground

states, |+v〉 and | −v〉, distinguished by the expectation value of φ(x) which acts as an

order parameter to tell us which vacuum we live in,

〈±v|φ(x)| ± v〉 = ±v and 〈±v|φ(y)| ∓ v〉 = 0. (2.25)

This is a story that generalises to other discrete symmetries. For example, if you find

yourself with a quantum field theory with ZN symmetry which is spontaneously broken,

then you will have N ground states that will be permuted into each other by the action

of the symmetry.

The Meaning of a Tachyon

Tachyons are mythological beasts in physics. When we first learn special relativity,

certain unscrupulous teachers may tell you that a tachyon is a particle with m2 < 0

which is forced forever to travel faster than the speed of light. This is, of course,

nonsense.

In field theory, a tachyon is nothing mysterious. Our potential above has m2 < 0

but there is certainly nothing flying around faster than light. Instead, it signals that

the point φ = 0 is a maximum of the potential, rather than a minimum. This is the

true meaning of a tachyon in field theory: it is telling us that the chosen vacuum is

unstable. It’s our job to find a better, stable vacuum.

That’s not hard in the example above. We just need to expand around one of

the minima of the potential, rather than the maximum. In fact, we already did this

calculation in (2.6). If we write φ(x) = v + σ(x), then we find a potential for σ given

by

V (σ) = λ

(
v2σ2 + vσ3 +

1

4
σ4

)
. (2.26)

We can read off the mass of particles in the theory from the quadratic term. Any

physical excitation has mass M2 = 2λv2. The mass is real and positive and decidedly

not exotic in any way.

Domain Walls

The presence of a spontaneously broken symmetry often implies the existence of some

novel excitation in the theory. In the present case, this is a domain wall, a field

configuration that interpolates from one vacuum to the other.
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Indeed, we’ve already met the classical solution that does the job. We just need to

repurpose the tunnelling solution (2.22) by replacing the imaginary time τ with one of

the spatial coordinates x = (x, y, z). For example, the classical field configuration

φ(z) = v tanh

(√
λv2

2
z

)
(2.27)

solves the equations of motion of the original Lorentzian action (2.17). This solution

interpolates from the vacuum φ = −v at z → −∞ to the vacuum φ = +v at z → +∞.

It describes an excitation of the field, localised around z = 0, but extended in the x-

and y-directions. This is the domain wall.

The domain wall has finite energy density E which, it is easy to see, coincides with

the action Scl of the same configuration in quantum mechanics. We computed this in

(2.14) and found

E =
2

3

√
2λv3 . (2.28)

Although the domain wall has finite energy density, it has infinite energy because it

stretches to infinity in the (x, y)-plane. An exception to this statement is if we are

considering domain walls in d = 1 + 1 dimensions where there is nowhere else for them

to stretch. In this case the domain walls have finite energy and should be viewed as a

kind of particle in the theory.

Back in d = 3 + 1 dimensions, we can straightforwardly consider variations of this

classical configuration (2.27) in which the domain wall forms a sphere of radius R,

containing one vacuum φ = −v inside, and the other vacuum φ = +v outside. This

now has finite energy, given by E = 4πR2E . However, such a static configuration will no

longer solve the equation of motion because the domain wall has tension and will want

to contract. To find the classical solution, we will have to solve the full time-dependent

partial differential equation.

We can also get some sense for what happens to these configurations in the quantum

theory. We can build a Fock space of states above either of the two ground states by

exciting the field φ(x) = ±v + σ(x). As we’ve noted, this creates particles of mass

M =
√

2λv2. The Hilbert space of the theory decomposes as

H = H+ ⊕H− . (2.29)

This is not a tensor product, which would mean that we have to choose one state from

H+ and another from H− to specify the full state. Instead, it’s a tensor sum: we must
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pick either a state from H+ or a state from H−. The states |ψ〉 ∈ H+ obey

〈ψ|φ(0,x)|ψ〉 = +v for |x| → ∞ . (2.30)

This is telling us that we necessarily approach the vacuum |+v〉 when we’re far away.

However, this doesn’t mean that the excitations about one ground state know nothing

about the other ground state. By piling many φ excitations on top of each other, it’s

quite possible to carve out a region of one vacuum inside another, and have excited

states |ψ〉 ∈ H+ that obey, for example,

〈ψ|φ(0,x)|ψ〉 =

{
−v for |x| < R

+v as |x| → ∞
. (2.31)

These kind of states are what become of our classical, spherical domain wall.

Cluster Decomposition

We know that the field theory has two ground states |± v〉, but you might wonder why

we’re necessarily forced to work with these states. What’s stopping us taking the linear

combinations

|0±〉 =
1√
2

(
|+v〉 ± | −v〉

)
(2.32)

as our ground states? This is a superposition of a state in H+ and a state in H−.

In fact, |0±〉 are not the right states to work with. There are two arguments for this.

The first is a little handwavey. Suppose that we perturb our original Lagrangian by

some term ∆L that breaks the Z2 symmetry. This will mean that one of the states

| ± v〉 has lower energy and is the true ground state. In the limit that we send the

coefficient of ∆L to zero, we will remain in the ground state, either |+v〉 or | −v〉.

This argument seems more compelling for condensed matter systems, where you can

well imagine that there are many different perturbations (say, background magnetic

fields) that would break the Z2 symmetry. The argument is less convincing in the

context of particle physics where it’s not at all clear what these additional terms might

be. (Some balm comes from a conjecture that, once we take gravity into account, there

are no exact global symmetries so there must, in fact, be some irrelevant symmetry

breaking term lurking in the wings.)
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There is a second, more important argument for why the states |0±〉 defined in (2.32)

are not the right ground states. This is a property known as cluster decomposition which

is a way of capturing the locality of field theory. If you sit in some vacuum state |vac〉
and compute the two-point function of two operators, A(x) and B(y) then, when x and

y are spacelike separated, the expectation value should decompose into

〈vac|A(x)B(y)|vac〉 → 〈vac|A(x)|vac〉 〈vac|B(y)|vac〉 as |x− y| → ∞. (2.33)

Now, on general grounds you can argue that, when x and y are far separated, we must

have

〈vac|A(x)B(y)|vac〉 →
∑
n

〈vac|A(x)|n〉 〈n|B(y)|vac〉 (2.34)

where |n〉 run over all possible vacuum states. But for cluster decomposition to hold,

we want this to project onto the specific vacuum state |n〉 = |vac〉 that we started in.

We can check this criterion for our theory with spontaneous symmetry breaking

and the choice A = B = φ. If we pick the state | + v〉 then, using the fact that

〈+v|φ(x)| −v〉 = 0, we have

〈+v|φ(x)φ(y)|+v〉 → 〈+v|φ(x)|+v〉 〈+v|φ(y)|+v〉 = v2 . (2.35)

So this indeed obeys cluster decomposition. In contrast, if we work in the state |0+〉
defined in (2.32) then you can check that

〈0+|φ(x)|0+〉 = 〈0−|φ(x)|0−〉 = 0 and 〈0+|φ(x)|0−〉 = v . (2.36)

We then have

〈0+|φ(x)φ(y)|0+〉 → 〈0+|φ(x)|0−〉 〈0−|φ(y)|0+〉 = v2 . (2.37)

This does not obey cluster decomposition because the vacuum |0−〉 that we need to

insert in the middle differs from the vacuum |0+〉 that we started with.

2.2 Continuous Symmetries

The story of symmetry breaking is rather different, and more powerful, when the sym-

metry in question is a continuous symmetry. Here we start by giving a couple of

examples before we describe the general result known as Goldstone’s theorem.

We’ll work in quantum field theory. As in the previous section, there is some tension

between spontaneous symmetry breaking in quantum field theory and what we know

about the behaviour of wavefunctions in quantum mechanics, but we’ll put this on hold

for now and return to it in Section 2.2.4.
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Figure 3. On the left: the potential with m2 > 0. On the right, the Mexican hat potential

with m2 < 0.

To start, consider a complex scalar field φ(x) in d = 3 + 1 dimensions with action

S =

∫
d4x

(
∂µφ

†∂µφ− V (φ, φ†)
)

with V (φ, φ†) = m2|φ|2 +
1

2
λ|φ|4 . (2.38)

The action is constructed so that it a enjoys U(1) global symmetry which rotates the

phase of φ,

φ(x)→ eiαφ(x) . (2.39)

Again, the physics depends on the sign of the m2 term in the potential. The two

different cases, with m2 > 0 and m2 < 0 are shown in Figure 3. In the former case,

there is little interesting to say: you expand around the vacuum φ = 0 and, after

quantisation, find interacting particles of mass m with the U(1) symmetry implying

the usual conservation law. Here our interest is in the case m2 < 0.

The potential with m2 < 0 is sometimes called the “Mexican hat potential” because,

you know, . It also looks like the bottom of a wine bottle. The defining feature

is that there are not isolated minima, but instead an infinite number of ground states,

defined by

|φ|2 = −m
2

λ
. (2.40)

We define the vacuum manifold M0 to be the space of field configurations which have

minimum energy. For the double well potential of Section 2.1, the vacuum manifold
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was just two points. Now, the vacuum manifold is the set of solutions to (2.40) which

is a circle,

M0 = S1 . (2.41)

To see what this buys us, we can write the complex field in polar coordinates, with

φ(x) = r(x)eiθ(x) . (2.42)

This is a slightly dangerous thing in quantum field theory, where we usually assume

that fields can take any value. In writing (2.42), we need to remember that r(x) ≥ 0

and θ(x) = θ(x) + 2π. Nonetheless, we can proceed for now and keep this in the back

of our minds.

Substituting the polar decomposition into the original action (2.38), and dropping

an irrelevant constant that arises when we complete the square, we have

S =

∫
d4x

(
∂µr∂

µr + r2∂µθ∂
µθ − λ

2
(r2 − v2)2

)
(2.43)

where, as in the last section, we’ve introduced v2 = −m2/λ. Now we can read off the

physics. The ground state of the system sits at r(x) = +v. If we expand about this

vacuum by writing r(x) = v + σ(x) then the action becomes

S =

∫
d4x

(
∂µσ∂

µσ + (v + σ)2∂µθ∂
µθ − λ

2
σ2(σ + 2v)2

)
. (2.44)

From this, we can read off the physics. In particular, the σ(x) excitations have mass

M2 = 2λv2. These are radial oscillations of the field, that go back and forth in the

potential.

To pick a vacuum, we also need to specify a value for the angular scalar field θ(x).

But there is no preferred choice here. Once we’ve set r(x) = v, the different constant

values of θ(x) parameterise the vacuum manifold M0 = S1. If this was quantum

mechanics, then the wavefunction would simply spread over the S1. But things are

different in quantum field theory, a fact that we will discuss further in Section 2.2.4,

and each point onM0 corresponds to a different ground state of the theory. To specify

the ground state, we have to pick one such point. It doesn’t matter which point we

pick because the physics will be the same in each. But, nonetheless, we have to pick

one.
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Whatever choice of ground state we make, say θ(x) = 0, will spontaneously break

the U(1) symmetry (2.39) which acts as

θ(x)→ θ(x) + α . (2.45)

In fact, we see that the symmetry acts by taking us from one point onM0 to another.

Finally, we can look at the dynamics of the field θ(x) that parameterises M0. From

the action (2.43), we see that there is no potential term for θ, a fact which simply

follows from the U(1) invariance of the potential. If we ignore the coupling to σ, then

the θ field is governed by the simple Lagrangian

L = v2∂µθ ∂
µθ . (2.46)

This is a Lagrangian for a massless scalar field, albeit one that is slightly unusual

because θ is a periodic variable. The existence of this massless scalar field is a direct

consequence of the spontaneous breaking of the U(1) global symmetry. As we will

see, this is a general story: whenever a continuous global symmetry is spontaneously

broken, there will be massless scalar fields. These fields are called Goldstone bosons.

Goldstone bosons can’t have potential terms: only derivative terms. But that’s not to

say that they’re totally boring. There can still be interactions, both among themselves

(as we will see in later examples) and with other fields. For example, if we expand

out r(x) = v + σ(x) in (2.43) then we see that there are interaction terms between the

massive scalar σ and the massless Goldstone boson θ that take the form σ(∂θ)2 and

σ2(∂θ)2. This means that a σ particle can decay to two Goldstone modes. However, if

we look at energies E �
√
λv2, which is the mass of the σ particle, then the only field

in town is the massless Goldstone mode, whose dynamics is governed by (2.46).

2.2.1 The O(N) Sigma Model

Here’s a generalisation of the ideas above. We take a collection of N real scalar fields

φa(x), with a = 1, . . . , N , and consider the following action

S =

∫
d4x

(
1

2
∂µφ

a∂µφa − V (φ)

)
with V (φ) =

1

2
m2φaφa +

1

4
λ(φaφa)2 . (2.47)

This action is constructed to have an O(N) symmetry, under which the φa rotate. For

N = 2, it coincides with the action (2.38) for a complex scalar field whose real and

imaginary parts are φ1 and φ2.
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Spontaneous symmetry breaking occurs when m2 < 0 and the potential again looks

like a Mexican hat but for someone with a higher dimensional head. The minima of

the potential obey

φaφa = v2 := −m
2

λ
. (2.48)

This is simply the equation for an (N − 1)-dimensional sphere, and defines the vacuum

manifold of the theory

M0 = SN−1 . (2.49)

The vacuum of the theory is one point on M0. It doesn’t matter which one. Suppose

that we pick the “south pole”, so that the vacuum is φa = (0, 0, . . . , 0, v). Now we can

look at fluctuations around this vacuum by writing

φa(x) =
(
π1(x), . . . , πN−1(x), v + σ(x)

)
. (2.50)

If we substitute this into the action (2.47), we find

S =

∫
d4x

(
1

2
∂µπ

a∂µπa +
1

2
∂µσ ∂

µσ − V (πa, σ)

)
(2.51)

with

V (πa, σ) = λv2σ2 + λvσ
(
σ2 + πaπa

)
+

1

4
λ(πaπa + σ2)2 . (2.52)

We again see that only the σ field has a quadratic term so this gives rise to a massive

particle, while quantising the πa will give N − 1 massless particles. These are the

Goldstone bosons from spontaneous symmetry breaking.

Although the πa fields are massless, they still appear in the potential (2.52), just

in higher order terms. This is in contrast to the case with U(1) symmetry where the

potential didn’t depend on the Goldstone field θ(x). There’s no mystery here: it’s

because we’ve made no attempt to pick our fields to parameterise the vacuum moduli

spaceM0. Instead, the πa(x) fields are just linear displacements away from the vacuum,

and if you move away linearly from a point inM0, you eventually end up climbing the

potential.

To do better, we could write our fields as something akin to the polar ansatz (2.43).

Alternatively, if we’re at low energies so that we care only about the dynamics of the
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Goldstone bosons, and not about their interactions with massive excitations, then we

could restrict ourselves to M0 by insisting that (2.48) is obeyed everywhere, meaning

(πa)2(x) + (φN)2(x) = v2 . (2.53)

We could use this to eliminate φN(x) in our original action (2.47). By construction,

the potential term vanishes completely and we’re left just with kinetic terms for the

Goldstone modes

S =

∫
d4x

1

2

(
∂µ~π · ∂µ~π +

(~π · ∂µ~π)(~π · ∂µ~π)

v2 − ~π · ~π

)
. (2.54)

We see that the Goldstone modes now have rather non-trivial interactions between

themselves, but these interactions are entirely kinetic. To get a sense for what the

action (2.54) is telling us, let’s restrict to N = 3. In this case, the constraint (2.53) can

be solved by the usual polar coordinates on R3,

π1 = v sin θ cosϕ , π2 = v sin θ sinϕ , φ3 = v cos θ . (2.55)

It’s important to stress that these are polar coordinates on field space, and both θ(x)

and ϕ(x) are fields that parameterise the vacuum manifoldM0 = S2. With this choice

of parameterisation, the action (2.54) becomes

S =

∫
d4x

v2

2

(
∂µθ ∂

µθ + sin2 θ ∂µϕ∂
µϕ
)
. (2.56)

We recognise the metric ds2 = dθ2 + sin2 θdϕ2 on S2 hiding within this action. More

generally, any choice of parameterisation of the constraint (2.53) will give an action for

the Goldstone bosons that takes the schematic form

S =

∫
d4x

1

2
gab(π)∂µπ

a ∂µπb (2.57)

with gab the round metric onM0. Actions of this kind, where the fields are themselves

coordinates on some manifoldM are known as non-linear sigma models. In this context,

the manifoldM is sometimes called the target space, because the fields πa(x) are maps

from spacetime (which is R1,3 for us) to the target manifold M.

Non-linear sigma models like (2.57) are non-renormalisable. That means that they

don’t make sense up to arbitrarily high energy scales. But that’s entirely reasonable!

The sigma model (2.57) is constructed so that it describes only the very low energy

physics. As we reach energies or order E ∼
√
λv, we will start to be able to climb

up the hills of the potential and out of the vacuum manifold M0. The original theory

(2.47) provides a renormalisable, UV completion of the non-linear sigma model.
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The origins of the name “sigma model” are somewhat farcical. It comes from the

original paper of Gell-Mann and Lévy who did a calculation similar to the one above,

eliminating the field σ(x) (which, recall, is related to φN(x) = v + σ(x)) and then

naming the resulting Lagrangian after the field they got rid off! We’ll see what Gell-

Mann and Lévy did, and what the σ(x) field describes in our world, when we come to

discuss aspects of chiral symmetry breaking in QCD in section 3.

2.2.2 Goldstone’s Theorem in Classical Field Theory

With these examples under our belt, we can now look at the general case. We will do

this twice: once from the perspective of the classical theory, then again in the quantum

theory.

We start classical. Consider a theory with a bunch of scalar fields, which we collec-

tively denote as φ, transforming in some representation of a global symmetry group G.

We will take G to a be Lie group, so we’re dealing with continuous symmetries rather

than discrete symmetries.

These fields experience a potential V (φ) which has some space of minima that define

the vacuum manifold of the theory:

M0 =
{
φ0 | V (φ0) = Vmin

}
. (2.58)

If the ground state is unique – in which case we will assume that it sits at φ0 = 0 –

thenM0 is just a single point and we’re back to the usual story in which the symmetry

is realised only on excited states.

The more interesting situation is when φ0 is not unique. In this case, acting with

some elements of G will typically move us from one point inM0 to another. Indeed, the

generic situation is that all points inM0 can be reached by a symmetry transformation,

meaning that if we take two points φ0, φ
′
0 ∈M0, then there is a g ∈ G such that

φ′0 = gφ0 . (2.59)

We can see this, for example, in the O(N) model described above where M0 = SN−1

and you can always rotate from one point on the sphere to any other.

While some elements of G will move us around M0, other elements leave the point

φ0 unchanged. It’s useful to define the concept of the stability group H. If we sit at

some point φ0 ∈ M0, then the group H is defined to be those elements of G which

don’t change φ0,

H =
{
h ∈ G | hφ0 = φ0 } . (2.60)
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The stability group H defined above depends on the choice of φ0 ∈ M0. Happily,

however, if we pick a different point φ′0 ∈ M0 then we will find ourselves with a

stability group H ′ that is isomorphic to H. This is simple to show: if φ′0 = gφ0 then

then for each h ∈ H we can construct h′ = ghg−1 ∈ H ′.

Again, we can use the G = O(N) model as an example. For any point inM0 = SN−1,

the stability group is H = O(N−1). The way in which O(N−1) is embedded in O(N)

depends on where we sit inM0. For example, if we sit in the vacuum φi = (0, 0, . . . , v)

then the surviving O(N − 1) resides in the upper-left block of the N ×N matrix, while

if we sit in the vacuum φi = (v, 0, . . . , 0) then O(N−1) resides in the lower-right block.

But, wherever we sit, there is always an O(N − 1) subgroup that survives.

We say that the group G is spontaneously broken to the group H. We usually write

this as G → H. The field φ is what, in statistical physics, we call an order parameter

for the symmetry G: its value in the ground state – either zero or non-zero – provides

a litmus test for whether the symmetry G is broken. The vacuum manifold M0 can

then be identified as the coset space

M0
∼= G/H . (2.61)

Here the coset G/H is defined to be the set of equivalence classes, with g1 ∼ g2 if there

exists an h ∈ H such that g1 = hg2.

Now we’re in a position to state the main result3:

Goldstone’s Theorem: If a global, continuous symmetry G is spontaneously broken

to H then the number of massless Goldstone bosons is given by

dim (G/H) = dimG− dimH . (2.62)

In light of the identification (2.61), you can think of these Goldstone bosons as the

modes that fluctuate along the vacuum manifold M0.

Returning, briefly, to our O(N) model, the sphere can be viewed as the coset SN−1 =

O(N)/O(N − 1). We can do some simple counting. We have dimO(N) = 1
2
N(N − 1)

so dimO(N)− dimO(N − 1) = N − 1 = dim SN−1.

3Both the classical and quantum versions of Goldstone’s theorem were first proved by Goldstone,

Salam and Weinberg in a classic 1962 paper entitled “Broken Symmetries”. The proof was prompted

by specific examples that had been explored by Nambu and by Goldstone.
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Proof: The proof of Goldstone’s statement is really just a matter of turning our

intuition into some equations. Suppose that φ sits in a representationR of the symmetry

group G. We’ll denote the components of φ as φa with a = 1, . . . , dimR.

Consider how φ shifts under an infinitesimal symmetry transformation, gφ = φ +

δφ. If we denote the generators of G in the representation R as (TA)ab, with A =

1, . . . , dimG, then we have

δφa = iαA(TA)abφ
b (2.63)

with αA infinitesimal parameters. We know that G is a symmetry of our theory which

means, among other things, that the potential must satisfy V (gφ) = V (φ). So, for an

infinitesimal transformation,

V (φ+ δφ)− V (φ) = iαA
∂V

∂φa
(TA)abφ

b = 0 . (2.64)

We differentiate with respect to φb to find[
∂V

∂φa
(TA)ab +

∂2V

∂φa∂φb
(TA)acφ

c

]
= 0 (2.65)

where we’ve stripped off the αA on the grounds that they are arbitrary parameters and

so this expression must hold for each A = 1, . . . , dimG. Now we evaluate the result on

a ground state φ0. The first term disappears because φ0 is a minimum of the potential

and we’re left with

∂2V

∂φa∂φb

∣∣∣∣
φ0

(TAφ0)a = 0 for A = 1, . . . , dimG . (2.66)

We recognise the second derivative of the potential as the mass matrixM2
ab = ∂V/∂φa∂φb;

the eigenvalues of this matrix are the physical masses. The result (2.66) is telling us that

the mass matrix potentially has a bunch of zero eigenvalues, one for each eigenvector

(TAφ0)b.

The “potentially” in the sentence above is there because it may be that the would-be

eigenvector (TAφ0)b actually vanishes. Indeed, this is clearly the case if φ0 = 0. That’s

as it should be: if φ0 = 0 then the symmetry is unbroken and there’s no reason to

generically expect massless modes. However, even when φ0 6= 0, there will be some

generators – let us call them T̃A – that annihilate the ground state,

T̃Aφ0 = 0 . (2.67)
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These are precisely the generators of the unbroken stability group H and so there

are dimH of them. We will denote the generators orthogonal to T̃A as Rα, with

α = 1, . . . , dim (G/H). Here, orthogonality means that they obey Tr (T̃ARα) = 0.

Each of these generators gives a unique eigenstate (Rαφ)b, and hence a massless mode.

We see that there are at least dim (G/H) massless particles. These are the Goldstone

bosons. �

2.2.3 Goldstone’s Theorem in Quantum Field Theory

The quantum version of Goldstone’s theorem has much more teeth than its classical

counterpart. This is not because the theorem itself is very much different – as we’ll

see, it really involves all the same ingredients that we’ve seen above, just adapted to

life in a Hilbert space. Instead, the importance of the result is due to the environment

in which the theorem operates.

In classical field theory, there’s no difficulty in writing down a theory for a massless

scalar. You literally just need to set m2 = 0 in the potential. So while it’s certainly

interesting that spontaneous symmetry breaking gives us a mechanism for generating

massless scalars, they’re not such rare beasts.

But the story is very different for interacting quantum field theories. There, massless

scalars (and, indeed scalars that are just “light” in some sense) are very hard to come

by. This is because the physical mass is not just the m2 that you write down in the

Lagrangian. Instead, the mass of a scalar picks up extra contributions from the cloud of

other fields that accompany the particle. These are captured, at one loop, by Feynman

diagrams like this:

Here the external legs are the scalars, while the particle running in the loop is anything

that the scalar interacts with, including itself. These diagrams contribute to the mass

renormalisation of the scalar and, crucially, are quadratically divergent. Physically, it

means that quantum corrections push the mass of a scalar particle up to the UV-cut

off of the theory, ΛUV .

The upshot of this is that, if you write down a Lagrangian with m2 = 0, then

it won’t describe a quantum scalar particle with physical mass zero. Instead, after

renormalisation, it will describe a scalar with physical mass m2 ∼ Λ2
UV . (In some cases,
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ΛUV may be some higher energy scale in the theory, rather than the UV-cut off. For

example, in QCD we’ll see that the masses of scalar mesons typically sit at a scale

known as ΛQCD.) If you want to write down, say a φ4 theory that describes a massless

scalar then you will need to tune the mass in the Lagrangian (the so-called “bare

mass”) to be m2 ∼ −Λ2
UV , with a coefficient that precisely cancels the contributions

from quantum corrections. This is known as fine tuning and it is generally agreed to

be as tasteless as it sounds. (This same idea also arises in statistical physics, where the

mass term is associated to the deviation from a critical temperature. In this case, the

fine tuning is physical because you get to turn the temperature up and down at will.)

None of this means that there is some flaw in quantum field theory: instead it’s

capturing the right physics. Quantum field theories tend not to have massless, or

indeed, light, scalar fields. Their mass is typically pushed up to some cut-off scale.

This is not true of fermions, which suffer only a logarithmic correction to their mass.

This can be traced to the fact that fermions have an extra chiral symmetry when they

are massless that protects their mass from being renormalised.

All of this means that things are interesting when you come across a physical system

that does have a massless, or inordinately light, scalar field. If you find such a light

scalar, then there should be a reason why the preceding arguments fail. In most (but,

famously, not all!) cases, that reason is Goldstone’s theorem. Spontaneous symmetry

breaking provides a robust mechanism to naturally deliver genuinely massless scalars,

whose mass is protected against any corrections from renormalisation. And, as we

mentioned at the beginning of this section, it is a mechanism that is employed over and

over again by nature, from magnets, to phonons to, as we shall see later, pions.

Before we turn to prove Goldstone’s theorem in the context of quantum field theory,

it’s worth commenting on the “famously, not all” remark above. This is a nod to the

Higgs boson. It is not particularly light, weighing in at mH ≈ 126 GeV. But if we

believe that quantum field theory continues to hold at scales significantly higher than

mH , we should ask why the mass of the Higgs boson hasn’t been pushed up to higher

scales. Or, in other words, why don’t the simple arguments that we sketched above

apply to the Higgs boson? We don’t know the answer to this question. This is known

as the hierarchy problem.

Broken Symmetries Acting on Hilbert Space

With this preamble in place, we can now see how Goldstone’s theorem manifests itself

in quantum field theory. We won’t work with Lagrangians, or restrict ourselves to
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perturbation theory. Instead, all the physics can be seen in how symmetries act on the

Fock space of particles.

By Noether’s theorem, any continuous symmetry G has an associated set of currents

JAµ , with A = 1, . . . , dimG. From these we can construct the conserved charges

QA =

∫
d3x JA0 . (2.68)

One of the lovely features of quantum mechanics (or, indeed, the Hamiltonian version of

classical mechanics) is that these charges enact what we might call the “inverse Noether

theorem”. This means that, given a conserved charge, you can always reconstruct the

associated symmetry. This follows from the fact that the charge is the generator of the

symmetry, with any operator O undergoing the infinitesimal transformation

δAO = i[QA,O] . (2.69)

Comparing to our classical result (2.63), we see that our scalar fields φa transform as

[QA, φa] = (TA)abφ
b . (2.70)

These are exact operator relations in the quantum theory.

In the classical theory, we saw that φ is an order parameter for the symmetry G.

The same is true in the quantum theory, although strictly we should talk about the

vacuum expectation value (or vev) of φ, as the order parameter,

〈φ〉 = 〈Ω|φ|Ω〉 (2.71)

where |Ω〉 is the vacuum of the full, interacting theory. If 〈φ〉 6= 0 then we say that φ

condenses, a term taken from statistical physics. From (2.70), we have

〈Ω|[QA, φa]|Ω〉 = (TA)ab〈φb〉 6= 0 . (2.72)

But this can only be true if

QA|Ω〉 6= 0 for some A . (2.73)

This is what it means for a symmetry to be spontaneously broken in quantum field

theory: the symmetry generators do not annihilate the vacuum.
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Actually, there’s a small caveat that I need to mention here. If we have QA|Ω〉 = |Ω〉
then the commutator does vanish: 〈Ω|[QA, φa]|Ω〉 = 0. This kind of action on the

ground state means that the symmetry is unbroken because, when exponentiated, we

have eiαQ
A|Ω〉 = eiα|Ω〉, but just changing the phase of a state in quantum mechanics

is the same as leaving the state invariant. So the statement QA|Ω〉 6= 0 in (2.73) should

be better written as QA|Ω〉 6= c|Ω〉 for some c ∈ C.

For any symmetry generator, broken or unbroken, we have [QA, H] = 0 so (2.73) is

really telling us that, whenever the symmetry is broken, the vacuum is degenerate. Said

slightly differently, in quantum field theory every different choice of 〈φ〉 corresponds to

a different vacuum of the theory.

Conversely, if 〈φ〉 = 0 then, from (2.73), we see that the vacuum is annihilated by

the symmetry generators: QA|Ω〉 = 0. This is the more familiar case in which the

symmetry is unbroken. Excitations above the vacuum then sit in multiplets of G.

When a symmetry is spontaneously broken, the excitations above the vacuum no

longer sit in multiplets of the full symmetry group G. To see this, suppose that we

have two fields, φ1 and φ2, that are related by a symmetry so there is some conserved

charge such that [Q, φ1] = φ2. We can consider excitations of the vacuum by the

creation operators associated to φ1, heuristically |1〉 = a†1|Ω〉, and similar excitations

associated to φ2, |2〉 = a†2|Ω〉. We then have

|2〉 = a†2|Ω〉 = [Q, a†1]|Ω〉 = Q|1〉 − a†1Q|Ω〉 . (2.74)

We see that the symmetry generator does relate |1〉 and |2〉 but only if Q|Ω〉 = 0. When

the symmetry is spontaneously broken, so Q|Ω〉 6= 0, the two states |1〉 and |2〉 can

have different properties. For example, they may have different energies.

So far, we haven’t described where the Goldstone bosons come from. Following our

classical intuition, we expect them to correspond to fluctuations along the directions of

broken symmetry. And that’s indeed the case. For each broken symmetry generator,

we construct states

|πA(p)〉 ∼
∫
d3x eip·xJA0 (x)|Ω〉 . (2.75)

These states carry 3-momentum p. Moreover, in the limit of vanishing momentum, we

have

lim
p→0
|πA(p)〉 ∼ QA|Ω〉. (2.76)
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For those generators that are spontaneously broken, the state QA|Ω〉 6= 0 has the same

energy as the original vacuum |Ω〉 because [QA, H] = 0. This is the statement that the

Goldstone boson |πA(p)〉 has energy E → 0 as p → 0. In other words, the Goldstone

boson is massless.

None of the arguments above rely on perturbation theory: they are all exact state-

ments about the interacting quantum field theory. This means that if we were to write

down Lagrangians for these Goldstone bosons then they must remain massless, even

after taking into account one-loop effects and so on. In operational terms, this happens

because the Goldstone bosons have only derivative couplings.

The argument above is not completely rigorous, not least because Q|Ω〉 suffers from

divergences and doesn’t strictly exist in the Fock space. A better, but more formal,

argument uses the Källén-Lehmann spectral decomposition. You can read about this

in Volume II of Weinberg’s book.

The View From the Effective Potential

There is an alternative proof of Goldstone’s theorem in quantum field theory that

follows much more closely the classical proof that we saw previously. We first need

to review some basic facts about generating functions in quantum field theory. The

generating function for connected correlation functions is

eiW [J ] =

∫
Dφ ei

∫
d4x (L(φ)+Jφ) . (2.77)

Here J(x) is a source for φ and differentiating W [J ] successively with respect to J(x)

gives the connected correlation functions. In particular, the expectation value of φ(x)

is given by

δW [J ]

δJ(x)
= 〈Ω|φ(x)|Ω〉 = φcl(x) . (2.78)

In the absence of a source, Lorentz invariance implies that φcl is just a number, and

coincides with the vev (2.71) that we introduced previously. But, if we turn on a

spatially varying source J(x), then the function φcl(x) will respond accordingly.

The Legendre transform of W [J ] is known as the one-particle irreducible (or 1PI for

short) effective action,

Γ[φcl] = W [J ]−
∫
d4x J(x)φcl(x) . (2.79)
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As in other examples of Legendre transforms, we should use (2.78) to replace J(x) with

φcl(x) in the 1PI effective action. We can always return to W [J ] (assuming certain

convexity properties) using

δΓ[φcl]

δφcl(x)
= −J(x) . (2.80)

The 1PI effective action is not, in general, the same thing as the more physical Wilsonian

effective action that we get by integrating out high energy modes to find a description of

the low energy physics. Taking derivatives of Γ[φcl] generates the 1PI Green’s functions.

In particular, the two derivative term gives the inverse propagator

δ2Γ

δφcl(x)δφcl(y)
= ∆−1(x− y) . (2.81)

In general, Γ[φcl] can be expressed in terms of a derivative expansion,

Γ[φcl] =

∫
d4x

(
− Veff(φcl) +

1

2
Z(φcl)∂µφcl∂

µφcl + . . .
)

(2.82)

for some functions Veff(φcl) and Z(φcl). For our purposes, we’re interested only in

spatially homogeneous configurations, so we can ignore the derivative terms and the

1PI effective potential becomes

Γ[φcl] = −VVeff(φcl) (2.83)

where V is the (admittedly infinite, but actually irrelevant) volume of spacetime. Re-

stricted to constant configurations, the second derivative of Γ[φcl] is just the mass

matrix, but now for the physical masses as opposed to the classical, bare masses

∂2Veff

∂φcl∂φcl

= ∆−1(0) . (2.84)

Spontaneous symmetry breaking occurs when we have φcl 6= 0 even when J = 0. From

(2.80), this translates into the familiar requirement that

φcl 6= 0 at
∂Veff

∂φcl

= 0 . (2.85)

Now we may rerun all the arguments of section 2.2.2, but for the effective potential

Veff(φ) rather than the classical potential V (φ) to again arrive at (2.66),

∂2Veff

∂φacl ∂φ
b
cl

(TAφ0)b = 0 . (2.86)

As in the classical argument, this is telling us that the mass matrix has a number of

zero eigenvalues. (Equivalently, the propagator ∆ has poles at p → 0.) There is one

zero eigenvalue for each broken generator.
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2.2.4 The Coleman-Mermin-Wagner Theorem

In all our discussions above, we assumed that spontaneous symmetry breaking actually

takes place in the quantum theory. For example, we showed that if 〈φ〉 6= 0 then the

ground state must necessarily shift under a symmetry

Q|Ω〉 6= 0 . (2.87)

But how do we know that this actually happens? In particular, there is some tension

with what we know from our first courses on quantum mechanics.

Let’s return to the simplest example of a Mexican hat potential (2.38), but now think

of quantum mechanics, rather than quantum field theory. That means that we have a

quantum particle moving in the potential.

It’s challenging to write down the exact

ground state wavefunction ψ(r, θ), but it’s not

difficult to get some idea of what it looks like:

it will be peaked in the trough at r = v,

and be fully delocalised in the angular θ di-

rection. In other words, it will look some-

thing like the wavefunction shown in the fig-

ure. But, crucially, because the wavefunction

spreads around the circle parameterised by θ,

there is no spontaneous symmetry breaking.

This begs the question: why is quantum field theory different from quantum me-

chanics? Why do we expect spontaneous symmetry breaking in the former case, but

not in the latter? A similar question arose when we discussed discrete symmetries and

there we understood that quantum tunnelling through the barrier was suppressed by

the infinite spatial volume. But here there’s no barrier to tunnel through. Instead we

have a manifold of ground states M0 and it feels like it should be easier for a wave-

function to spread overM0 than to tunnel through a barrier. In other words, it should

be more difficult to spontaneously break continuous symmetries than to spontaneously

break discrete symmetries.

And indeed it is. But in an interesting way. The key physics is captured by the

following theorem:

Theorem: A continuous symmetry cannot be broken in quantum theories in d = 0+1

(i.e. in quantum mechanics) or d = 1 + 1 dimensions.
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This theorem was first proven by Mermin and Wagner for certain spin chains, inspired

by previous work by Hohenberg. The proof in the context of quantum field theory is due

to Coleman4. We see that the story is different for discrete and continuous symmetries.

A discrete symmetry can be spontaneously broken in spacetime dimensions d = 1 + 1

and higher, but for a continuous symmetry to be spontaneously broken we must be in

d = 2 + 1 or higher.

Here we offer just a sketch of this theorem. In fact, the basic idea can already be

seen in classical field theory. Things are simplest if we work in d-dimensional Euclidean

space. Suppose that we have a massless scalar field φ with no potential. This means

that we have a choice of what we call the vacuum and, for our purposes, we’ll decide

that φ = 0 is the ground state. Now we excite this scalar field by introducing a delta

function source at the origin. That means that we have to solve

∇2φ = δ(x) . (2.88)

This, of course, is the equation for the Green’s function of the d-dimensional Laplacian.

The solutions take the schematic form (ignoring overall coefficients)

φ(x) ∼


|x| for d = 1

log |x| for d = 2

1/|x|d−2 for d ≥ 3

(2.89)

We see that for low dimensions, d = 1 and d = 2, exciting the scalar field at the origin

means that it can no longer take the value φ = 0 asymptotically. Any disturbance at

the origin is still felt at |x| → ∞ where the field continues to grow. In contrast, in

d = 3 and higher, the field is excited near the origin but then settles back down to

φ→ 0 as |x| → ∞.

The story above is classical. What happens in the quantum theory? We’ll stick with

the free massless scalar, and continue to work in Euclidean spacetime. Consider the

two-point function 〈φ(x)φ(y)〉. We know from the lectures on Quantum Field Theory

4The original paper is from 1966, “Absence of Ferromagnetism or Anti-Ferromagnetism in One or

Two-Dimensional Heisenberg Models” by Mermin and Wagner and, because of quirk of publication,

appeared before the Hohenberg paper which motivated them: “Existence of Long-Range Order in One

and Two Dimensions”. Sidney Coleman’s contribution is from 1973, in the concisely titled “There are

no Goldstone Bosons in Two Dimensions”.
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that this is given by the same Green’s function as above, so

〈φ(x)φ(y)〉 ∼


|x− y| for d = 1

log |x− y| for d = 2

1/|x− y|d−2 for d ≥ 3

(2.90)

Again, we see the infra-red divergence for d = 1 and d = 2. Roughly speaking, this is

telling us that the wavefunction spreads over all values of φ in d = 2 dimensions, just

as it does in d = 1 quantum mechanics. In both cases, there is no normalisable ground

state.

A better way of saying this is that φ(x) is not a well defined operator in d = 2

dimensions. In particular, the correlation function 〈φ(x)φ(y)〉 ∼ log |x − y| is not

positive for all x − y, which is one of the requirements of a QFT. However, although

φ(x) is not a well-defined operator, its derivatives ∂µφ(x) are. You can learn more

about this 2d theory (which really only makes sense when φ is taken to be a periodic

variable) in the lectures on String Theory.

No such problems arise for a massless scalar in d ≥ 3 spacetime dimensions. Here,

each value of 〈φ〉 specifies a different ground state of the theory. Indeed, for this simple

free theory, the massless φ field can be viewed as a Goldstone boson for the shift

symmetry φ→ φ+ constant.

As for the discrete symmetries discussed in Section 2.1, the existence of spontaneous

symmetry breaking is due to the infinite volume of space. If we were to take our

quantum field theory on a compact spatial manifold, then the long-time behaviour is

the same as in quantum mechanics, and the wavefunction will again spread over field

space, obviating spontaneous symmetry breaking.

2.3 The Higgs Mechanism

Goldstone’s theorem tells us that when a continuous symmetry is spontaneously broken,

it results in a massless boson. Here we would like to ask: what happens if that symmetry

is gauged?

First, the very concept of a “spontaneously broken gauge symmetry” is a little mis-

leading. As we’ve stressed, a gauge symmetry is merely a redundancy in the description

of a system and there’s no way that this redundancy can be “broken” or “lost”. This

linguistic issue notwithstanding, the physics underlying the spontaneous breaking of

gauge symmetries is clear cut. First, there is no massless Goldstone boson. Second,

the gauge boson gets a mass. We’ll now see, in some detail, how this comes about.
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2.3.1 The Abelian Higgs Model

We return to a complex scalar φ with the Mexican hat potential of Section 2.2. This

time, however, we couple the scalar to a U(1) gauge field. The action is

S =

∫
d4x

(
− 1

4
FµνF

µν +Dµφ†Dµφ−
λ

2
(|φ|2 − v2)2

)
. (2.91)

This is known as the Abelian Higgs model. The covariant derivative is Dµφ = ∂µφ −
ieAµφ. Clearly the ground state sits at

|φ|2 = v2 . (2.92)

Previously, this meant that we had a vacuum manifold, M0 = S1, parameterised by

the phase of φ. But now the U(1) that takes us around the S1 is a gauge symmetry,

φ→ eieα(x)φ and Aµ → Aµ + ∂µα (2.93)

and we know that field configurations that are related by gauge symmetries should be

considered physically equivalent. This suggests that the gauge theory only has a single

ground state, rather than a manifold of ground states. This, it turns out, is the right

interpretation.

To see the physics, let’s place ourselves in the classical vacuum φ = v and look at

fluctuations that we parameterise as

φ(x) = eiθ(x)
(
v + σ(x)

)
. (2.94)

We then have

Dµφ = eiθ
(
∂µσ + i(v + σ)(∂µθ − eAµ)

)
. (2.95)

Substituting this into the action, and expanding out, we have

S =

∫
d4x

(
−1

4
FµνF

µν + ∂µσ∂
µσ + (v + σ)2(∂µθ − eAµ)(∂µθ − eAµ)− V (σ)

)
with

V (σ) =
λ

2
σ2(σ + 2v)2 . (2.96)

From this, we can read off the mass spectrum of the theory. First, the scalar σ is

reasonably standard: it has a quadratic term that tells us its mass is

m2
σ = 2λv2 . (2.97)

This is the same mass that we calculated for the global symmetry. Later, when we

discuss electroweak theory, we will learn that an analogous particle is the Higgs boson.

– 75 –



More interesting is the other scalar field θ(x). In the absence of the gauge field,

this was the Goldstone boson. But now that we’ve introduced the gauge field, we see

something interesting: this field only appears in kinetic terms in the combination

∂µθ − eAµ . (2.98)

This allows us to eliminate the field θ(x) completely. We simply define a new gauge

field, related to the first by the change of variables

A′µ = Aµ −
1

e
∂µθ . (2.99)

This has the same field strength as Aµ, with Fµν = ∂µA
′
ν − ∂νA′µ. However, in contrast

to Aµ, the new field A′µ does not change under a gauge transformation since the usual

shift Aµ → Aµ + ∂µα is now compensated by θ → θ + eα. Said slightly differently,

you could also think of the change of variables to A′µ as analogous to working in θ = 0

gauge, known, in this context, as unitary gauge. Either way, the upshot is the same:

the field θ(x) no longer appears in the action

S =

∫
d4x

(
−1

4
FµνF

µν + ∂µσ∂
µσ + e2(v + σ)2A′µA

′µ − V (σ)

)
. (2.100)

We see that we’ve generated a mass term e2v2A′µA
′µ for the gauge field. This is exactly

the kind of term that is usually forbidden by gauge invariance. But such a term arises

naturally when we spontaneously break the gauge symmetry and the photon gets a

mass

m2
γ = 2e2v2 . (2.101)

This is the Higgs mechanism.

There’s some interesting interplay of degrees of freedom going on here. Massive

spin 1 particles have three degrees of freedom. (This is just the (2l + 1)-dimensional

representation of the little group for l = 1.) But massless spin 1 particles have only two

degrees of freedom, the two polarisation states. But it’s clear where the extra degree of

freedom came from because the photon absorbed the would-be Goldstone mode θ(x).

This Goldstone boson breathes life into the longitudinal mode of the photon which is

ordinarily killed by the constraints of gauge invariance.

Note that the mass of the Higgs boson (2.97) and the mass of the photon (2.101) have

different parameteric dependence on the coupling constants. This means, among other

things, that we could always just decouple the Higgs boson by taking mσ →∞, leaving
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behind the massive photon at a finite mass mγ. Given this, you might wonder why we

needed all this palava with the Higgs boson. And, in fact, we really don’t. We could

always just couple the photon directly to the Goldstone mode θ, ignoring the radial

mode σ. Said differently, we could just couple the photon to the sigma model with

target space M0 = S1 which gives a massive photon and no Higgs boson. However,

this option is less viable when we discuss the Higgs mechanism in non-Abelian theories

because the corresponding sigma model is non-renormalisable and so should be viewed

as an effective low energy theory, breaking down in the UV.

2.3.2 Superconductivity

We will later see that the Higgs mechanism plays a key role in the Standard Model.

But there is a glorious unity to physics, and if nature finds a good trick to use in one

context, she often recycles it elsewhere. So it is with the Higgs mechanism, which also

provides a description of how superconductors work. In that context, it is referred to

as the Anderson-Higgs mechanism5.

Superconductivity is a phenomenon exhibited by many metals when they are cooled

to a few degrees Kelvin. The metal undergoes a phase transition, and the electrical

resistivity promptly plummets. At the same time, any magnetic fields are expelled.

The microscopic explanation for superconductivity is beyond the scope of these lec-

tures. For what it’s worth, an attractive coupling mediated by the phonon causes

electrons to form an object known as a Cooper pair. For our purposes, all we need to

know is that the resulting bound state is described by a complex scalar field φ that has

charge −2e, with the −2 because it’s formed of two constituent electrons.

In condensed matter physics, we more commonly work with the free energy, which

describes the equilibrium properties of a system at finite temperature, rather than the

Lagrangian which describes the zero temperature dynamics. But to avoid taking too

much of a detour, here we give a Lagrangian description of superconductivity. This

5The history of the Higgs phenomenon is famously murky. Anderson’s 1963 paper on supercon-

ductivity argues that the would-be Goldstone mode is no longer there and that the photon is gapped.

These ideas were extended to the relativistic theory by Brout and Englert and, independently, by

Peter Higgs. Only Higgs’ paper mentions the existence of an additional massive particle, now called

the Higgs boson, albeit in what appears to be an afterthought in the final paragraph of the paper.

You can decide for yourself whether this was because the existence of the Higgs boson was obvious (as

some of the authors later claimed) or because they didn’t think to ask the question. Still, the mech-

anism for giving a photon mass should probably rightly be called the Anderson-Brout-Englert-Higgs

mechanism. In line with much of the particle physics community, we choose to unfairly shorten this

to simply “Higgs”. Meanwhile the term Higgs boson, for the scalar particle, seems more appropriate.
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is almost identical to the Abelian Higgs model of the previous section, with just one

small difference: the dynamics of the scalar field φ is non-relativistic. This means that

we should work with the action

S =

∫
dt d3x

(
−1

4
FµνF

µν + iφ†Dtφ− |Diφ|2 −
λ

2
(|φ|2 − v2)2

)
. (2.102)

In addition, there’s an extra factor of −2 buried in the covariant derivatives: Dµφ =

∂µφ+ 2ieAµφ. (On dimensional grounds, there should be a coefficient with dimension

(mass)−1 in front of the gradient terms but I’ve set it to unity to ease comparison with

the relativistic Abelian Higgs model (2.91).)

A non-relativistic complex scalar has just a single degree of freedom. (This is true

because the kinetic term contains a first order time derivative and so φ† is the momen-

tum conjugate to φ, rather than a separate degree of freedom.) This means that if we

quantise (2.102), we will find a massive photon, but the would-be Higgs boson (what

we called σ in the relativistic theory) is missing.

We can read off the charge density and current from the coupling AµJ
µ. The charge

density is

J0 = −2e|φ|2 . (2.103)

In the ground state, we have the condensation |φ|2 = v2, so the Cooper pairs form

a constant background electric charge. (In a real system, this is compensated by the

positive electric charge of the underlying lattice of ions.) Meanwhile, assuming that

|φ|2 = v2, the electric current is

J = 4ev2 (∇θ − 2eA) . (2.104)

Here, as in the previous section, θ(x) is the phase of φ(x). The expression (2.104) is

known as the supercurrent. It is sometimes denoted as Js to distinguish it from the

normal current carried by electrons.

Resistance is Futile

The signature of a superconductor is that it conducts electricity without resistance.

This follows immediately from the equation of motion for φ†,

iD0φ = −D2φ+
∂V

∂φ†
. (2.105)

In the lowest energy state, the charge density |φ|2 is constant. But the phase can vary.

Indeed, from (2.104), we see that a spatially varying phase ∇θ 6= 0 means that an

electric current flows.
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Figure 4. A constant magnetic field can pass through a normal metal, as shown on the left.

But when the metal becomes superconducting, as shown on the right, the magnetic field is

expelled, a phenomenon known as the Meissner effect.

Suppose that we look at such a configuration with |φ|2 = v2. Then the complex

equation of motion (2.105) splits into real and imaginary parts, which are

θ̇ − 2eA0 =
1

(4ev2)2
J2 and ∇ · J = 0 . (2.106)

To see the relevant physics, it’s simplest to restrict to the case where J is constant in

space so that ∇J2 = 0. Then, taking the time derivative of the (2.104), we have

dJ

dt
= 4ev2

(
∇θ̇ − 2eȦ

)
= 2(2ev)2

(
−∇A0 − Ȧ

)
= 2(2ev)2E . (2.107)

This is the first London equation. It tells us that an electric field acts to accelerate

the current, rather than to maintain the current. But that’s not what usually happens

in a conductor. Usually, a constant electric field induces a constant current. That’s

what the famous Ohm’s law equation V = IR says. But the resistance R in a normal

conductor is due to friction terms, and the London equation (2.107) is telling us that

a superconductor has vanishing resistance, R = 0.

Meissner Effect

Superconductors don’t like magnetic fields very much. If you try to force a magnetic

field through a superconductor, then it will resist. This is known as the Meissner effect,

or sometimes as the Meissner-Ochsenfeld effect. A cartoon of this is shown in Figure

4. It has the dramatic consequence that a superconductor, placed above a magnet, is

repelled and can levitate in mid-air.

At heart, the Meissner effect arises because the photon gets a mass. The term

∼ v2A · A in the action ensures that it is energetically costly to turn on a magnetic

field.
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We can see this more quantitatively from the form of the supercurrent (2.104). If we

take the curl of both sides, we find

∇× J = −2(2ev)2B . (2.108)

This is the second London equation. We can compare it to Ampére’s law, ∇×B = µ0J.

Taking the curl, and using ∇×∇×B = −∇2B (because ∇ ·B = 0), we find that the

magnetic field inside a superconductor obeys the Helmholtz equation

∇2B =
1

λ2
B with λ2 =

1

2(2ev)2
. (2.109)

Here λ is the penetration depth, a length scale equal to the inverse mass of the photon,

λ = 1/mγ. (The factor of 4 difference with (2.101) can be traced to the fact that, for

superconductors, we’re dealing with a field with charge −2e rather than e.)

To see why the penetration depth gets it name, we can solve this equation for a

constant magnetic field of the form

B = (B(z), 0, 0) . (2.110)

This configuration automatically obeys ∇ · B = 0. Suppose that the superconductor

fills half of space, say the region with z > 0. We set up a constant magnetic field

B = (B0, 0, 0) in the outside region z < 0 and ask what becomes of it when it enters

the superconductor. There are two solutions to (2.109), but only the decaying one is

physical. We find that the magnetic field drops off exponentially quickly inside the

superconductor,

B(z) = B0e
−z/λ . (2.111)

This is the Meissner effect: the superconductor does not suffer a magnetic field inside.

In most superconductors, λ ≈ 10−8 to 10−9 m. This is what allows superconducting

materials to levitate above magnets: the magnetic field can’t penetrate the supercon-

ductor, and has to go around as shown in Figure 4. This squeezes the magnetic field

lines which costs energy, making it energetically preferable for the superconductor to

remain magically suspended in space, rather than falling like other materials that have

more respect for gravity.

Vortices

There’s no such thing as an immovable object. If you push hard enough, by cranking

up the magnetic field, then the superconductor will eventually relent and let it pass.

But the way it does this is interesting.
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This follows because of a novel solution to the equations of motion of the action

(2.102) known as a vortex. (This is also a solution to the relativistic Abelian Higgs

model (2.91).) The vortex solution is time-independent, and extends along one spatial

direction – say the z-direction – as a string-like object. To this end, we will look for

solutions with ∂0 = ∂3 = 0 as well as A0 = A3 = 0.

It turns out that no closed form solution to the resulting equations of motion is

known (although it is not hard to construct numerically). So rather than try to solve

the equations directly, we will instead argue that such a solution must exist. The

argument involves a little simple topology.

Consider the (x, y)-plane at z = 0. We will work with 2d polar coordinates x+ iy =

reiϕ. The trick is to look for solutions such that, for any curve C around the origin, we

have ∮
C

∇θ · dx 6= 0 . (2.112)

Our first task is to understand what this means. Usually, the integral of a total deriva-

tive is zero, but in the present case there’s an opportunity for something more inter-

esting to happen. This is because the field θ started life as a phase of our scalar φ and,

as such, is periodic, taking values θ ∈ [0, 2π). For a periodic field θ, the line integral∮
C
∇θ · dx counts the number of times that θ winds as we traverse the curve C.

For example, if the curve C is parameterised by a coordinate ϕ ∈ [0, 2π) then we

could consider field configurations of the form θ = kϕ. Because θ must be single-

valued, this only makes sense for k ∈ Z which is acceptable because θ = 0 is equivalent

to θ = 2π. This, in turn, means that the integral (2.112) is necessarily quantised,∮
C

∇θ · dx =

∫ 2π

0

dϕ
dθ

dϕ
= 2πk with k ∈ Z . (2.113)

This quantisation doesn’t happen because of anything to do with quantum mechanics.

Instead, it’s a quantisation imposed upon us by simple topological configurations.

Let’s look for configurations in which the phase θ has winding (2.112). If this con-

figuration is to have finite energy (per unit length) then, asymptotically, we must have

Diφ→ 0. This tells us that∮
C

∇θ · dx = 2e

∮
C

A · dx = 2e

∫
d2x B3 = 2eΦ (2.114)
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with Φ the magnetic flux through the plane. We see that the quantisation of the

winding translates into a quantisation of the allowed magnetic flux

Φ =
2π

2e
k with k ∈ Z . (2.115)

I’ve not cancelled the factors of 2 here to stress the fact that, by measuring the minimal

unit of flux, with k = ±1, you can determine that the current is carried by particles

of charge ±2e, rather than the electron charge −e. (Indeed, this was one of the first

experiments to confirm the charge of the condensate in a superconductor.)

The quantisation of winding means that the field configurations in this theory split

into distinct topological sectors, labelled by k ∈ Z. Because this integer is determined

by the asymptotic boundary conditions, there’s no way that a field configuration in one

topological sector can move smoothly into a configuration in another. This means that

we can find novel solutions to the equations of motion by minimising the energy (per

unit length) in any given sector.

Let’s think about how this works for the minimum winding k = 1. Because the

winding number is quantised, it can’t change gradually as we vary the radius of the

contour C in (2.113). It must give the same value k = 1 for all choices of C. That’s

all fine until we get to the origin, at which point the phase θ gets something of an

identity crisis because it’s supposed to point in all directions at once. The only way

out is to realise that θ is the phase of the field φ, and so there must be a point in the

(x, y)-plane where φ = 0 so that the phase is ill-defined. This means that whenever we

have winding, there is necessarily a small region of non-superconducting phase, with

φ = 0, somewhere inside the contour C. That will be the region where it is energetically

preferable for the flux Φ in (2.115) to penetrate.

We can get an estimate for the size of the region over which the condensate varies.

For simplicity, we set A0 = A = 0 and restrict to time-independent configurations

φ(x, y). Then the equation of motion (2.105) reads

∇2φ = λφ(|φ|2 − v2) . (2.116)

This equation contains a natural length scale ξ, given by

ξ2 =
1

λv2
. (2.117)

This is known as the coherence length. It is roughly equal to the inverse mass of

the scalar (2.97) in the relativistic theory: ξ =
√

2/m. (That factor of
√

2 is just
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Figure 5. The spatial profile of the magnetic field and condensate for a vortex.

annoying convention.) The coherence length sets the scale over which the condensate

φ is roughly zero (or, more precisely, exponentially small) in the vortex solution. In

most superconductors, the coherence length is within a couple of orders of magnitude

of the penetration depth, λ, the analogous quantity for the magnetic field.

We could put more meat on this discussion by explicitly solving the equations of

motion for the gauge field and scalar. By making a suitable, rotationally invariant

ansatz, you can reduce these equations to two, coupled ordinary non-linear differential

equations. There is no solution in closed form, but it is straightforward to solve them

numerically. A schematic picture of the resulting condensate and magnetic flux, as a

cut-through in the x-direction, is shown in Figure 5 in the case where λ > ξ, so the

magnetic field spills out over the region where φ = 0.

The discussion above took place in the z = 0 plane. But we can repeat the story as

we move the contour C in the z-direction. The winding can’t change, and so the region

with φ = 0 and magnetic flux necessarily extends in the z-direction. In other words,

we have a magnetic flux tube. This is the vortex.

The fact that non-linear equations of motion have novel localised solutions like the

vortex is interesting. In particular, the existence of this solution can be traced to the

topological nature of the winding. The general name given to solutions of this kind is

soliton.

For the story above, we restricted attention to the minimal k = 1 sector. What

happens for higher k ≥ 2 is also interesting and depends on the ratio of the two length

scales ξ/λ. There are three possibilities:
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Figure 6. The Abrikosov vortex lattice, observed in the high temperature superconductor

YBCO.

• For ξ >
√

2λ, the scalar field φ spreads out further than the magnetic flux. But

there is a general story that magnetic flux repels, while scalar fields attract. (For

example, the Yukawa force is always attractive.) This means that two vortices

will feel an attractive force, albeit one that is exponentially suppressed on scales

r � ξ. This is what happens in a Type I superconductor.

What actually happens in practice is that, if you apply a magnetic field to a Type

I superconductor, then the whole material will transition to the normal, metallic

phase at some critical magnetic field Bc. This means that you don’t see vortices

in this case.

• For ξ <
√

2λ, the magnetic field spreads out further than the scalar field, as

shown in Figure 5. In this case, two nearby vortices experience a repulsive force.

This is known as a Type II superconductor.

If you apply a magnetic field to a Type II superconductor then, initially, the

superconductor will resist. But if you crank up the magnetic field suitably high

then the superconductor will relent by allowing vortices to penetrate. These

vortices repel, and so form a crystal-like structure known as an Abikosov lattice.

• The case ξ =
√

2λ is of less relevance physically, because you have to fine tune two

length scales, but is the situation with the richest mathematical structure. Now

the attractive scalar force and repulsive magnetic force cancel, at least to leading

order. Somewhat miraculously, it can be shown that this cancellation persists to

all orders and the equations of motion exhibit solutions where k vortices can sit

at k arbitrary points on the plane. These are known as BPS vortices.
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Figure 7. The magnetic field lines between a monopole anti-monopole pair. In a vacuum, the

field lines spread out as a dipole configuration as shown on the left. But in a superconductor,

the field lines form a flux tube as shown on the right, resulting in the confinement of magnetic

monopoles.

Magnetic Monopoles are Confined

There is a lesson to take from the theory of superconductivity that will be important

for particle physics. For this, we set up a thought experiment.

Our thought experiment involves a hypothetical object called a magnetic monopole,

a particle that emits a radial magnetic field

B =
gr̂

4πr2
. (2.118)

Here g is the magnetic charge. If you’ve been told that magnetic monopoles can’t exist

because the Maxwell equation ∇ ·B = 0 is sacrosanct, then you’ve been lied to. (See,

for example, the lectures on Gauge Theory for a discussion of how magnetic monopoles

are compatible with everything you know and love.)

Suppose that we have two magnetic monopoles, one with charge g = 1 and the other

an anti-monopole with charge g = −1. If we place these monopoles a distance r apart

in the vacuum, then the magnetic field lines will form the kind of dipole configuration

that is familiar from our first course on Electromagnetism. This is shown on the left in

Figure 7. The potential energy V (r) between two monopoles scales like the Coulomb

force,

V (r) ∼ g2

r
. (2.119)

Things are more interesting if we put the monopoles inside a superconductor. Now,

the Meissner effect means that it’s no longer energetically preferable for the magnetic
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field lines to spread out all over space. Instead, the field lines will clump together to

form a magnetic flux tube that, at least far from the monopoles, is described by the

vortex solution that we met above. A cartoon of the field lines is shown on the right

of Figure 7. Now the potential energy scales linearly with the separation,

V (r) ∼ Er (2.120)

where E is the energy per unit length of the vortex. This makes it very difficult to

separate the monopole and anti-monopole: the further you want to pull them apart,

the more energy it will cost. This is because they are attached by the flux tube which

acts a little like an elastic band. (A little like an elastic band, but not a lot. Hooke’s

law is V ∼ r2 while here we have linear potential energy, V ∼ r, corresponding to a

constant force.)

Particles that experience a linear potential, like (2.120), are said to be confined. In

Section 3, we will see that quarks in QCD exhibit a similar behaviour, albeit for more

mysterious reasons.

2.3.3 Non-Abelian Higgs Mechanism

The idea of the Higgs mechanism extends naturally to non-Abelian theories. This is

the context in which we will need it when discussing electroweak theory in Section 5.

One novelty is that the gauge group G need not be broken completely, and there

could be some surviving massless gauge bosons. We will illustrate this with an example.

Consider again the O(3) sigma model that we previously discussed in Section 2.2 in the

context of spontaneous symmetry breaking of global symmetries. This time, however,

we will promote the SO(3) symmetry to a gauge symmetry.

We have a 3-vector of real scalars, φa with a = 1, 2, 3 and define the covariant

derivative

Dµφa = ∂µφ
a + gεabcAbµφ

c . (2.121)

Here the ε symbol appears in its role as the generators for SO(3),

T abc = −iεabc . (2.122)

Alternatively, we could view this as an SU(2) gauge theory with the field φ transforming

in the adjoint representation. We consider the action

S =

∫
d4x

(
−1

4
F a
µνF

aµν +
1

2
DµφaDµφa −

λ

2
(φaφa − v2)2

)
. (2.123)
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Here F a
µν = ∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν . In contrast to our previous Yang-Mills action

(1.91), we’ve written the action in terms of the components of the gauge field, Aaµ with

a = 1, 2, 3 rather than packaging them into a 3 × 3 matrix. (This presentation turns

out to be marginally simpler for the case of SO(3).)

In the ground state, we have φ · φ = v2. We can make a choice of vacuum, say

φ = (0, 0, v). When we were talking about global symmetries, we saw that this broke

G = SO(3) → H = U(1) (or, equivalently, SO(2)), and the same is true now that

the symmetries are gauged. This means that we expect a massless photon to remain,

corresponding to H = U(1), while the other two gauge bosons should become massive

due to the Higgs mechanism. We will now see that this is indeed what happens.

As in the Abelian case, we sit in our chosen vacuum and look at fluctuations. The

key is in finding the right parameterisation. We choose

φa(x) = ei(ξ
1(x)T 1+ξ2(x)T 2)


0

0

v + σ(x)

 (2.124)

with T 1 and T 2 the appropriate SO(3) generators (2.122). If we were dealing with a

global G = SO(3) symmetry, then the fields ξ1(x) and ξ2(x) would be the Goldstone

bosons. (They are related to the scalars that we called θ(x) and ϕ(x) in the O(3)

sigma-model (2.56).)

Crucially, however, we’re now thinking about the situation in which SO(3) is gauged,

and the two would-be Goldstones ξ1(x) and ξ2(x) can both be removed by an SO(3)

gauge transformation which acts on the scalar as φ→ eiα
aTaφ for some choice of αi(x).

In this way, they get eaten by the gauge fields A1
µ and A2

µ, just as in the Abelian case.

In the resulting unitary gauge, the gauge fields and remaining fluctuating scalar σ(x)

are then described by the action

S =

∫
d4x

(
−1

4
F a
µνF

aµν +
1

2
∂µσ∂

µσ +
1

2
g2(v + σ)2(A1

µA
1µ + A2

µA
2µ)− V (σ)

)
with

V (σ) =
λ

2
σ2(σ + 2v)2 . (2.125)

As we anticipated, we have two massive gauge bosons, A1
µ and A2

µ, each with mass

m2
γ = g2v2. But the gauge boson A3

µ remains massless. This is the photon associated

to the unbroken symmetry group H = U(1). There is also the massive Higgs field σ

with mass m2
σ = 4λv2.
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As we commented previously, the gauge boson and Higgs boson have parametrically

different masses, so it naively looks like it’s possible to take a limit such that mσ/mγ →
∞ and so we can decouple the Higgs and be left with a theory of only massive interacting

gauge bosons. This time, however, the limit turns out to be problematic. This can’t

be seen in the classical analysis that we’re focussing on here, but requires us to look

more closely at the quantum amplitudes. Ultimately, it boils down to the fact that the

theory of purely Goldstone modes is an interacting sigma-model (2.56) and, as such

is non-renormalisable. This contrasts with the Abelian situation where the Goldstone

that gets eaten is free before gauging. We will return to this issue in Section 5 when

we discuss the Higgs mechanism in the Standard Model.
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3 The Strong Force

The full structure of the Standard Model will only become apparent in Section 5, after

we understand the implications of parity violation. But, before we get there, there are

two self-contained aspects of the theory that we can explore in some detail. These are

the electromagnetic and strong forces.

We’ve already met the former in our first course on Quantum Field Theory. The

action is

S =

∫
d4x

(
−1

4
FµνF

µν + iψ̄ /Dψ −mψ̄ψ
)
. (3.1)

Here Fµν is the field strength of electromagnetism and it’s excitations are photons.

Meanwhile ψ is a Dirac spinor that describes the electron. We can always add further

fields corresponding to any other electrically charged particles, like the muon. Upon

quantisation, this theory is known as quantum electrodynamics, or QED for short.

For QED, what you see is what you get. You can stare at the action and, from your

knowledge of perturbative quantum field theory, read off immediately that the theory

describes a massless photon, coupled to a charged fermion of mass m. This, it turns

out, is the only time we will be able to do this. The rest of the Standard Model is

considerably more rich and interesting.

Our goal in this section is to describe the strong force. Remarkably, the action for

the strong force is almost identical to that of QED. The only real difference is that the

U(1) group of electromagnetism is replaced by the gauge group

G = SU(3) . (3.2)

The theory of the strong force is referred to as quantum chromodynamics, or QCD for

short, and is given by

S =

∫
d4x

(
−1

2
TrGµνG

µν + i
∑
i

q̄i /Dqi −miq̄iqi

)
. (3.3)

We’ll explain what the various parts of this action mean, before we turn to quantum

dynamics.
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To avoid confusion with the photon, we denote the gauge field as Gµ. It is, like all

Yang-Mills fields, Lie-algebra valued which means that we should think of each Gµ as

a 3× 3 Hermitian matrix. Replete with its gauge indices, we would write it as (Gµ)ab
with a, b = 1, 2, 3. In the context of QCD, this additional index is referred to as colour6.

The dimension of SU(N) is dimSU(N) = N2−1 so there are 8 gauge bosons contained

within the matrix Gµ. These are known, collectively, as gluons.

We can decompose Gµ into these gluon fields by writing Gµ = GA
µT

A where TA are

generators of SU(3) which we take to obey

Tr(TATB) =
1

2
δAB . (3.4)

A convenient basis is given by

TA =
1

2
λA . (3.5)

Here the λA the collection of 3× 3 Gell-Mann matrices

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i
0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , (3.6)

λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

These are to SU(3) what the Pauli matrices are to SU(2). Indeed, you can see the

Pauli matrices sitting in the top-left corner of λ1, λ2, and λ3, reflecting the existence

of an SU(2) sub-group of SU(3). Because SU(3) has rank 2, there are two diagonal

Gell-Mann matrices, λ3 and λ8. These span the Cartan sub-algebra.

We define the associated field strength

Gµν = ∂µGν − ∂νGµ − igs[Gµ, Gν ] . (3.7)

6Americans prefer to work with the convention u = 1.
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This too is Lie-algebra valued. Note that the gauge potential and field strength are

both called G and are distinguished only by the number of µ, ν spacetime indices that

they carry. Buried within the field strength we have the strong coupling constant gs.

This is a dimensionless coupling that characterises the strength of the strong force. We

will give its value shortly.

The gluons couple to quarks. These are Dirac spinors that we will call qα where α =

1, 2, 3, 4 is the usual spinor index that adorns a Dirac fermion. The quarks transform in

the fundamental 3-dimensional representation of SU(3). In group theoretic language,

this is usually denoted as 3. This means that, in addition to the spinor index, the

quarks also carry a colour index a = 1, 2, 3. We should think of this colour degree of

freedom as a complex, normalised 3-vector that is rotated by SU(3). To cheer us up,

we sometimes refer to these three orthogonal states as red, green and blue. Needless to

say, if you prefer to label them by your own favourite choice of colours then the physics

remains unchanged.

The covariant derivative for each quark q is given by (now suppressing the spinor

index)

Dµqa = ∂µq
a − igs(Gµ)abq

b . (3.8)

Here too we see the strong coupling constant gs multiplying the interaction term.

Finally, the quarks also come with a flavour index, i = 1, . . . , Nf which simply tells

us what kind of quark we’re dealing with. The full theory of QCD comes with Nf = 6

flavours of quarks which, for reasons that will become clearer only in Section 5, we

should think of as three pairs. They are down and up; strange and charm; and bottom

and top. These quarks have masses

mdown = 5 MeV and mup = 2 MeV

mstrange = 93 MeV and mcharm = 1.3 GeV (3.9)

mbottom = 4.2 GeV and mtop = 173 GeV .

The most striking aspect of these masses is that they span almost 5 orders of magni-

tude! In Section 5, we’ll get a deeper understanding of how the masses arise from the

condensation of the Higgs boson. But we won’t get any deeper understanding of the

particular values that the masses take: we only know these masses by measuring them

experimentally.
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The quarks also carry electric charge, and so the theory of QCD (3.3) should be

augmented by coupling to electromagnetism. Here we will largely ignore the effects of

electromagnetism in the dynamics because, as we will see, it is small compared to the

strong force. It will, however, prove useful to just list the electric charges Q of various

particles that we come across. For the first generation of quarks they are

Qdown = −1

3
e and Qup =

2

3
e . (3.10)

Clearly, these are fractional charges relative to the electron. This pattern then repeats

itself: the strange and bottom quark both have Q = −1
3
e while the charm and top both

have Q = +2
3
e. Note that, in this regard, the first generation of up and down quarks

is the odd one out because the charge 2
3

quark is lighter than the charge −1
3

quark.

This completes our discussion of the various elements in the QCD action (3.3). Now

it’s time to understand the physics.

3.1 Strong Coupling

If you look naively at the action (3.3), you would think that QCD is a theory of

massless gluons interacting with quarks. But that’s certainly not what we see in the

world around us. Any massless gauge boson would mediate a long range force which

drops off, like electromagnetism, as 1/r2. Yet we know that the effects of the strong

force don’t extend beyond the nucleus of the atom, which isn’t particularly big. In

addition, we don’t see quarks wandering around freely. What we see are protons and

neutrons. If the weak force didn’t exist, these would be joined by light particles called

pions. But not quarks.

All of which leads us to ask: why are the particles that we see in the world not

directly related to the fields in the fundamental Lagrangian (3.3)?

3.1.1 Asymptotic Freedom

The answer to this question starts with the observation that the coupling constant of

the strong force is not at all constant. Like all parameters in quantum field theory, its

value depends on the distance scale, or equivalently energy scale, at which you look.

This is the essence of renormalisation.

To illustrate the physics, we will briefly step back from QCD and consider the more

general theory with G = SU(Nc) gauge group, coupled to Nf massless quarks. Hence,

Nc is the number of colours, and Nf the number of flavours. The gauge coupling g2
s
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depends on the energy scale µ at which the theory is probed and, at one-loop, is given

by

1

g2
s(µ)

=
1

g2
0

− b0

(4π)2
log

Λ2
UV

µ2
. (3.11)

Here g2
0 is the bare coupling that sits in the Lagrangian. It can be thought of as the

coupling evaluated at the cut-off scale ΛUV since g2
s(ΛUV ) = g2

0. The coefficient b0 is

given by

b0 =
11

3
Nc −

2

3
Nf (3.12)

A derivation of this result can be found in the lectures on Gauge Theory.

The running of the coupling constant is often summarised in terms of the one-loop

beta function

β(g) ≡ µ
dgs
dµ

= − b0

(4π)2
g3
s (3.13)

whose solution gives the logarithmic behaviour (3.11).

The all-important feature of the beta function is the overall minus sign. The flow of

the coupling means that the theory is weakly coupled at high energies, a phenomenon

known as asymptotic freedom. Conversely, it means that the theory is strongly coupled

at low energies. From (3.12), we see that asymptotic freedom persists only if the number

of flavours is sufficiently small

Nf <
11

2
Nc . (3.14)

Clearly this is satisfied by QCD with Nc = 3 and Nf = 6.

Asymptotic freedom is rare in d = 3 + 1 dimensions. In fact, it only happens for

non-Abelian gauge theories. Coupling constants in any theory run with scale but all of

them – the QED fine structure constant, Yukawa couplings, self-interactions of scalars

– get bigger as you go to high energies. It is only non-Abelian gauge theories where

the coupling gets bigger as you go to low energies.

The comparison to QED is useful. At distances larger than r ≥ 10−12 m (which

is the Compton wavelength of the lightest charged particle, namely the electron) the

fine structure constant stops running and plateaus to the familiar value of α ≈ 1/137.

But as you go to higher energies, or shorter distances, the fine structure constant

increases. For example, at r ≈ 10−17 m, which corresponds to E ≈ 100 GeV, we have

α(µ) ≈ 1/127.
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Asymptotic freedom means that Yang-Mills theory is simple to understand at high

energies, or short distance scales. Here it is a theory of massless, interacting gluon fields

whose dynamics are well described by the classical equations of motion, together with

quantum corrections which can be computed using perturbation methods. However,

it becomes much harder to understand what is going on at large distances where the

coupling gets strong. Indeed, the beta function (3.13) itself was computed in pertur-

bation theory and is valid only when g2
s(µ) � 1. This equation therefore predicts its

own demise at large distance scales.

We can estimate the distance scale at which we think we will run into trouble. Taking

the one-loop beta function at face value, we can ask: at what scale does g2
s(µ) diverge?

This happens at a finite energy

ΛQCD = µ exp

(
− 8π2

b0g2
s(µ)

)
. (3.15)

This is known as the strong coupling scale, or just the QCD scale. It has the property

that dΛ/dµ = 0. In other words, it is an RG invariant. This is the scale at which the

gauge coupling becomes strong.

Viewed naively, there’s something very surprising about the emergence of the scale

ΛQCD. This is because the classical theory has no dimensionful parameter. Yet the

quantum theory has a physical scale, ΛQCD. It seems that the quantum theory has

generated a scale out of thin air, a phenomenon which goes by the name of dimensional

transmutation. In fact, as the definition (3.15) makes clear, there is no mystery about

this. Quantum field theories are not defined only by their classical action alone, but

also by the cut-off ΛUV . Although we might like to think of this cut-off as merely a

crutch, and not something physical, this is misleading. It is not something we can do

without. And it is this cut-off which evolves to the physical scale ΛQCD.

ΛQCD = ΛUV e
−8π2/b0g20 . (3.16)

This means that if the bare coupling is small, g0 � 1, as it should be then the physical

scale ΛQCD is exponentially suppressed relative to the UV cut-off: ΛQCD � ΛUV . It’s

a beautiful example of how a low-energy scale can be naturally generated from a high

energy scale. (A similar mechanism can be seen in other contexts, including the BCS

theory of superconductivity and the Kondo effect.)

The QCD Scale for QCD

So far, our discussion has been for the general theory of SU(Nc) with Nf flavours of

massless quarks. What happens for actual QCD?

– 94 –



Figure 8. The running of the strong coupling coupling constant αs = g2
s/4π in terms of

energy which is denoted Q in the plot. This is taken from the particle data group’s review of

QCD.

There is one important modification which is needed because the quarks in QCD

are most certainly not massless. This is easy to accommodate. A quark of mass m

contributes to the beta function as if it were massless for scales µ � m. And it

decouples from the physics for scales µ � m. For scales µ ∼ m you need to be more

careful, but we’ll simply duck the issue.

Revisiting the quarks masses in (3.9), we see that the beta function acts as if it has

Nf = 6 massless quarks for µ � 173 GeV. And for 4.2 GeV � µ � 173 GeV, it acts

as if it has Nf = 5 massless quarks, and so on. The combined experimental data for

the running of αs = g2
s/4π is shown in Figure 8.

The most important question is: what is the strong coupling scale ΛQCD? As we will

see, this determines the scale at which the interesting physics happens. For the strong

force it lies around

ΛQCD ≈ 200 MeV . (3.17)

This definition isn’t precise and you’ll also see statements that it is closer to 300 MeV.

This could be due to different regularisation schemes, or whether you choose the defi-

nition of this scale to be αs(ΛQCD) =∞ or αs(ΛQCD) = 1 (which doesn’t change things

too much). There’s no right or wrong answer. As we will see, the point of ΛQCD is to

give a ballpark energy scale at which much of the physics of QCD takes place.
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To give a value for the strength of the coupling gs itself, we need to specify the

energy scale at which we do the measurement. A useful benchmark is the mass of

the Z-boson, MZ ≈ 90 GeV. Here the strong coupling constant has been measured

remarkably accurately

αs(MZ) =
g2
s(MZ)

4π
= 0.1184± 0.0007 . (3.18)

This is small enough to trust perturbation theory at these scales.

3.1.2 Anti-Screening and Paramagnetism

It’s useful to have some intuition for why non-Abelian gauge theories exhibit asymptotic

freedom, with a negative beta function, while all other quantum field theories do not.

Ultimately, to see this result you just have to roll up your sleeves and do the calculation

(and an opportunity will be offered in the sister course on AQFT). Here we give a nice,

but slightly handwaving, analogy from condensed matter.

In condensed matter physics, materials are not boring passive objects. They contain

mobile electrons, and atoms with a flexible structure, both of which can respond to

any external perturbation such as applied electric or magnetic fields. One consequence

of this is an effect known as screening. In an insulator, screening occurs because an

applied electric field will polarise the atoms which, in turn, generate a counteracting

electric field. One usually describes this by introducing the electric displacement D,

related to the electric field through

D = εE (3.19)

where the permittivity ε = ε0(1 + χe) with χe the electrical susceptibility. For all

materials, χe > 0. This ensures that the effect of the polarisation is always to reduce

the electric field, never to enhance it. You can read more about this in Section 7 of the

lecture notes on Electromagnetism.

(As an aside: In a metal, with mobile electrons, there is a much stronger screening

effect which turns the Coulomb force into an exponentially suppressed Debye-Hückel, or

Yukawa, force. This was described in the final section of the notes on Electromagnetism,

but is not the relevant effect here.)

What does this have to do with quantum field theory? In quantum field theory, the

vacuum is not a passive boring object. It contains quantum fields which can respond

to any external perturbation. In this way, quantum field theories are very much like

condensed matter systems. A good example comes from QED. There the one-loop
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beta function is positive and, at distances smaller than the Compton wavelength of the

electron, the gauge coupling runs as

1

e2(µ)
=

1

e2
0

+
1

12π2
log

(
Λ2
UV

µ2

)
. (3.20)

This tells us that the charge of the electron gets effectively smaller as we look at larger

distance scales, a phenomenon that is understood in very much the same spirit as

condensed matter systems. In the presence of an external charge, electron-positron pairs

will polarize the vacuum, as shown in the figure, with the positive charges clustering

closer to the external charge. This cloud of electron-positron pairs shields the original

charge, so that it appears reduced to someone sitting far away.

+
+

+
+

+

+
++

+

+

+

+

The screening story above makes sense for

QED. But what about QCD? The negative

beta function tells us that the effective charge

is now getting larger at long distances, rather

than smaller. In other words, the Yang-Mills

vacuum does not screen charge: it anti-screens.

From a condensed matter perspective, this is

weird. As we mentioned above, materials al-

ways have χe > 0 ensuring that the electric

field is screened, rather than anti-screened.

However, there’s another way to view the underlying physics. We can instead think

about magnetic screening. Recall that in a material, an applied magnetic field in-

duces dipole moments and these, in turn, give rise to a magnetisation. The resulting

magnetising field H is defined in terms of the applied magnetic field as

B = µH (3.21)

with the permeability µ = µ0(1 + χm). Here χm is the magnetic susceptibility and, in

contrast to the electric susceptibility, can take either sign. The sign of χm determines

the magnetisation of the material, which is given by M = χmH. For −1 < χm < 0,

the magnetisation points in the opposite direction to the applied magnetic field. Such

materials are called diamagnets. (A perfect diamagnet has χm = −1. This is what

happens in a superconductor.) In contrast, when χm > 1, the magnetisation points in

the same direction as the applied magnetic field. Such materials are called paramagnets.
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In quantum field theory, polarisation effects can also make the vacuum either dia-

magnetic or paramagnetic. Except now there is a new ingredient which does not show

up in real world materials discussed above: relativity! This means that the product

must be

εµ = 1

because “1” is the speed of light. In other words, a relativistic diamagnetic material

will have µ < 1 and ε > 1 and so exhibit screening. But a relativistic paramagnetic

material will have µ > 1 and ε < 1 and so exhibit anti-screening. Phrased in this way,

the existence of an anti-screening vacuum is much less surprising: it follows simply

from paramagnetism combined with relativity.

For free, non-relativistic fermions, we calculated the magnetic susceptibility in the

lectures on Statistical Physics when we discussed Fermi surfaces. In that context, we

found two distinct contributions to the magnetisation. Landau diamagnetism arose

because electrons form Landau levels. Meanwhile, Pauli paramagnetism is due to the

spin of the electron. These two effects have the same scaling but different numerical

coefficients.

When you dissect the computation of the one-loop beta function in Yang-Mills theory,

you can see that the gluons also give two distinct contributions: one diamagnetic, and

one paramagnetic. And the paramagnetic contribution wins. Viewed in this light,

asymptotic freedom can be traced to the paramagnetic contribution from the gluon

spins.

3.1.3 The Mass Gap

When the coupling is small, quantum field theories look similar to their classical coun-

terparts. For example, classical Maxwell theory provides a decent guide to what you

might expect from QED. In contrast, when the coupling is large, all bets are off. The

quantum theory and classical theory may be completely different. Yang-Mills and QCD

provide the archetypal example.

We will start our discussion by ignoring the quarks completely and look just at

Yang-Mills theory,

S =

∫
d4x − 1

2
TrGµνG

µν . (3.22)

For QCD we take gauge group G = SU(3), but everything we’re about to say holds for

any simple, compact Lie group.
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Classically, Yang-Mills describes massless, interacting spin 1 fields. Its solutions

include, among other things, waves that propagate at the speed of light. The question

that we want to ask is: what is the physics of the quantum theory?

Because the coupling is strong at low energies, we can’t answer this question using

the traditional perturbative techniques that we learned in our first course on Quantum

Field Theory. In fact, if we rely purely on analytic methods we can’t answer this

question at all! Instead, we rely on numerical simulation and experiment, together

with some heuristic ideas and a number of solvable toy models which give us intuition

for what quantum field theories can do. But we do have a robust, clear answer:

Quantum Yang-Mills is not a theory of massless particles, Instead, the lightest parti-

cle has a mass of m ∼ ΛQCD. This particle is called a glueball. We say that the theory is

gapped which means that there is a gap between the ground state and the first excited

state with energy E = mc2. These glueballs also exist in our world, although they mix

strongly with various neutral meson states and so don’t have a very clean experimental

signature.

We don’t currently have the ability to prove that Yang-Mills is gapped from first

principles. It is generally considered one of the most important and challenging open

problems in mathematical physics.

3.1.4 A Short Distance Coulomb Force

The existence of a mass gap goes hand in hand with another phenomenon: this is

confinement.

To highlight the physics, it’s best if we again look at the slightly more general case

of G = SU(N) gauge theory. We can ask the kind of questions that we studied in our

first course on Electromagnetism. Suppose that you take two test particles, a quark in

the fundamental representation N and an anti-quark in the anti-fundamental N. What

force do they feel?

There are two different answers to this question, depending on the separation r

between the particles. If they are separated by a short distance r � Λ−1
QCD ≈ 5× 10−15

m, then the coupling g2
s is small and we can trust the classical result. However, if the

particles are separated by a large distance r � Λ−1
QCD, then we’re firmly in the regime

of strongly coupled physics and we might expect that the classical result is not a good

guide.
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Here we start by considering the short-distance regime r � Λ−1
QCD. The Compton

wavelength of a particle of mass m is λ ∼ 1/m and it only makes sense to talk about

separating two quantum particles a distance r if r � λ. This means that to talk

about the short-distance force experienced by two quarks, the quarks must have mass

m � ΛQCD. In the context of QCD, that means that the analysis below is valid only

for charm, bottom and top quarks.

Let’s remind ourselves of the story in QED. In electromagnetism, two particles of

equal and opposite charges ±e, separated by a distance r, experience an attractive

Coulomb force, described by the potential energy V (r),

V (r) = − e2

4πr
. (3.23)

In the framework of QED, we can reproduce this from the the tree-level exchange of a

single photon (where time should be viewed as flowing left-to-right in this diagram)

e+

e−

e+

e−

This computation can be found in the lectures on Quantum Field Theory.

Now we want to do the same calculation in QCD. The diagram is the same, but

with a gluon, rather than a photon, as the intermediary. The only difference lies in the

fact that quarks carry colour indices, which are the a, b, c, d = 1, . . . , N indices in the

Feynman diagram below

q̄b

qa

q̄d

qc

Using the Feynman rules for QCD, the tree level potential between the quarks is given

by the same Coulomb force law, dressed with the group theoretic factor

V (r) =
g2
s

4πr
TAca T

?A
db . (3.24)
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We’ve still got those colour indices to deal with. At first glance, it looks like there’s

N2 different possibilities for the states of the ingoing particles (a, b = 1, . . . , N) and a

furtherN2 different possibilities for the states of the outgoing particles (c, d = 1, . . . , N).

Happily, all of this boils down to some simple group theory. In the present case, we

have the tensor product of representations

N⊗N = 1⊕ adj (3.25)

where the adjoint representation has dimension N2 − 1. The object TAT ?A, viewed as

a N2 × N2 dimensional matrix, will then have two different eigenvalues, one for each

of these representations. This will lead to two different coefficients for the forces. Our

goal is to determine them. Here we give the general result:

Claim: Suppose that we have two particles in representations R1 and R2. For each

representation R ⊂ R1⊗R2, the force experienced by the two particles will be propor-

tional to

C(R)− C(R1)− C(R2) (3.26)

where C(R) is a number that characterises each representation, known as the quadratic

Casimir, defined as

TA(R)TA(R) = C(R)1 . (3.27)

Proof: Gluon exchange will result in a Coulomb-like force law (3.24), but with the

group theoretic factor TA(R1)TA(R2). (For R1 = N and R2 = N, this coincides with

the result (3.24).) Consider the operator

SA = TA(R1)⊗ 1 + 1⊗ TA(R2) . (3.28)

Squaring and rearranging, we have

TA(R1)⊗ TA(R2) =
1

2

[
SASA − TA(R1)TA(R1)⊗ 1− 1⊗ TA(R2)TA(R2)

]
. (3.29)

(This is the same kind of calculation that one does in atomic physics when computing

the consequence of the spin orbit coupling L · S. You can read more about this in

the lectures on Topics in Quantum Mechanics.) Each of the final two terms on the

right-hand side is a quadratic Casimir (3.27), while the first term decomposes into

block diagonal matrices, with components labelled by the irreducible representations

R ⊂ R1 ⊗R2. We have

TA(R1)⊗ TA(R2)
∣∣∣
R

=
1

2
[C(R)− C(R1)− C(R2)] (3.30)

as promised. �
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The upshot is that to calculate the force between a quark and anti-quark (or, indeed,

between any two representations) we just need to know the quadratic Casimirs. For

G = SU(N), the Casimirs for the fundamental, anti-fundamental and adjoint are

C(N) = C(N) =
N2 − 1

2N
and C(adj) = N . (3.31)

We also have C(1) = 0 for the singlet (trivial) representation. This means that a quark-

anti-quark pair with their colour degrees of freedom entangled as a singlet experience

a force proportional to

1

2

[
C(1)− C(N)− C(N)

]
= −N

2 − 1

2N
. (3.32)

The minus sign means that this force is attractive. This is what we would have expected

from our classical intuition. However, when the quarks sit in the adjoint channel, we

have

1

2

[
C(adj)− C(N)− C(N)

]
=

1

2N
. (3.33)

Perhaps surprisingly, this is a repulsive force.

We can do the same analysis if we have two quarks, rather than a quark and anti-

quark. Now the group theoretic decomposition is

N⊗N = ⊕

where is the Young tableaux representation for the symmetric representation,

with dim( ) = 1
2
N(N + 1) while means the anti-symmetric representation with

dim( ) = 1
2
N(N − 1). The relevant Casimirs are

C ( ) =
(N − 1)(N + 2)

N
and C

( )
=

(N − 2)(N + 1)

N

From this we learn that two quarks which sit in the symmetric channel classically repel

each other, since

1

2
[C ( )− C(N)− C(N)] =

N − 1

2N
. (3.34)

Meanwhile, two quarks that sit in the anti-symmetric channel feel a classical attractive

force,

1

2

[
C
( )

− C(N)− C(N)
]

= −N + 1

2N
. (3.35)
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Ultimately, our interest lies in QCD with G = SU(3). Here there’s a group theoretic

novelty because the anti-symmetric representation is actually the same as the anti-

fundamental,

3⊗ 3 = 3⊕ 6 . (3.36)

This means that two quarks will attract in the anti-symmetric 3̄ channel. But we could

then add a third quark and, from (3.32), this too will feel an attractive force if all three

sit in the singlet. We see that three quarks can feel a mutually attractive force in QCD.

Of course, this force is computed classically and it falls off with a 1/r potential, just

like the Coulomb force of electromagnetism. Nonetheless, this is the first time that

we see why it might be energetically preferable for three quarks to form colour singlet

bound states.

3.1.5 A Long Distance Confining Force

The analysis above was only for particles separated by very short distances r � Λ−1
QCD ≈

5 × 10−15 m. But our real interest is in what happens at large distance scales where

the Yang-Mills coupling becomes strong.

Previously, we stated (but didn’t prove!) that Yang-Mills has a mass gap. This means

that, at distances� 1/ΛQCD, the force will be due to the exchange of massive particles

rather than massless particles. In many situations, the exchange of massive particles

results in an exponentially suppressed Yukawa force, of the form V (r) ∼ e−mr/r, and

you might have reasonably thought this would be the case for Yang-Mills. You would

have been wrong.

Let’s again consider a quark and an anti-quark, in the N and N representations

respectively. At large distances, the potential energy between the two turns out to

grow linearly with distance

V (r) = σr (3.37)

for some value σ that has dimensions of energy per length. For reasons that we will

explain shortly, it is often referred to as the string tension. On dimensional grounds,

we must have σ ∼ Λ2
QCD since there is no other dimensionful parameter in the game.

The force law (3.37) is, to put it mildly, a dramatic departure from what we’re used

to. The potential energy now increases with separation. Indeed, it costs an infinite

amount of energy to pull the quark-anti-quark pair to infinity.
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For two quarks, both in the fundamental representation, the result is even more

dramatic. Now the tensor product of the two representations does not include a singlet

(at least this is true for SU(N) with N ≥ 3). The energy of the two quarks turns out

to be infinite. This is a general property of quantum Yang-Mills: the only finite energy

states are gauge singlets. The theory is said to be confining, meaning that an individual

quark cannot survive on its own, but is forced to enjoy the company of friends.

The phenomenon of confinement is, like the mass gap, something that we can’t prove

from first principles. Once again, however, there is clear numerical evidence together

with a plethora of heuristic explanations.

In Section 3.3, we’ll look more closely at how quarks and anti-quarks bind together

in QCD. Roughly speaking, there are two possibilities. First a quark and anti-quark

can bind together to form a colour singlet. The resulting particle is known as a meson.

But, alternatively, three quarks can bind together to form a colour singlet by dint of

the invariant tensor εabc of SU(3). The resulting particle is called a baryon, with the

proton and neutron being the most obvious examples.

Note that if the strong force was described by SU(N), with N 6= 3, then mesons

would always be quark-anti-quark pairs and, hence, are always bosons. In contrast,

baryons in SU(N) contain N quarks and hence are fermions when N is odd and bosons

when N is even.

The QCD Flux Tube

We’ve already seen an example of a confining potential (3.37) in Section 2.3 when

discussing superconductivity. In that context, magnetic monopoles experience a con-

fining force, and the reason was clear: the Meissner effect means that it’s energetically

preferable for the magnetic field lines to form flux tubes.

No such simple explanation is known for confinement in QCD, but it’s clear from

numerical simulations that a similar flux tube, or string, does form, now comprised of

chromoelectric field lines. Two examples are shown in Figure 9, where we see flux tubes

between the quark-anti-quark that form a meson and also between three quarks that

form a baryon. In fact, some of the original studies of string theory were motivated by

understanding the dynamics of these flux tubes.

However, in contrast to the the Higgs phase of a superconductor, it doesn’t make

sense to search for a classical solution to the equations of motion that describes the

QCD flux tube. Instead the QCD flux tube is very much a quantum effect, arising

only after performing the path integral, which involves summing over many different
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Figure 9. The chromoelectric flux tube between a quark and anti-quark in a meson state, on

the left, and between three quarks in a baryon state on the right. From the QCD simulations

of Derek Leinweber.

field configurations. To emphasise the physics, it’s best to work with the alternative

rescaling of the Yang-Mills action (1.103) in which the gauge coupling sits as an overall

coefficient, so the path integral over the gauge field takes the schematic form

Z =

∫
DGµ exp

(
− i

2g2
s

∫
d4x TrGµνG

µν

)
. (3.38)

At weak coupling, we have g2
s � 1 and we may use saddle-point techniques to show

that the path integral is dominated by solutions to the classical equations of motion.

But at strong coupling, we have g2
s → ∞ which, roughly speaking, is telling us that

there’s no suppression to the path integral at all. All field configurations, regardless of

how wildly they oscillate, contribute equal weight. Among the infinity of different field

configurations, those that look like a flux tube seem to dominate. But we don’t know

why.

Perhaps the best explanation of confinement (although one that falls well short of a

proof) comes from an approach that discretises Yang-Mills theory known as lattice gauge

theory. In that context, you can show that if you naively sum over all field configurations

without any weighting, then you do indeed reproduce the confining behaviour. You can

find details of this calculation, together with an explanation of why the calculation is

not really performed in the physical regime, in the lectures on Gauge Theory.

It’s tempting to push the superconductivity analogy further. In a superconductor,

electrically charged particles condense (the Cooper pairs) and the result is that magnetic

charges confine. Flipping this on its head, if magnetically charged particles were to

condense, then electric charges would be confined. This idea goes by the name of
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the dual Meissner effect. It seems right, but it’s hard to make it concrete. What

are these mysterious chromomagnetic charges that condense in QCD causing quarks

to confine? We don’t know. However, there are other 4d gauge theories where we

can prove confinement analytically and it does happen through the condensation of

monopoles. (This is what happens in the famous Seiberg-Witten solution of N = 2

supersymmetric gauge theories.)

The Effect of Light Quarks

As if the problem of confinement wasn’t difficult enough, things are actually more

complicated than I’ve sketched above. This is because, in real world QCD, the simple

force formula (3.37) that designates a confining theory, simply isn’t true!

Here’s the deal. Suppose that we have pure Yang-Mills theory. Then, for any choice

of non-Abelian gauge group, including G = SU(3), the theory is strongly believed to

have a mass gap, determined by its strong coupling scale ΛQCD, and confine. Here

“confinement” means that if you introduce two test particles into the theory – a quark

and anti-quark – then the long-distance force law between them will exhibit the linear

behaviour (3.37).

Now suppose that you have Yang-Mills theory coupled to a single dynamical quark

that has mass m � ΛQCD. For example, you could think of the artificial world in

which there is only a charm quark and nothing else. We can again ask what the energy

is between two test particles that we take to be a quark-anti-quark pair. At large

distances r � Λ−1
QCD, we have a confining potential

V (r) = σr . (3.39)

But, this time, it doesn’t persist for all r. This is because once we stretch the particles

past the point σr > 2m, then you can lower the energy of the state by creating a

quark-anti-quark pair from the vacuum. The qq̄ pair will break the string and you’ll be

left with two meson-like states, in which your original quark-anti-quark test particles

are now bound to the dynamical quarks of the theory.

This means that the regime of the confining force (3.39) is limited. It happens only

for long distances, but not too long distances. Using the fact that the string tension

scales as σ ∼ Λ2
QCD, we see that quarks experience the confining force only in a region

1

ΛQCD

� r � m

Λ2
QCD

. (3.40)

Nonetheless, if we only have dynamical quarks with mass m� ΛQCD, then there’s still

a window in which we see the confining behaviour.
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However, for real world QCD, there is no such window! The lightest quark has mass

m� ΛQCD. If you like, the string breaks through the pair creation of up and down qq̄

pairs before we even get to the confining regime r � Λ−1
QCD. This means that thinking

about the confining nature of real world QCD in terms of the linear potential (3.39) is

a useful, but not entirely accurate, fiction.

What does survive, however, is the statement that all finite energy states in QCD are

necessarily colour singlets. That is the key takeaway that we will need when discussing

the observed particle spectrum in Section 3.3.

3.2 Chiral Symmetry Breaking

Here’s a general piece of advice. If you want to understand the dynamics of a quan-

tum field theory, first understand the symmetries. They dictate how the dynamics is

organised and will often contain clues about the nature of the low-energy physics.

So what are the symmetries of QCD? Well, obviously the theory is based on a

G = SU(3) gauge group but, as we’ve stressed previously, that’s really a redundancy

rather than a symmetry. Here we are interested in global symmetries.

The actual symmetry group of the QCD action (3.3) is U(1)Nf , which rotates the

phase of each individual Dirac quark field. That alone doesn’t give us much insight.

However, there is a much larger approximate symmetry of the theory. This emerges if

we pretend that the quarks are massless.

First, we should ask: why are we allowed to pretend that quarks are massless? The

reason is that QCD comes with its own dynamical scale ΛQCD. This is the scale at

which all the interesting physics happens. This means that if we have any quark with

a mass m� ΛQCD, then it’s appropriate to first understand the dynamics of the gauge

fields in the massless limit, and subsequently figure out how the presence of the mass

changes things as corrections of order m/ΛQCD.

As we’ve seen, we have ΛQCD ≈ 200 MeV, while the masses of the quarks are

mdown = 5 MeV and mup = 2 MeV

mstrange = 93 MeV and mcharm = 1.3 GeV (3.41)

mbottom = 4.2 GeV and mtop = 173 GeV .

Clearly there’s no sense in which the charm, bottom and top quarks are light. In fact,

they’re so much heavier than the QCD scale that they effectively just decouple from

the low-energy dynamics and, for the story that we’re about to tell, we can just ignore
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them. (We’ll revisit these heavy quarks in Section 3.3 when we look more closely at

the kinds of mesons and baryons that we can form.)

At the other end, no one’s going to argue against the statement that mup,mdown �
ΛQCD and it’s an excellent approximation to treat these as massless and then see how

the very small mass changes things. That leaves us with the strange quark. While

it’s certainly true that mstrange < ΛQCD, you might reasonably complain that it’s a bit

of stretch to replace < with �. All of which means that it will certainly be useful

to pretend that there are two massless quarks, and it’s probably worth seeing what

happens if we’re more optimistic and pretend that there are three massless quarks.

At this stage, we don’t need to commit to the number of massless quarks, and we

can work in generality. In fact, we don’t even need to commit to the number of colours.

Consider G = SU(Nc) Yang-Mills, coupled to Nf flavours of massless fundamental

fermions that we will continue to refer to as “quarks”.

The additional symmetry comes from the realisation that each 4-component Dirac

spinor q decomposes into two 2-component Weyl spinors, as in (1.48),

q =

(
qL

qR

)
. (3.42)

Each of the Weyl spinors qL and qR carries a colour index that runs over 1, . . . , Nc and

a flavour index i = 1, . . . , Nf , as well as it’s 2-component spinor index. Written in

terms of these Weyl fermions, our generalised but massless, QCD action (3.3) becomes

S =

∫
d4x

−1

2
TrGµνG

µν + i

Nf∑
i=1

q̄L iσ̄
µDµqL i + q̄R iσ

µDµqR i

 . (3.43)

where we’ve suppressed both colour and spinor indices in this expression. Written in

this way, we see that the classical Lagrangian has a global symmetry

GF = U(Nf )L × U(Nf )R (3.44)

which acts on the flavour indices as

U(Nf )L : qL i 7→ LijqL j and U(Nf )R : qR i 7→ RijqRj (3.45)

where both L,R ∈ U(Nf ). This is known as a chiral symmetry because it acts dif-

ferently on left-handed and right-handed Weyl spinors. This chiral symmetry is a

symmetry only of the theory with massless fermions because as soon as we add a mass

term like q̄LqR, it breaks the chiral symmetry to its diagonal subgroup.
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As we will see, in the quantum theory different parts of the symmetry group GF

suffer different fates. Perhaps the least interesting is the overall U(1)V , under which

both qL and qR transform in the same way: qL i → eiαqL i and qR i → eiαqR i. This

symmetry survives in the quantum theory and the associated conserved quantity counts

the number of quark particles of either handedness. In the context of QCD, this is

referred to as baryon number, because it counts baryons, but not mesons which have a

quark-anti-quark pair.

The other Abelian symmetry is the axial symmetry, U(1)A. Under this, the left-

handed and right-handed fermions transform with an opposite phase: qL i → eiβqL i
and qR i → e−iβqR i. This is more subtle. It turns out that although this is a symmetry

of the classical Lagrangian, it is not a symmetry of the full quantum theory due to a

phenomenon known as the anomaly. We will explain this in Section 4. For now, you

will have to just trust me when I say that U(1)A is not actually a symmetry and we

will not discuss it for the rest of this section.

This means that the global symmetry group of the quantum theory is

GF = U(1)V × SU(Nf )L × SU(Nf )R . (3.46)

The two non-Abelian symmetries act as (3.45), but where L and R are now each

elements of SU(Nf ) rather than U(Nf ). The question that we want to ask is: what

becomes of this chiral symmetry?

3.2.1 The Quark Condensate

There are two striking phenomena in QCD-like theories. The first is confinement. The

second, which at first glance seems less dramatic, is the formation of a quark condensate,

also known as a chiral condensate.

The quark condensate is a vacuum expectation value of the composite operators

q̄L i(x)qRj(x). (As usual in quantum field theory, one has to regulate coincident opera-

tors of this type to remove any UV divergences). It turns out that the strong coupling

dynamics of non-Abelian gauge theories gives rise to an expectation value of the form

〈q̄L iqRj〉 = −σδij . (3.47)

Here σ is a constant which has dimension of [Mass]3 because a free fermion in d = 3+1

has dimension [ψ] = 3
2
. (An aside: in Section 3.1 we referred to the string tension as σ;

it’s not the same object that appears here.) The only dimensionful parameter in our

theory is the strong coupling scale ΛQCD, so we expect that parameterically σ ∼ Λ3
QCD,

although they differ by some order 1 number.
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The first question to ask is: why does the condensate (3.47) form? The honest answer

is: we don’t know. It is, like confinement and many other properties of strongly coupled

gauge theories, an open question. It turns out that the formation of the condensate

is implied by confinement, a statement that we will prove in Section 4.3. We will also

give some very heuristic and hand-waving intuition for the formation of the condensate

shortly.

Of more immediate concern are the consequences of the condensate (3.47). This is

surprisingly easy to answer because as we now explain, everything is entirely determined

by symmetry.

The key point is that, while our theory enjoys the full symmetry group (3.46), the

vacuum does not. This is because, under GF , the condensate (3.47) transforms as

〈q̄L iqRj〉 → −σ(L†R)ij

This means that massless QCD exhibits a dynamical spontaneous symmetry breaking

which, in the present context, is known as chiral symmetry breaking (sometimes short-

ened to χSB). We see that the condensate remains untouched only when L = R. This

tells us that the symmetry breaking pattern is

GF = U(1)V × SU(Nf )L × SU(Nf )R → U(1)V × SU(Nf )V (3.48)

where SU(Nf )V is the diagonal subgroup of SU(Nf )L × SU(Nf )R.

At this stage, a large part of the physics follows from our general discussion of

symmetry breaking in Section 2.2. There will necessarily be a manifold of ground

states (2.61), given by the coset

M0 = [SU(Nf )L × SU(Nf )R] /SU(Nf )V . (3.49)

The number of massless Goldstone bosons is given by the dimension

dimM0 = N2
f − 1 . (3.50)

This means that, if we pretend that we have Nf = 2 massless quarks (up and down),

then we should find 3 massless Goldstone bosons in our world. We will soon identify

these with light mesons known as pions. If we’re happy to be bold and think that there

are really Nf = 3 (up, down, and strange), then we should find 8 massless Goldstone

bosons. These additional Goldstone bosons are not-so-light mesons called kaons and

the eta.
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In our world the pions are not massless. But this is because the constituent quarks

are not exactly massless so the chiral symmetry is not exact. Nonetheless, the chiral

symmetry is an approximate symmetry which, in turn, means that the would-be Gold-

stone bosons are light, but not exactly massless. Indeed, the pions are notably lighter

than all other hadrons in QCD. We’ll look more closely at the details as this section

proceeds.

At a more theoretical level, we learn something interesting. Yang-Mills theory has a

mass gap. But massless QCD, at least for Nf ≥ 2 where there is a non-Abelian global

symmetry, does not. Even if the theory confines, giving massive baryons and glueballs,

chiral symmetry breaking means that there are massless Goldstone bosons.

How to Think About the Quark Condensate

The existence of a quark condensate (3.47) is telling us that the vacuum of space is

populated by quark-anti-quark pairs. Again, there is an analogy with superconductiv-

ity, albeit with the part of superconductivity that we did not discuss in Section 2.3.2.

In a superconductor, the Cooper pairing means that the vacuum is populated by elec-

tron pairs. Importantly, these are really electron pairs, rather than electron-hole pairs,

which is responsible for the breaking of U(1)em. In contrast, the QCD vacuum contains

quark-anti-quark pairs so the overall U(1)V survives, and it’s the chiral symmetry that

is broken.

In a superconductor, the instability to formation of an electron condensate is a result

of the existence of a Fermi surface, together with a weak attractive force mediated by

phonons. In the vacuum of space, however, things are not so easy. The formation of

a quark condensate does not occur in weakly coupled theory. Indeed, this follows on

dimensional grounds because, as we mentioned above, the only relevant scale in the

game is ΛQCD.

To gain some intuition for why a condensate might form, let’s look at what happens

at weak coupling g2
s � 1. Here we can work perturbatively and see how the gluons

change the quark Hamiltonian. There are two, qualitatively different effects. The first

is the kind that we already met in Section 3.1.4; a tree level exchange of gluons gives

rise to a force between quarks. This takes the form

∆H1 = g2
s

[
+ +

]
As we saw in Section 3.1.4, the upshot of these diagrams is to provide a repulsive

force between two quarks in the symmetric channel, and an attractive force in the anti-
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symmetric channel. Similarly, a quark-anti-quark pair attract when they form a colour

singlet and repel when they form a colour adjoint.

The second term is more interesting for us. The relevant diagrams take the form

∆H2 = g2
s

 + +


The novelty of these terms is that they provide matrix elements which mix the empty

vacuum with a state containing a quark-anti-quark pair. In doing so, they change the

total number of quarks + anti-quarks.

The existence of the quark condensate (3.47) is telling us that, in the strong coupling

regime, terms like ∆H2 dominate. The resulting ground state has an indefinite number

of quark-anti-quark pairs. It is perhaps surprising that we can have a vacuum filled

with quark-anti-quark pairs while still preserving Lorentz invariance. To do this, the

quark pairs must have opposite quantum numbers for both momentum and angular

momentum. Furthermore, we expect the condensate to form in the attractive colour

singlet channel, rather than the repulsive adjoint.

The handwaving remarks above fall well short of demonstrating the existence of the

quark condensate. So how do we know that it actually forms? Historically, it was

first realised from experimental considerations since it explains the spectrum of light

mesons; we will describe this in some detail in Section 3.3. At the theoretical level, the

most compelling argument comes from numerical simulations on the lattice. However,

a full analytic calculation of the condensate is not yet possible. (For what it’s worth,

the situation is somewhat better in certain supersymmetric non-Abelian gauge theories

where one has more control over the dynamics and objects like quark condensates can

be computed exactly.) Finally, there is a beautiful, but rather indirect, argument which

tells us that the condensate (3.47) must form whenever the theory confines. We will

give this argument in Section 4.3.

3.2.2 The Chiral Lagrangian

Chiral symmetry breaking implies the existence of Goldstone bosons. Our next task

is to construct the theory that describes these massless particles. This too is dictated

entirely by the symmetry structure of the theory.

As we’ve seen, in any theory with a spontaneously broken continuous symmetry,

there is a manifold of ground statesM0 which, for us, is given by (3.49). The different
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points in M0 are parameterised by the condensate which, in general, takes the form

〈q̄L iqRj〉 = −σ Uij

where U = L†R ∈ SU(Nf ). The Goldstone bosons are long-wavelength ripples of the

condensate where its value now varies in space and time: U = U(x). As we’ve seen,

there are N2
f − 1 such Goldstone bosons, one for each broken generator in (3.48). We

parameterise these excitations by writing

U(x) = exp

(
2i

fπ
π(x)

)
with π(x) = πa(x)T a . (3.51)

Here π(x) is valued in the Lie algebra su(Nf ). The matrices T aij are the generators of

the su(Nf ). (Note: we’ve changed notation here: previously we denoted Lie algebra

generators as TA, with a capital A index. But having capital letters as indices is

offensive and this particular index will proliferate. Hence the change. To make things

worse, in other chapter the index a was used to denote colour. Not so here.)

We will collectively refer to the component fields πa(x), labelled by a = 1, . . . , N2
f −1

as pions, although strictly this terminology is only accurate for Nf = 2. Indeed, in the

case of Nf = 2, we can expand the field π in generators of SU(2) and write

π =
1

2

(
π0

√
2π−

√
2π+ −π0

)
. (3.52)

We will later identify the field π0 with the neutral pion, and π± with charged pions.

(We’ll give the extension to Nf = 3, for which the Goldstone bosons are pions, kaons,

and a meson called the eta, in Section 3.3.)

We have also introduced a constant fπ in the definition (3.51) with mass dimension

[fπ] = 1. For now, this ensures that the pions have canonical dimensions for scalar

fields in four dimensions, [π] = 1. It is called the pion decay constant, although this

name makes very little sense purely in the context of QCD because the pions are stable

excitations and don’t decay. We’ll see where the name comes from in Section 5 when

we look at the weak force. On general grounds, we expect fπ ∼ ΛQCD. In fact, it is

measured to be around fπ ≈ 130 MeV.

The Low-Energy Effective Action

We want to construct a theory that governs the Goldstone bosons U . We will require

that our theory is invariant under the full global chiral symmetry GF = U(1)V ×
SU(Nf )L × SU(Nf )R, under which

U(x)→ L†U(x)R . (3.53)
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What kind of terms can we add to the action consistent with this symmetry? The

obvious term is trU †U but this doesn’t work because U ∈ SU(Nf ) and so trU †U = 1.

(Here we’ve denoted the trace over the Nf flavour indices as tr to distinguish from

the trace Tr over colour indices that we used in the action (3.43).) Happily, this is

consistent with the fact that U is a massless Goldstone field.

Next, we can look at kinetic terms. At first glance, it looks as if there are three

different candidates:

(trU †∂µU)2 , tr (∂µU †∂µU) , tr (U †∂µU)2 . (3.54)

The first term in (3.54) vanishes because U †∂U is an su(N) generator and, hence, trace-

less. Furthermore, we can use the fact that U †∂U = −(∂U †)U to write the third term

in terms of the second. This means that there is a unique two-derivative Lagrangian

that describes the dynamics of pions,

Lpion =
f 2
π

4
tr (∂µU † ∂µU) . (3.55)

This is the chiral Lagrangian. Although the Lagrangian is very simple, this is not a

free theory because U is valued in SU(Nf ). This is a non-linear sigma model of the

kind we met in Section 2.2. Indeed, this is really the original non-linear sigma model,

first introduced by Gell-Mann and Lévy in 1960.

We’ve constructed our sigma-model to have both SU(Nf )L × SU(Nf )R, given in

(3.53), as symmetries. But because U is valued in SU(Nf ), we cannot just set U = 0.

Indeed, our sigma-model describes a degeneracy of ground states, but in each of them

U 6= 0. This ensures that the chiral Lagrangian spontaneously breaks the SU(Nf )L ×
SU(Nf )R symmetry, as it must. The field U itself is the Goldstone boson associated

to this symmetry breaking.

Pion Scattering

The beauty of the chiral Lagrangian is that it contains an infinite number of interaction

terms, packaged in a simple form by the demands of symmetry. To see these interactions

more explictly, we rewrite the chiral Lagrangian in terms of the pion fields defined in

(3.51). Keeping only terms quadratic and quartic, the chiral Lagrangian Lpion becomes

Lpion = tr (∂µπ)2 − 2

3f 2
π

tr
(
π2(∂µπ)2 − (π∂µπ)2

)
+ . . . (3.56)

Note that if we use trT aT b = 1
2
δab for su(Nf ) generators, then the kinetic term has the

standard normalisation for each pion field: tr (∂µπ)2 = 1
2
∂µπa∂µπ

a.
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For concreteness, we work with Nf = 2 and take the su(2) generators to be propor-

tional to the Pauli matrices: T a = 1
2
σa. The quartic interaction terms then read

Lint = − 1

6f 2
π

(
πaπa∂πb∂πb − πa∂πaπb∂πb

)
. (3.57)

From this we can read off the tree-level ππ → ππ scattering amplitude using the

techniques that we described in the Quantum Field Theory lectures. We label the two

incoming momenta as pa and pb and the two outgoing momenta as pc and pd. The

amplitude is

iAabcd =
i

6f 2
π

[
δabδcd

(
4(pa · pb + pc · pd) + 2(pa · pc + pa · pd + pb · pc + pb · pd)

)
+ (b↔ c) + (b↔ d)

]
. (3.58)

Momentum conservation, pa + pb = pc + pd, ensures that some of these terms cancel.

This is perhaps simplest to see using Mandelstam variables which, because all particles

are massless, are defined as

s = (pa + pb)
2 = 2pa · pb = 2pc · pd

t = (pa − pc)2 = −2pa · pc = −2pb · pd
u = (pa − pd)2 = −2pa · pd = −2pb · pc . (3.59)

Using the relation s+ t+ u = 0, the amplitude takes the particularly simple form,

iAabcd =
i

f 2
π

[
δabδcds+ δacδbdt+ δadδbcu

]
. (3.60)

There are various ways in which we could improve the description of pion scattering.

First, we could include higher loop corrections to the amplitude above. The non-linear

sigma model is non-renormalisable which means that we need an infinite number of

counterterms to regulate divergences. However, this shouldn’t be viewed as any kind

of obstacle; the theory is designed only to make sense up to a UV cut-off of order fπ.

As long as we restrict our attention to low-energies, the theory is fully predictive.

In addition, we could think about adding higher derivative terms to the chiral La-

grangian. These are corrections that are suppressed by E/fπ where E is the energy of

the scattering process. At the next order in the derivative expansion, there are three

independent terms:

L4 = a1

(
tr ∂µU † ∂µU

)2
+ a2

(
tr ∂µU

† ∂νU
) (

tr ∂µU † ∂νU
)

+a3tr
(
∂µU

† ∂µU∂νU
† ∂νU

)
. (3.61)
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Here ai are dimensionless coupling constants. There is one further, very important term,

known as the Wess-Zumino-Witten (WZW) term that appears at the same order, but

can’t be written in terms of a 4d action. This is the start of a long and gorgeous story

that we won’t have time to discuss in these lectures. You can read more about it in

the lectures on Gauge Theory.

Currents

We started with quarks and gluons in (3.43) and, at low energies, end up with a very

different looking theory of pions (3.55). It’s interesting to ask how operators get mapped

from one theory to the other. This is particularly straightforward when the operators

in question are the currents associated to the SU(Nf )L × SU(Nf )R chiral symmetry.

In the microscopic theory, we have flavour currents for SU(Nf )L and SU(Nf )R, given

by

JaµL = q̄L iσ̄
µT aijqL j and JaµR = q̄R iσ

µT aijqRj (3.62)

where T aij are su(Nf ) generators and the colour and spinor indices have been suppressed.

If we write these in terms of the vector and axial combinations: JaµV = JaµL + JaµR and

JaµA = JaµL − J
aµ
R then we get the familiar expressions

JaµV = q̄iT
a
ijγ

µqj and JaµA = q̄iT
a
ijγ

µγ5qj . (3.63)

Now we can ask: what are the analogous expressions for JaµL and JaµR in the chiral

Lagrangian?

To answer this, let’s start with SU(Nf )L. Consider the infinitesimal transformation

L = eiα
aTa ≈ 1 + iαaT a

Under this SU(Nf )L, we have U → L†U so, infinitesimally,

δLU = −iαaT aU . (3.64)

We can now compute the current using the standard trick: elevate αa → αa(x). The

Lagrangian is no longer invariant but instead transforms as δL = ∂µα
aJaLµ and the

function JaLµ is the current that we’re looking for. Implementing this, we find

JaLµ =
if 2
π

4
tr
(
U †T a∂µU − (∂µU

†)T aU
)
. (3.65)
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We can also expand this in pion fields (3.51). To leading order we have simply

JaLµ ≈ −
fπ
2
∂µπ

a . (3.66)

Similarly, under SU(Nf )R, we have δU = iαaUT a and

JaRµ =
if 2
π

4

(
− T aU †∂µU + (∂µU

†)UT a
)
≈ +

fπ
2
∂µπ

a . (3.67)

Both currents have non-vanishing matrix elements between the vacuum |0〉 and a one-

particle pion state |πa(p)〉 that carries momentum p. For example

〈0|JaLµ(x)|πb(p)〉 = − i
2
fπδ

ab pµe
−ix·p . (3.68)

This tallies with our general discussion of symmetry breaking in (2.2) where we saw

that the Goldstone bosons are created by acting with the broken symmetry generators

on the vacuum (2.75).

Because the Goldstone bosons are associated to the broken symmetry generators

for axial current JaAµ , which is a pseudovector, the pions must also be pseudoscalars,

meaning that they are odd under parity. We’ll look more closely at the quark content

of the pions in Section 3.3.

Historically, the approach to thinking of chiral symmetry breaking in terms of cur-

rents was known as current algebra, and predates our understanding of quarks. The

equation (3.68) played a starring role in this story. It is telling us that the chiral

SU(Nf )L × SU(Nf )R is spontaneously broken, and acting on the vacuum gives rise to

the particles that we call pions. In the language of current algebra, we see that the

diagonal combination SU(Nf )V survives since 〈0|JaV µ|πb〉 = 〈0|JaLµ + JaRµ|πb〉 = 0.

Adding Masses

Our discussion so far has been for massless quarks. That’s not particularly realistic.

Nonetheless, as we stressed in the introduction to this section, there is reason to expect

that the massless limit provides a good jumping off point to understand the physics of

light quarks. Our next task is to understand how to incorporate masses.

The QCD action is

S =

∫
d4x

−1

2
TrGµνG

µν +

Nf∑
i=1

(
iq̄i /Dqi −miq̄iqi

) . (3.69)

If the masses are large compared to ΛQCD, then the quarks play no role in the low-

energy physics. This is the case for the charm, bottom, and top quarks and we continue

to ignore them in what follows.
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But for the up, down and (optimistically!) strange quarks, we may assume that the

quark condensate (3.47)

〈q̄L iqRj〉 ≈ −σ Uij (3.70)

continues to form at the scale σ ∼ Λ3
QCD, with the masses giving small corrections. We

can then incorporate the masses in the chiral Lagrangian by introducing the Nf ×Nf

mass matrix,

M = diag(m1, . . . ,mNf ) . (3.71)

Because we’re now dealing with a low-energy effective theory, the masses that appear

here should be the renormalised masses, rather than the bare quark masses quoted

earlier in (3.41). In the presence of masses, the leading order chiral Lagrangian is then

Lpion =
f 2
π

4
tr (∂µU † ∂µU) +

σ

2
tr
(
MU + U †M †) . (3.72)

This lifts the vacuum manifold of the theory. It can be thought of as adding a potential

to the vacuum moduli space M0, resulting in a unique ground state. To see the effect

in terms of pion fields, we can again expand U = e2iπ/fπ , to find

L2 = tr (∂π)2 − σ

f 2
π

tr
(

(M +M †)π2
)

+ . . . (3.73)

and we see that we get a mass term for the pions as expected. These almost-Goldstone

bosons are sometimes referred to as pseudo-Goldstone bosons.

For example, if we restrict to Nf = 2, we have M = diag(md,mu). Then, expanding

the matrix π in terms of the component fields (3.52),

π =
1

2

(
π0

√
2π−

√
2π+ −π0

)
. (3.74)

the quadratic terms in (3.73) become

L2 =
1

2
∂µπ

0∂µπ0 + ∂µπ
+∂µπ− − σ

2f 2
π

(md +mu) ((π0)2 + 2π+π−) . (3.75)

We see that all three pions get an equal mass, given by

m2
π =

σ

f 2
π

(mu +md) . (3.76)

We learn that the square of the pion mass scales linearly with the quark masses. This

is known as the Gell-Mann-Oakes-Renner relation. The proportionality constant is the

(so-far undetermined) ratio σ/f 2
π .
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3.2.3 Phases of Massless QCD

Throughout this section, we’ve couched our discussion in the broader context of a

gauge theory with G = SU(Nc) Yang-Mills, coupled to Nf flavours of massless quarks.

Obviously, if our interest is in the real world then we can focus on Nc = 3 and Nf = 2

or 3, depending on taste. But there’s a broader theoretical question that we could ask

which is: what is the low-energy physics of the theory with general Nc and Nf?

In this section, we take a quick detour to explain what’s known. As we will see, there

are a number of open questions.

We start with low Nf :

• When Nf = 0, we have pure Yang-Mills. The theory sits in the confining phase,

with a mass gap.

• When Nf = 1, there is no chiral symmetry group (3.46) and so no chiral symmetry

breaking. The theory is again thought to have a mass gap, with quarks bound in

mesons and baryons.

• When 2 ≤ Nf ≤ N? the theory confines and exhibits chiral symmetry breaking.

This means that the low energy theory consists of freely interacting Goldstone

bosons, parameterising the moduli space (3.49).

The big question here is: what is the maximum value N? for which chiral sym-

metry breaking occurs? We don’t know the answer to this. Various approaches,

including numerics, suggest that it is somewhere around

N? ≈ 4Nc

This means that, for the Nf = 2 or 3 of QCD, we are firmly in the chiral symmetry

breaking regime. But, in general, our lack of knowledge of this simple question

highlights just how poorly we understand strongly interacting field theories.

Now let’s jump to high values of Nf and we’ll then try to fill in the details in the

middle.

• When Nf ≥ 11
2
Nc, the beta function is positive. You can see this from the general

expression for the beta function (3.12),

b0 =
11

3
Nc −

2

3
Nf . (3.77)
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Figure 10. The beta function for Nf slightly below the asymptotic freedom bound has a

zero which indicates the existence of an interacting conformal field theory.

This means that the theory is weakly coupled in the infra-red: the low-energy

physics consists of massless gluons, weakly interacting with massless quarks. As

we go to smaller and smaller energies, the interactions become weaker and weaker.

Strictly speaking, in the far IR, the physics is free.

On the flip side, these theories become arbitrarily strongly coupled in the UV, with

the gauge coupling diverging at some very high scale. This doesn’t mean that we

should discard them, but they don’t make sense at arbitrarily high energy scales.

Said another way, we can’t take the UV cut-off ΛUV to infinity while keeping any

low-energy interactions. Nonetheless, it’s quite possible that these theories may

arise as the low-energy limit of some other theory.

That leaves us with the physics in the middle region. We’ll keep working down

from the asymptotic freedom bound 11Nc/2.

• When N?? < Nf <
11
2
Nc, things are more interesting. To see what happens, we

need the two-loop beta function

β(g) = − b0

(4π)2
g3 − b1

(4π)4
g5 + . . . (3.78)

with the one-loop coefficient b0 given in (3.77) and the two-loop coefficient

b1 =
34N2

c

3
− Nf (N

2
c − 1)

Nc

− 10NfNc

3
. (3.79)

In the window of interest, b0 > 0 and b1 < 0, so we can play the one-loop

contribution against the two-loop contribution to find a zero of the beta function

g2
? = −(4π)2 b0

b1

(3.80)
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Figure 11. The expected phases of massless QCD. The asymptotic freedom bound is Nf =
11
2 Nc. The lower edge of the conformal window is not known but is expected to be somewhere

around Nf ≈ 4Nc.

with β(g?) = 0. The beta function is shown in Figure 10. The existence of such a

fixed point is telling us that we have an interacting conformal field theory: there

are massless modes, but they are no longer free in the infra-red. This is known

as the Banks-Zaks fixed point.

Importantly, whenNf lies just below the asymptotic freedom bound, soNf/Nc =

11/2−ε, this fixed point lies at g? � 1 which means that we can trust the analysis

without having to worry about higher order corrections. Moreover, because g? is

small we can use perturbation theory to calculate anything that we want.

However, as Nf decreases, the value of the fixed point g? increases until we can

no longer trust the analysis above. The expectation is that we get a conformal

field theory only for some range of Nf , lying within N?? < Nf <
11
2
Nc. This is

known as the conformal window. We don’t currently know the value of N??.

That leaves us with understanding what happens in the middle when N? < Nf ≤
N??. Our best guess is that there is no such regime, and the upper edge of the chiral

symmetry breaking phase coincides with the lower edge of the conformal window,

N?? = N?

This guess is motivated partly by numerics and partly by a lack of any compelling

alternative. For us, the lesson to take away is that strongly interacting quantum field

theories are hard and even the most basic questions are beyond our current abilities.

A summary of the expected behaviour of massless QCD is shown in Figure 11.
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Quark Charge Mass (in MeV)

d = down -1/3 5

u = up +2/3 2

s = strange -1/3 93

c = charm +2/3 1270

b = bottom -1/3 4200

t = top +2/3 170,000

Table 3. The quarks

3.3 Hadrons

Confinement means that quarks are bound into colour singlets. There are two group-

theoretic possibilities: quark-anti-quark pairs, known as mesons, or a collection of three

quarks known as baryons. Collectively these particles are called hadrons7.

Much of hadron physics is messy and complicated. Some balm comes, once again,

from symmetries. Recall that, if we assume that quarks are massless, then the global

symmetry exhibits the symmetry breaking pattern

U(1)V × SU(Nf )L × SU(Nf )R → U(1)V × SU(Nf )V . (3.81)

The broken generators give rise to pions and other Goldstone bosons, and we’ll see how

these arise in terms of quarks shortly. But, for now, our interest lies in the surviving

SU(Nf )V symmetry. This is what we will use to organise the spectrum of hadrons.

We don’t need the quarks to be massless to get an SU(Nf ) symmetry: we just need

their masses to all be equal. Their masses, together with their electric charges, are

presented in Table 3.

It seems very reasonable to view mup ≈ mdown, at least to a first approximation.

(Remember that we’re comparing these values against ΛQCD ≈ 200 MeV.) And, indeed,

we will see that there is a clear SU(2)V symmetry in the hadronic spectrum. This was

first identified by Heisenberg, who noted that the proton and neutron have almost

identical interactions with the strong force, and is known as isospin. (Not a great name

as it has nothing to do with “spin”.)

7I strongly recommend that you take a look, even a brief one, at the booklet published by the

Particle Data Group to get a sense for the hadronic world that lies beneath you.
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Meanwhile, despite the obvious difference in the strange quark mass, there’s also a

very visible, albeit approximate, SU(3)V symmetry in the hadronic spectrum. This

was observed, independently, by Gell-Mann and Ne’eman in 1961 and is known as the

eightfold way. (Because dimSU(3) = 8.) Note that this SU(3)V has nothing to do with

the gauge group SU(3) of QCD. It is an entirely different (and approximate) global

SU(3)V that rotates the different flavours of light quarks.

There are other symmetries of QCD that we can use to assign quantum numbers

to particles. These are rotations, corresponding to angular momentum or spin of the

particle J , parity, and charge conjugation, both of which are symmetries of QCD, albeit

not of the full Standard Model. Particles often come with a label JPC , where P = ±
denotes that the state is even or odd parity and C = ± denotes even or odd under

charge conjugation, which is typically called C-parity in this context.

(As an aside: if you look through the particle data book, you’ll sometimes see the

additional quantum numbers IG. Here I is the I3 eigenvalue of isospin. So for example,

particles come in I = ±1
2

pairs if they sit in a double of isospin. Meanwhile G stands

for G-parity which is the combination G = CeiπI2 where the isospin rotation is designed

to send I3 7→ −I3.)

In the rest of this section, we will describe the hadrons that contain up, down,

and strange quarks, and see how they furnish representations of the SU(3)V flavour

symmetry. We then finish by looking at the kinds of particles we can make with heavy

charm, bottom, and top quarks.

3.3.1 Mesons

Many hundreds of mesons are observed in nature. A simple model views a meson as a

bound state of a quark and an anti-quark, or some linear combination of these states.

Each quark is a fermion, so mesons are bosons and, as such, have integer spin. Here we

will describe some of the lightest mesons with spin 0 and 1, containing only up, down

and strange quarks.

Our three flavours of quarks (d, u, s) transform in the 3 of SU(3)V . A little group

theory tells us that quark and anti-quark must then transform in

3⊗ 3̄ = 1⊕ 8 . (3.82)

So we expect mesons to sit in two representations of SU(3)V : the singlet 1 and the

adjoint 8.
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Meson Quark Content Mass (in MeV) Lifetime (in s)

pion π+ ud̄ 140 10−8

pion π0 1√
2
(uū− dd̄) 135 10−16

eta η 1√
6
(uū+ dd̄− 2ss̄) 548 10−19

eta Prime η′ 1√
3
(uū+ dd̄+ ss̄) 958 10−21

kaon K+ us̄ 494 10−8

kaon K0 ds̄ 498 10−8 − 10−11

Table 4. The pseudoscalar mesons

Pseudoscalar Mesons

We first look at the lowest mass mesons with spin 0. We get total spin zero if the

individual spins of the quarks are anti-aligned, and the particles have zero orbital

angular momentum. We saw in Section 1.4 that if a fermion has parity +1 then the

anti-fermion has parity −1, which means that the spin 0 meson has odd parity. We

write JPC = 0−+.

We first give the experimental data for these mesons, and we will then see how

they fit into what we know. The names, quark content, masses, and lifetimes of the

lightest pseudoscalar mesons are shown in Table 4. The ± and 0 superscripts tell us

the electromagnetic charge of the meson. The charged mesons, π+ and K+ both have

anti-particles, π− and K− respectively. The neutral mesons π0, η and η′ are all their

own anti-particles; each is described by a real scalar field. Finally, the neutral K0 is

described by a complex scalar field and its anti-particle is denoted K̄0. This means that

there are 9 different meson states in total, in agreement with our simple expectation

(3.82).

First, an obvious comment: the masses of the mesons are not equal to the sum of

the masses of their constituent quarks! We already anticipated this from our analysis

of the chiral Lagrangian and the Gell-Mann-Oakes-Renner relation (3.76). This gets to

the heart of what it means to be a strongly coupled quantum field theory. The mesons

– and, indeed the baryons – are complicated objects, consisting of a bubbling sea of

gluons, quarks and anti-quarks. This is what gives mesons and baryons mass, and also

makes these particles hard to understand.
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The nine different meson states can be decomposed into the 1 ⊕ 8 multiplets by

writing 
u

d

s

⊗ (ū, d̄, s̄) =


uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄

 = µ01+
8∑

a=1

µaλa . (3.83)

Here λa are the Gell-Mann matrices (3.6), now in their role as the generators of SU(3)V .

We’ll ignore the singlet µ0 for now and focus on the mesons that sit in the 8. These

are precisely the would-be Goldstone bosons that we met previously. The various fields

µa naturally rearrange themselves into two real and three complex fields that we call

pions, kaons, and the eta meson,

π0 = µ3 , π± =
1√
2

(µ1 ∓ iµ2) (3.84)

K0 =
1√
2

(µ6 − iµ7) , K± =
1√
2

(µ4 ∓ iµ5) , η = µ8 .

The matrix (3.83) is identified with the Goldstone boson matrix that we met in the

previous section. We previously wrote this in (3.52) for Nf = 2 quarks. The extension

to Nf = 3 quarks is

π =
1

2

8∑
a=1

µaλ
a =

1√
2


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 − 2η√
6

 . (3.85)

You can check that this reproduces the quark content shown in Table 4. If the masses

of the three quarks were equal, then these 8 particles would all have the same mass.

The group theoretic underpinnings of these mesons encourages us to draw them

on an SU(3) weight diagram, as shown in Figure 12. The charges under the two

U(1)2 ⊂ SU(3)V Cartan elements are also shown. These are taken to be isospin

I3 ⊂ SU(2)V ⊂ SU(3)V and “strangeness” S which effectively counts the number of

strange quarks in the meson. A suitable combination, shown on the diagonal, gives

the electric charge Q. These are exact quantum numbers in QCD (but not when we

include weak interactions) and, historically, it was by observing their conservation in

dynamical processes, such as particle decays, that the pattern above was identified.

If we compare pions to kaons, we see from the data that the addition of a strange

quark adds about 350 MeV to the mass of a meson. That’s significantly more than the

– 125 –



Figure 12. The eightfold way for pseudoscalar (and pseudo-Goldstone) mesons.

bare mass of ∼ 100 MeV of a strange quark. Again, this highlights the difficulty of

strongly interacting field theories: you don’t just read off the physics from the classical

Lagrangian.

We can make some progress by looking at the mesons through the lens of the chiral

Lagrangian. We return to the massive Lagrangian (3.73), now with the mass matrix

M = diag(mu,md,ms). Again, I stress that these should be renormalised masses, not

bare masses. Expanding out the action using (3.85), we find the masses

Lmass =
−σ
f 2
π

[
1

2
(mu +md)

(
(π0)2 + 2π+π−

)
+ (mu +ms)K

−K+ (3.86)

+ (md +ms)K̄
0K0 +

1

2

(
mu

3
+
md

3
+

4ms

3

)
η2 +

1√
3

(mu −md)π
0η

]
.

This generalises our previous result (3.75). Note that there is mixing between π0 and η,

albeit one that disappears when mu = md so that isospin is restored. By taking ratios,

we can eliminate the overall scale σ/f 2
π and relate meson and quark masses directly.

For example, we have

m2
K+ −m2

K0

m2
π

=
mu −md

mu +md

. (3.87)

We can also derive expected relationships between the meson masses. For example, we

have 3m2
η +m2

π = 2σ
f2π

(2(mu +md) + 4ms). If we accept that mu ≈ md, then we get the

relation

4m2
K ≈ 3m2

η +m2
π . (3.88)
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This is known as the Gell-Mann-Okubo relation. Comparing against the experimentally

measured masses, we have 1
2

√
3m2

η +m2
π ≈ 480 MeV, which is not far off the measured

value of mK ≈ 495 MeV.

So far, there is one scalar meson that we’ve not yet discussed. This is the singlet

in the decomposition 3 ⊗ 3̄ = 1 ⊕ 8, associated to the field µ0 in (3.83). This field

corresponds to the meson η′, pronounced eta-prime,

η′ =
1√
3

(uū+ dd̄+ ss̄) . (3.89)

From Table 4, we see that this is by far the heaviest of the scalar mesons. This is

because, in contrast to the other mesons, it is not a pseudo-Goldstone boson: if you

sent the quark masses to zero, then the pions and kaons and eta all become massless.

The eta-prime remains massive.

In fact, there’s more to the story of the eta-prime. Recall that back in Section 3.2,

we mentioned that the classical Lagrangian of massless QCD also has an axial U(1)A
symmetry. Naively, it appears as if this too is spontaneously broken by the condensate

(3.47). If this were true, the eta-prime meson would be the corresponding pseudo-

Goldstone boson, in which case we have a puzzle on our hands because it seems too

heavy to be Goldstonesque.

The answer to this puzzle will be presented in Section 4 where we’ll see that U(1)A,

while a symmetry of the classical action, is not a symmetry of the quantum theory be-

cause it suffers something called an anomaly. The fact that the eta-prime is inordinately

heavy is one consequence of this.

Pseudovector Mesons

This same pattern of 1⊕ 8 repeats many more times in excited meson states, in which

the spins of the quarks are aligned (rather than anti-aligned) or the quarks have some

additional relative orbital angular momentum L. The total parity of these excited

meson states is P = (−1)L+1.

The first such collection occurs when the spins are aligned, but L = 0, giving a

collection of 9 pseudovector mesons with JPC = 1−−, as listed in Table 5. The lightest

of these spin 1 mesons are the rhos, ρ± and ρ0, which can be viewed as excited pions.

The heaviest is the phi meson, which is again the singlet 1. Note that by the time we

get to the excited kaons, some naming exhaustion has set in, and the fact that these

are excited states is denoted merely by the addition of a star.
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Meson Quark Content Mass (in MeV) Lifetime (in s)

rho ρ+ ud̄ 770 10−24

rho ρ0 1√
2
(uū− dd̄) 770 10−24

omega ω 1√
2
(uū+ dd̄) 780 10−22

phi φ ss̄ 1020 10−22

kaon K+? us̄ 890 10−24

kaon K0? ds̄ 890 10−24

Table 5. The pseudovector mesons

If you look closely at the quark content of the scalar and vector mesons, you’ll see

that the analogy between them isn’t quite perfect. In particular, the excited versions

of the η and η′ are the ω and φ. But the quark content of the pseudoscalar mesons is

η :
1√
6

(uū+ dd̄− 2ss̄) and η′ :
1√
3

(uū+ dd̄+ ss̄) (3.90)

while the quark content of the pseudovector mesons is:

ω :
1√
2

(uū+ dd̄) and φ : ss̄ . (3.91)

What’s going on? Why are these so different?

This is an issue of particle mixing, something that we will see more of when we come

to discuss the weak force and neutrinos. First note that the quantum numbers of η

and η′ are the same (in particular, I3 = S = 0 and hence Q = 0 for both). Similarly

for the ω and φ. In any quantum mechanical system, if you have states with the same

quantum numbers then you have to diagonalise the Hamiltonian to find the energy (or

in this case, mass) eigenstates. That can lead to linear superpositions of the original

states.

That’s what’s going on here. There are two competing aspects at play. One is

the SU(3)V flavour symmetry that pushes the energy eigenstates to form as 1 ⊕ 8

multiplets, which results in the quark content seen in the pseudoscalars (3.90). The

other is the bare mass terms of the quarks, that prefers the energy eigenstates to be the

more straightforward qq̄. For both pseudoscalar and pseudovector mesons there is some

competition between these, meaning that neither (3.90) nor (3.91) is entirely correct.

Instead, the honest answer is that the quark content is some linear combination of the
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two results in both cases, but the group theory dominates for the pseudoscalars, while

the mass difference of the strange quark dominates for the pseudovectors.

Of course, this still begs the question of why scalar mesons fall one way, and vectors

the other. This is, like many things in QCD, complicated, but it boils down to the fact

that the scalar mesons are would-be Goldstone bosons.

Note that masses don’t entirely get their own way for the vector mesons. The ρ0 and

ω have constituents uū± dd̄, rather than uū and dd̄, so the SU(2)V isospin symmetry

is still powerful enough to hold sway over the up/down mass difference.

If you flip through the particle data group booklet, you will find further collections of

excitations with JPC = 0++ around 1150 MeV. These have orbital angular momentum

L = 1 and spin S = 1 and are given catchy names like a0, a1, etc. Then there are states

with JPC = 1+− at around 1250 MeV that have L = 1 and S = 0. These have equally

catchy names b0, b1, . . .. And so it continues.

3.3.2 Lifetimes

So far we’ve not said anything about the lifetime of mesons, which we also listed in

Tables 4 and 5. This is largely because many of these lifetimes are dictated by the

weak force that we haven’t yet described. Nonetheless, there are a few straightforward

comments that we can make here.

The first is that there is a very wide range of lifetimes exhibited by mesons, from the

charged pions and kaons which decay in 10−8 seconds to the rho which decays in 10−24

seconds. This reflects the different ways in which these particles can decay.

For example, despite their similar masses, the neutral and charged pions have rather

different lifetimes. The neutral pion decays through the electromagnetic force to two

photons

π0 → γ + γ . (3.92)

It has a lifetime of around 10−16 seconds. In contrast, the charged pions π+ and π−

decay only through the weak force. We’ll see in Section 5 that they typically decay to

a muon and a neutrino

π+ → µ+ + νµ and π− → µ− + ν̄µ . (3.93)

They live for 10−8 seconds, an eternity in the subatomic world and much longer than

any of the other hadrons, except for the proton and neutron.
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Figure 13. The discovery of the charged pion in 1947. The pion enters in the top left

(labelled m1), slows in the bromide and comes to rest, before decaying into a muon that flies

off to the right (labelled m2) and an anti-neutrino which is invisible in the picture

As a general rule of thumb, each force comes with a characteristic time scale that

determines the lifetime of the hadron:

• Strong decay: ∼ 10−22 to 10−24 seconds.

• Electromagnetic decay: ∼ 10−16 to 10−21 seconds.

• Weak decay: ∼ 10−7 to 10−13 seconds.

Where you sit within each range depends on other factors, such as the relative masses

of the parent and daughter particles.

In a world with just the strong force, all the pseudoscalar mesons listed in Table 4

would be stable and, despite the fact that some can disappear in 10−20 seconds or so,

physicists continue to refer to them as stable. In contrast, anything that decays via the

strong force is said to be a resonance, rather than a particle. All of the vector mesons

listed in Table 5 are resonances. For example, the rho decays via the strong force to

(predominantly) two pions. If you look through the particle data book, you’ll find that

resonances are always listed with their mass in brackets. So, for example, you will find

ρ(770) in the book but, just above it, η with no brackets.

You’ll often find lifetimes quoted in terms of the width, which is an energy scale,

rather than a time. The conversion factor is

100 MeV ≈ 10−23 s−1 . (3.94)
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Figure 14. The centre-of-mass energy of µ+µ− pairs reveals a zoo of mesonic resonances at

low energies, with the Z-boson sitting at high energies. This is a plot from 2010 made by the

CMS collaboration.

This coincides with what we saw above. The relevant energy scale of the strong force

is somewhere around ΛQCD ∼ 100ish MeV and if the strong force does something (like

enable a decay), then is typically takes around TQCD ∼ 10−23 seconds to do it.

Of course, our world has more than the strong force and that means that there’s

nothing qualitatively different between a particle like the pion and a resonance like the

rho. Both will decay in less than the blink of an eye. But it does make a difference

for experiments. If something lasts for 10−10 seconds then, with good technology, you

can take a photograph of the particle’s track in a cloud chamber or bubble chamber.

For example, the discovery photo of the pion is shown in Figure 13. When a particle

leaves such a vivid trace, it’s hard to deny its existence. In contrast, we’re never going

to take a photograph of something that lasts 10−20 seconds. But that doesn’t mean

that it’s any less real! It just leaves its signature in more subtle ways, typically as a

bump in the cross-section for some process. (See, for example, the chapter on scattering

theory in the lectures on Topics in Quantum Mechanics for a discussion of how this

comes about.) The glorious plot shown in Figure 14 shows bumps in the number of

back-to-back µ+µ− pairs that were seen in the CMS detector in the early days of the

LHC. The resonances start, on the far left, with the ρ, ω and φ but then, as the energy

increases, there are clear peaks for the J/ψ, which is a charmed meson, the upsilon Υ

which is a bottom meson and, far off the right, the Z-boson which is one of the gauge

bosons for the weak force.
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Finally, hiding within the data are some interesting stories that we will meet again

later. For example, the decay of the neutral pion π0 → γ+γ is closely tied to the axial

anomaly and we will revisit this in Section 4.

The lifetime of the neutral kaons also holds an important lesson. Curiously they

appear to have two different lifetimes, either 10−7 seconds or 10−10 seconds, depending

on how you count! That’s kind of weird. It turns out to be a manifestation of the fact

that the weak force violates time-reversal! We will discuss this in Section 5.

The Elusive Sigma

There is one light scalar meson listed in the particle data book that I have not yet

mentioned. It has JPC = 0++ and goes by the catchy name of f0(500) and has a mass

which is listed as somewhere between 400 - 550 MeV. The reason that it’s so difficult

to pin down is that it decays very quickly – via the strong force rather than weak force

– to two pions and so has a large width. Moreover, it has vanishing quantum numbers

(angular momentum, parity, isospin and strangeness are all zero).

Experimentally, its probably best not to refer to this resonance as a particle at all.

However, theoretically it has played a very important role, for this is the “sigma” after

which the sigma-model is named. It can be thought of as the excitation that arises

from ripples in the value of the quark condensate, σ = ψ̄ψ, rather than rotations in the

quark condensate U .

3.3.3 Baryons

Three quarks can form a gauge singlet by anti-symmetrising over their colour indices

a = 1, 2, 3 to form a baryon,

B = εabcqaqbqc . (3.95)

For baryons constructed of light d, u, and s quarks, these too sit in representations of

the SU(3)V flavour symmetry.

We can again do a little group theory. For two quarks we have

3⊗ 3 = 3̄⊕ 6 . (3.96)

Adding the third quark, we have

3⊗ 3⊗ 3 = (3̄⊗ 3)⊕ (6⊗ 3) = 1⊕ 8⊕ 8′ ⊕ 10 . (3.97)

Importantly, we want to think of these as representations of the SU(3)V flavour sym-

metry rather than the SU(3) gauge symmetry. This tells us that we expect baryons to

sit in one of the representations above.
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Baryon Quark Content Mass (in MeV) Lifetime (in s)

proton p uud 938 stable

neutron n udd 940 103

lambda Λ0 uds 1115 10−10

sigma Σ+ uus 1189 10−10

sigma Σ0 uds 1193 10−19

sigma Σ− dds 1197 10−10

cascade Ξ0 uss 1315 10−10

cascade Ξ− dss 1321 10−10

Table 6. The octet of spin 1
2 baryons.

At this point, we have to remember that quarks are fermions and, as such, obey the

Pauli exclusion principle. We can look at each of the possibilities above in turn:

• The singlet 1 is fully anti-symmetrised in flavour indices. But any baryon is

necessarily fully anti-symmetrised in colour indices, as shown in (3.95), and the

Pauli exclusion principle says that the state must be anti-symmetrised overall. We

still have the spin degree of freedom to play with, but it’s not possible to fully

anti-symmetrise in spin so this baryon must have some orbital angular momentum

to satisfy Pauli. That makes it heavy and messy. Candidates exist but we won’t

discuss them.

• At the other end, the decuplet 10 is fully symmetrised in flavour indices and so

we can satisfy Pauli by symmetrising over spin degrees of freedom. This means

that the decuplet of baryons should have spin 3
2
.

• The 8 and 8′ are a bit more tricky: one is anti-symmetrised only in the first

two indices, the other symmetrised in the first two indices, so we have to work a

little harder. But it turns out that we can take a suitable linear combination of

them that gives a fully anti-symmetrised wavefunction (including colour) when

the quarks have total spin 1
2
.

The octet contains the two most famous baryons: protons and neutrons. Collectively,

these are called nucleons. Others in this multiplet have a mass that differs by about

30% from that of the nucleons. The Σ baryons contain a single strange quark while

the Ξ baryons, known either as xi or, with a rhetorical flourish, cascades, contain two
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Figure 15. The octet and decuplet of baryons.

strange quarks. The full collection of eight spin 1
2

baryons are shown in Table 6, and

in an SU(3) weight diagram, reflecting their group theoretic origins, in Figure 15.

We saw previously that the octet of pseudoscalar mesons have an interpretation as

almost-Goldstone modes. That means, in particular, that if the quarks were massless,

then the pions, kaons and eta would all be massless as well. What is the analogous

story for the baryons?

Here there is a surprise. If the up and down quark were massless, the mass of the

proton and neutron would be more or less unchanged from the values we measure!

The mass of the baryons – at least those comprised of light quarks – is not driven by

the bare quark mass. Instead, it’s driven by the strong coupling scale ΛQCD. In fact,

on general grounds one can argue that the mass of baryons in SU(Nc) QCD scales as

NcΛQCD.

That’s not to say that the mass of the quarks is entirely unimportant. Crucially, the

fact that the down quark is heavier than the up quark is the reason why the neutron

is heavier than the proton. If this weren’t true, the weak force would allow the proton

to decay into the neutron, rather than the other way around, and it’s hard to see how

atoms and chemistry and physicists could exist.

Similarly, the strange baryons are heavier than the proton and neutron. You can see

from the data that each strange quark adds about 140±10 MeV to the baryon mass.
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That’s smaller than the corresponding amount for mesons, but still bigger than the

bare mass ms ≈ 93 MeV.

You may have heard it said that the Higgs is responsible for all the mass in the

universe. This is a blatant lie. In Section 5, we will see that the Higgs is responsible

for the mass of all elementary particles, meaning the leptons and quarks. But the

overwhelming majority of mass in atoms is contained in the protons and neutrons that

make up the nucleus, and this mass has nothing to do with the Higgs boson. It is

entirely due to the urgent thrashing of strongly interacting quantum fields.

While we’re talking about fairytales that we were subjected to when we were young,

here’s another one: we are usually told that the strong force is what keeps the nucleus

together in the atom. This one is kind of true, but only in an indirect way. The

strong force binds quarks together into baryons, which are fermions, and into mesons,

which are bosons. But, as described in the lectures on Quantum Field Theory, scalar

particles mediate forces. In particular, the pions mediate a force of a Yukawa type,

with potential

V (r) ∼ −e
−mπr

r
. (3.98)

This is what binds the protons and neutrons together in the nucleus.

We refer to this force mediated by pions as the strong nuclear force, but it would

be better to give it a different name — say “mesonic force”, or “Yukawa force” — to

highlight the fact that it is really a residual, secondary effect. The upshot is that there

are two layers to the strong force: we start with one force and a set of matter particles

— gluons interacting with quarks — and end up with a very different force and a new

set of matter particles — the mesonic force interacting with protons and neutrons. In

this sense, both the particles in the nucleus, and the force that holds them together,

are emergent phenomena, arising from something more fundamental underneath.

Finally, we briefly look at the spin 3
2

baryons, that sit in the flavour decuplet. They

go by the names ∆ (with charges 0, ±1 and 2), Σ? (with charges 0 and ±1), Ξ? (with

charges −1 and 0) and Ω− with charge −1. The full list of particles is given in Table

7 and the weight diagram shown in Figure 15.

The real novelties among these baryons are the three outliers, in which all quarks are

the same. The ∆++ played an important historic role because it was the first particle

to be found with charge +2 as opposed to 0 or ±1 and helped enormously in piecing
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Baryon Quark Content Mass (in MeV) Lifetime (in s)

∆++ uuu 1232 10−24

∆+ uud 1232 10−24

∆0 udd 1232 10−24

∆− ddd 1232 10−24

Σ?− dds 1383 10−23

Σ? 0 dus 1384 10−23

Σ?+ uus 1387 10−23

Ξ?− dss 1535 10−23

Ξ? 0 uss 1532 10−23

Ω− sss 1672 10−11

Table 7. The decuplet of spin 3
2 baryons.

together the story of the underlying quarks. The Ω− baryon, meanwhile, holds a spe-

cial place in the history of science because Gell-Mann used the simple quark model

described above to predict its mass and properties before it was discovered experimen-

tally. In that way, he followed Mendeleev and Dirac in predicting the existence of a

“fundamental” particle of nature (where, as should by now be clear, the meaning of

the word “fundamental” is time-dependent).

One of the lessons to take away from this section is that QCD is complicated. We can

make some progress by using symmetries (or approximate symmetries) as organising

principles, but that only takes us so far. It is natural to wonder how much of the results

above we can calculate from first principles, starting from the Lagrangian of QCD.

If your first principles involve only pen and paper, then the answer is: not much.

QCD is hard. But if you extend your first principles to embrace numerical simulations

which, in this context, go by the name of lattice QCD, then you can do pretty well.

After many decades of work, much of the spectrum described above can be computed

to within, say, 5% accuracy. There is now no doubt that the complexity seen in the

hadron spectrum can be entirely explained by the dynamics of QCD.

3.3.4 Heavy Quarks

So far, we’ve only discussed the hadrons constructed from the three lightest quarks.

We’ve still to discuss the heavy ones.
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It turns out that there are no hadrons comprised of the top quark. Its extreme high

mass means that the top quark decays with a lifetime of around 10−25 seconds, which is

faster than the characteristic timescale TQCD ≈ 10−23 seconds of the strong force. This

means that such “top hadrons” decay before they even form. Needless to say, none

have been observed.

That still leaves us with the charm and bottom. The masses of hadrons containing

these quarks are determined more by the bare quark mass than by ΛQCD. Two sets

of these mesons deserve a special mention. The first is charmonium, a bound state of

charm and anti-charm quark. It also goes by the dual name J-psi (J/ψ),

J/ψ (c̄c) m ≈ 3.1 GeV . (3.99)

Its lifetime is around 10−21 seconds. The discovery of this particle in 1974, showing up

as a very sharp resonance similar to what is seen in Figure 14, was the first glimpse of

the charm quark and played a key role in cementing the Standard Model.

There are a collection of lighter mesons that contain just a single charm quark. These

are called (somewhat peculiarly) D-mesons. The lightest are:

D0 (cū) m ≈ 1865 MeV

D+ (cd̄) m ≈ 1869 MeV . (3.100)

These are remarkably long lived particles, with the D+ surviving a whopping 10−12

seconds, and the D0 about half this time. The long lifetime is because these particles

decay only through a somewhat subtle property of the weak force. We will learn more

about this in Section 5.

Similarly, the bottom quark was first discovered in bottomonium, also known as the

upsilon (Υ)

Υ (b̄b) m ≈ 9.5 GeV . (3.101)

This has a lifetime of 10−20 seconds. Once again, it is neither the lightest nor the

longest lived meson containing a b-quark. The lightest B-mesons are

B+ (ub̄) and B0 (db̄) m ≈ 5280 MeV . (3.102)

Despite being significantly heavier, they actually live (very) slightly longer than the

D-mesons, with a lifetime of around 1.5 × 10−12 seconds. It’s worth stressing how

astonishing this is: the ratio of the mass to the width of the B-meson is mB/ΓB ∼ 1013

You can compare this to the common or garden mesons, like the ρ, which has mρ/Γρ ∼
4!. Again, this is down to intricacies of the weak force.
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A small comment on terminology. The third generation of quarks was originally

termed beauty and truth. (What can I say? It was the 70s.) Eventually, out of a due

sense of embarrassment, these names were phased out in preference for the more boring

“bottom” and “top”. This has persisted for the top quark, but the term “beauty”

lingers. For example, the important experiment LHCb which investigates B-mesons,

prefers to be thought of, for obvious reasons, as focussing on the study of beauty, rather

than the study of bottoms.

There are also baryons containing charm and bottom quarks. Here the names become

increasingly unimaginative, with subscripts c and b denoting the quark content. For

example, in addition to the Σ+, comprised of uus, there is also a Σ+
c comprised of uuc

and Σ+
b comprised of uub, and similar stories for cascades. There are also excited states

of all these baryons, in which the quarks orbit each other, not dissimilar to the way in

which the electrons orbit the proton in the excited states of the hydrogen atom.

3.4 The Theta Term

For QCD, we’ve seen that the action is gloriously simple:

S =

∫
d4x

−1

2
TrGµνG

µν +

Nf∑
i=1

(
iq̄i /Dqi −miq̄iqi

) . (3.103)

The question that we would like to pose is: are there any other interaction terms that

we could write down that we’ve missed?

The answer is that there is one, but that it’s rather subtle. This is known as the

Yang-Mills theta term,

Sθ =
θg2

s

16π2

∫
d4x TrGµν

?Gµν (3.104)

where ?Gµν = 1
2
εµνρσGρσ. Here θ is the eponymous theta angle, and should be viewed

as an additional parameter of QCD.

Before we get to the theory underlying the theta term, let me first give some com-

mentary on why we haven’t mentioned this term until now. The reason is that, as far

as we can tell from experiment, the theta parameter takes the value θ = 0. Said more

precisely, we can bound the theta parameter to be

θ < 10−10 . (3.105)
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So why should we care about something that doesn’t exist? The reason is that zero is

a number too! The game that we play in the Standard Model is the same as for all

other quantum field theories: after you’ve figured out what fields you’re dealing with,

you then write down all possible relevant and marginal interactions that could change

the low energy physics. Each of these terms typically comes with a parameter that

we have to determine by experiment. These parameters are things like the masses of

particles (or, more precisely, Yukawa couplings as we’ll see in Section 5.) Out of all

these parameters, θ is special because it’s the only one that appears to vanish. And

that’s crying out for an explanation.

What would the consequences be if θ were not to vanish? The answer is pretty

dramatic because, in contrast to all other terms in the QCD action (3.103), the theta

term violates various discrete symmetries. Written in terms of the chromoelectric and

chromomagnetic fields, it takes the form

Gµν
?Gµν ∼ E ·B . (3.106)

We’ve seen in Section 1.4 that, under parity P , charge conjugation C, and time reversal

T , the electric and magnetic fields transform as

P : E 7→ −E and P : B 7→ +B

C : E 7→ −E and C : B 7→ −B (3.107)

T : E 7→ +E and T : B 7→ −B .

This means that the theta term breaks both P and CP or, equivalently, T . As we

saw previously, a consequence of CP violation is that particles are endowed with an

electric dipole moment. The most precise experimental tests are for the neutron which,

experimentally, is found to have an electric dipole moment dn bounded by

dn < 10−26 e cm . (3.108)

This, ultimately, translates into the bound (3.105). (For what it’s worth, the CP

violation in the weak sector is predicted to give the neutron a dipole moment around

dn ≈ 10−30 e cm, somewhat below current experimental bounds.)

So why do we have θ = 0? The answer is: we don’t know. One might want to state

by fiat that QCD should be invariant under P and CP and that’s why the theta term

is disallowed. That’s a reasonable argument in the context of stand-alone QCD, but

not when viewed within the broader framework of the Standard Model which, as we

will see, is invariant under neither P nor CP . (Indeed, the fuller story is that the QCD
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theta term is infected by various other terms in the Standard Model Lagrangian and

somehow they collectively conspire to ensure that θ = 0.) The question of why θ = 0 is

known as the strong CP problem. It is surely one of the most important clues for what

lies beyond the Standard Model.

3.4.1 Topological Sectors

The theta term is also special for other reasons. Indeed, of all the terms that we could

write down in the Standard Model, it is by far the most subtle. In this sense, it’s

something of a shame that it vanishes!

We can discuss the physics for a general gauge group G, rather than restricting to

QCD and, for that reason, we will revert to the notation of Section 1.3 and refer to the

Yang-Mills gauge field as Aµ and the field strength as Fµν (rather than Gµ and Gµν for

QCD).

The first important property of the theta term is that it’s a total derivative. You

can show that

Sθ =
θg2

s

8π2

∫
d4x ∂µK

µ with Kµ = εµνρσTr

(
Aν∂ρAσ −

2i

3
AνAρAσ

)
. (3.109)

This means that it does not affect the classical equations of motion. Nonetheless, it can

affect the quantum dynamics of gauge theories. This arises because the path integral

receives contributions from field configurations that have something interesting going

on at infinity so that the boundary term Sθ is non-vanishing. This something interesting

can be found in the topology of the gauge group.

To explain this, we first Wick rotate so that we work in Euclidean spacetime R4.

Configurations that have a finite action from the Yang-Mills term must asymptote to

pure gauge,

Aµ →
i

g
Ω∂µΩ−1 as x→∞ (3.110)

with Ω ∈ G. This means that finite action, Euclidean field configurations involve a

map

Ω(x) : S3
∞ 7→ G . (3.111)

with S3
∞ = ∂R4 the asymptotic boundary of R4. Maps of this kind fall into disjoint

classes. These arise because the gauge transformations can “wind” around the spatial

S3 in such a way that one gauge transformation cannot be continuously transformed
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into another. Such winding is characterised by homotopy theory. In the present case,

the maps are labelled by an element of the homotopy group which, for all simple,

compact Lie groups G, is given by

Π3(G) = Z . (3.112)

This means that the winding of gauge transformations (3.110) at infinity is classified

by an integer n.

This statement is most intuitive for G = SU(2) since, viewed as a manifold, SU(2) ∼=
S3 and the homotopy group counts the winding from one S3 to another. For higher

dimensional groups, including G = SU(3) relevant for QCD, it turns out that it’s

sufficient to pick an SU(2) subgroup of G and consider maps which wind within that.

You then need to check that these maps cannot be unwound within the larger G.

It can be shown that, in general, the winding n ∈ Z is computed by

n(Ω) =
1

24π2

∫
S3
∞

d3S εijkTr (Ω∂iΩ
−1)(Ω∂jΩ

−1)(Ω∂kΩ
−1) . (3.113)

Evaluated on any configuration that asymptotes to (3.110), the theta term gives

Sθ = θn with n ∈ Z . (3.114)

It is the contribution from configurations with n 6= 0 in the path integral that means

that observables in quantum gauge theories can depend on θ. In general, all observables

are thought to depend on the value of θ. For example, it’s expected that the masses

of particles in Yang-Mills theory, or indeed, in QCD, depend on θ. (The “expected”

in that sentence is because it’s very hard to know for sure, largely because it’s very

difficult to do numerical simulations of these theories when θ 6= 0.)

When exponentiated in the path integral, the theta term contributes to the Euclidean

action as eiSθ = eiθn. Importantly, it is a complex phase. The fact that it is complex

can be traced to the εµνρσ tensor in Sθ. This means that Sθ contains a single time

derivative and so, upon Wick rotation, still sits in the path integral as eiSθ rather than

e−Sθ . The fact that n ∈ Z means that θ is a periodic variable, with

θ ∈ [0, 2π) . (3.115)

For this reason, it’s often called the theta angle. We see that the role of the theta term

is to weight different topological sectors in the path integral with different phases eiθn.
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3.4.2 Instantons

We can say more if we work in a regime in which the theory is weakly coupled. Here

the path integral is dominated by the saddle points, which are solutions to the clas-

sical equations of motion. This means that any θ dependence should come from field

equations that wind at infinity, so n 6= 0, and solve the classical equations of motion,

DµF µν = 0 . (3.116)

There is a cute way of finding solutions to this equation. The Yang-Mills action is

SYM =
1

2g2

∫
d4x TrFµνF

µν . (3.117)

Note that in Euclidean space, the action comes with a + sign. (This is to be contrasted

with the Minkowski space action which comes with a minus sign.) We can write the

Euclidean action by completing the square,

SYM =
1

4g2

∫
d4x Tr (Fµν ∓ ?Fµν)

2 ± 1

2g2

∫
d4x TrFµν

?F µν ≥ 8π2

g2
|n| . (3.118)

where, in the last inequality, we’ve used the result (3.114). We learn that in the sector

with winding n, the Yang-Mills action is bounded by 8π2n/g2. The action is minimised

when the bound is saturated. This occurs when

Fµν = ±? Fµν . (3.119)

These are the (anti)-self-dual Yang-Mills equations. The argument above shows that

solutions to these first order (anti)-self-dual equations necessarily minimise the action

in a given topological sector and so must solve the equations of motion (3.116). In fact,

it’s straightforward to see that this is the case since it follows immediately from the

Bianchi identity Dµ?F µν = 0.

Solutions to the (anti)-self-dual Yang-Mills equations (3.119) have finite action, which

means that any deviation from the vacuum must occur only in localised regions of

Euclidean spacetime. In other words, these solutions correspond to point-like objects

in Euclidean spacetime R4. Because they occur for just an “instant of time” they are

known as instantons. They are very much analogous to the classical tunnelling solutions

for the quantum mechanical double well potential that we met in Section 2.1.
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There is much to say about instantons. You can read about the role they play in

quantum Yang-Mills in the lectures on Gauge Theory and more about the structure

of the solutions to (3.119) in the lectures on Solitons. For our purposes, it will suf-

fice to point out that the contributions of instantons to any quantity comes with the

characteristic factor

e−Sinstanton = e−8π2|n|/g2eiθn . (3.120)

Famously, the function e−8π2/g2 has vanishing Taylor expansion about the origin g2 = 0.

This is telling us that effects due to instantons are smaller than any perturbative contri-

bution, which takes the form g2n. Nonetheless, that doesn’t mean that instantons are

useless since they can contribute to quantities that apparently vanish in perturbation

theory.

Instantons are usually referred to as non-perturbative effects. This is a little bit of

a misnomer. The use of instantons requires weak coupling g2 � 1, so in this sense

they are just as perturbative as usual perturbation theory. The name non-perturbative

really means “not perturbative around the vacuum”. Instead, the perturbation theory

occurs around the instanton solution.

An Example: An Instanton in SU(2)

It is fairly straightforward to write down the instanton solutions with winding n = 1.

For SU(2), such a configuration is given by

Aµ =
1

x2 + ρ2
ηaµνx

νσa (3.121)

Here ρ is a parameter whose role we will describe shortly. The ηaµν are usually referred

to as ’t Hooft matrices. They are three 4 × 4 matrices which provide an irreducible

representation of the su(2) Lie algebra. They are given by

η1
µν =

 0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , η2
µν =

 0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 , η3
µν =

 0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 . (3.122)

These matrices are self-dual: they obey 1
2
εµνρση

i
ρσ = ηiµν . (Note that we’re not being

careful about indices up vs down as we are in Euclidean space with no troublesome

minus signs.) In the solution (3.121), the ’t Hooft matrices intertwine the su(2) group

index a = 1, 2, 3 with the spacetime index µ and this implements the asymptotic

winding of the gauge fields.
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The associated field strength is given by

Fµν = − 2ρ2

(x2 + ρ2)2
ηaµνσ

a . (3.123)

This inherits its self-duality from the ’t Hooft matrices: Fµν = ?Fµν and therefore solves

the Yang-Mills equations of motion, DµFµν = 0.

We can get some sense of the form of this solution. First, the non-zero field strength

is localised around the origin x = 0. (By translational invariance, we can shift xµ →
xµ−Xµ to construct a solution localised at any other point Xµ.) The solution depends

on a parameter ρ which can be thought of as the size of the instanton lump. The fact

that the instanton has an arbitrary size follows from the classical conformal invariance

of the Yang-Mills action.
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4 Anomalies

Our goal in this section is to understand the beautiful and subtle phenomenon known

as an anomaly8. This is one of the deepest ideas in quantum field theory and, as we

will see in Section 5, underpins much of the structure of the Standard Model.

Before we jump in, here are two motivating comments.

We already met the theories of QED and QCD in the previous section. Both are

described by Lagrangians in which a gauge field is coupled to a bunch of Dirac fermions.

But Dirac fermions are not the simplest kind of fermion. Or, said differently, Dirac

fermions are not irreducible representations of the Lorentz group. Instead, a Dirac

fermion decomposes into two Weyl fermions. So why doesn’t nature make use of this

more minimal Weyl fermion? And why don’t we study the seemingly simpler theory

of, say, Yang-Mills coupled to a single Weyl fermion?

The answer, it turns out, is that Yang-Mills coupled to a single Weyl fermion is an

inconsistent quantum theory! This is an important and striking statement. There’s no

problem in writing down a classical Lagrangian, nor indeed a classical Hamiltonian, for

this system. But there’s no corresponding quantum theory. As we will explain, this is

one manifestation of the anomaly.

Here’s a second motivation. In the theory of massless QCD, we mentioned that there

is a classical U(1)A axial symmetry which, naively, appears to be spontaneously broken

like the non-Abelian chiral symmetry. But there is no associated light meson. The

meson that carries the right quantum numbers is the η′ and its mass is almost 1 GeV,

significantly more than the other pseudo-Goldstone bosons. What’s going on?

The answer, it turns out, is that the axial U(1)A symmetry in massless QED and

QCD is a good symmetry of the classical theory, but it is not a symmetry of the

quantum theory. This, too, is a manifestation of the anomaly.

Our purpose is to understand these statements and more. There are various ways

to understand these features, but the most revealing is through the path integral. As

we will see, both of the issues above, and several others, arise from trying to carefully

define the path integral for Weyl fermions.

8Because these are lectures on the Standard Model, I should mention that there is another, very

different meaning to the word “anomaly” in the particle physics community, which is when an exper-

imental result that deviates slightly from the prediction of the Standard Model. Typically, this leads

to approximately 104 papers being written before the whole things fades away 3 years later. That’s

not what we’re talking about here.
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Our First Anomaly

There are a number of different manifestations of anomalies in quantum field theory.

Indeed, understanding when such effects arise remains a vibrant research area. Here

we will discuss just the simplest kind of anomaly, associated to Weyl fermions.

To set the scene, recall that a Dirac fermion ψ splits into two Weyl fermions

ψ =

(
ψL

ψR

)
. (4.1)

For our story, we want to take just a single Weyl fermion. We will take a left-handed

spinor ψL, but everything we’re about to say also holds for a single right-handed spinor.

The action for a massless Weyl spinor is

S =

∫
d4x iψ̄Lσ̄

µ∂µψL (4.2)

with σ̄µ = (1,−σi). This action is clearly invariant under the U(1) global symmetry

ψL → eiαψL, with the corresponding current jµ = ψ†Lσ̄
µψL. To illustrate the anomaly,

we will couple this current to a gauge field Aµ with charge q ∈ Z. The action is now

S =

∫
d4x iψ̄Lσ̄

µDµψL (4.3)

where the covariant derivative contains the coupling to the gauge field DµψL = ∂µψL−
ieqAµψL. This action is now invariant under the gauge symmetry

ψ → eieqα(x)ψ and Aµ → Aµ + ∂µα . (4.4)

Before we proceed, I should mention that there are two distinct ways to think about

the gauge field Aµ and this distinction will be important when we come to look at the

various implications of anomalies. They are:

• Aµ could be a dynamical gauge field. In the classical theory, this means that we

treat it as a dynamical variable, with its own equation of motion, typically after

adding a Maxwell term to the action. In the quantum theory, it means that we

integrate over Aµ in the path integral.

• Aµ could be a background gauge field. This means that it is something fixed,

under our control, and should be viewed as a parameter of the theory. Turning

it on typically breaks Lorentz symmetry, but could be useful to explore how our

system responds to the presence of an electric or magnetic field. In the quantum

theory, Aµ appears as a source on which the partition function depends.

– 146 –



We will consider gauge fields of both types in what follows. However, for now, we will

consider Aµ to be a background gauge field, whose value is something that we get to

decide.

While the classical theory is clearly invariant under the gauge transformation (4.4),

the question that we really want to ask is: what happens in the quantum theory? For

this, we should turn to the path integral, with the partition function in Euclidean space

defined as

Z[A] =

∫
DψLDψ̄L exp

(
−
∫
d4x iψ̄Lσ̄

µDµψL
)
. (4.5)

The action in the exponent is designed so that it is invariant under gauge transforma-

tions. But now we must also worry about the measure in the path integral and this

takes some care to define. The statement of the anomaly is that the measure is not

invariant under gauge transformations. Instead, it turns out that the measure, and

hence the partition function, changes by a phase

Z[A]→ exp

(
ie3q3

32π2

∫
d4x αFµν

?F µν

)
Z[A] (4.6)

with ?F µν = 1
2
εµνρσFρσ.

This subtlety only happens for fermions. If we have scalar fields charged under a

symmetry, then the measure is perfectly invariant. At heart, this is related to the fact

that there is no difficulty in giving masses to scalar fields while preserving symmetries,

but giving masses for fermions necessarily breaks certain symmetries.

I won’t prove the anomaly (4.6) here, but a detailed derivation is given in the lectures

on Gauge Theory. In fact, there are two such derivations. The first involves a careful

definition of the measure in the path integral to see that it does indeed transform as

(4.6). The second derivation works with more conventional perturbation theory. In

particular, the anomaly is associated to the following triangle diagram

The external legs are currents associated to the U(1) symmetry, while the fermion runs

in the loop. Like most one-loop diagrams, the resulting integral is divergent and has
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to be regulated. The subtlety arises because of the interplay between regulating the

divergence and preserving the U(1) symmetry. It turns out that only diagrams of this

kind suffer from this subtlety, and the fact that there are three legs is reflected in the q3

prefactor of the anomaly in (4.6). Although we won’t compute these triangle diagrams

here, they will be a useful mnemonic as we describe different kinds of anomalies.

Rather than derive the anomaly, we will instead focus on its implications. Broadly,

there are three different implications, depending on whether we think of the gauge field

Aµ as background or dynamical. We will address these in turn in Sections 4.1, 4.2, and

4.3.

4.1 Gauge Anomalies

The first implication of the anomaly (4.6) is that it is an obstruction to gauging.

Although the action is invariant under the gauge symmetry, the measure is not and

neither is the partition function. That means that we cannot promote the gauge field

Aµ to a dynamical field, where we integrate over it in the path integral. If we attempted

to do this, we would get a sick theory. (Sick as in bad, not sick as in good.)

There are a number of ways to see why the theory is sick but here is a simple one.

Recall that when we first attempted to quantise the gauge field Aµ in the lectures on

Quantum Field Theory we had some work to do to decouple the negative norm states

that arise from quantising A0. That work ultimately boiled down to using the gauge

invariance to remove these states. But in an anomalous theory, we no longer have

that gauge invariance at our disposal and the Hilbert space will involve negative norm

states. That’s bad.

The upshot is that a U(1) gauge theory, coupled to a single Weyl fermion, is a sick

theory. If we want to write down a consistent gauge theory, then we must have multiple

Weyl fermions so that, combined, the anomaly cancels.

Typically, we think of a given theory in terms of a bunch of left-handed fermions and

another bunch of right-handed fermions. But, given a right-handed fermion of charge

q, its complex conjugation is a left-handed fermion of charge −q. So, we’re always at

liberty to talk only about left-handed fermions. If we have a bunch of left-handed Weyl

fermions (ψL)i, each carrying charge qi under a U(1) gauge field, then the phase in

(4.6) is proportional to the sum of q3
i . The theory is consistent only if∑
i

q3
i = 0 . (4.7)
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Alternatively, if we keep the theory written in terms of left-handed and right-handed

Weyl fermions, then the anomaly cancellation condition (4.7) becomes∑
left

q3
i =

∑
right

q3
i . (4.8)

There is a simple way to satisfy (4.7): we just take pairs of Weyl fermions with charges

±q. If we conjugate one of these, then we can equivalently think of one left-handed and

one right-handed Weyl fermion, each with charge q. Or, equivalently, we have a single

Dirac fermion of charge q. Theories of this kind are called vector-like. They enjoy a

parity symmetry (at least among the gauge interactions) which, as we saw in Section

1.4, exchanges left- and right-handed fermions. The simplest example is QED.

There are, however, more interesting solutions to (4.7) that do involve ± pairs. These

are known as chiral gauge theories. These theories necessarily break parity.

Abelian Chiral Gauge Theories

Can we write down a consistent, Abelian chiral gauge theory? In fact, I’ll ask for one

more criterion: can we write down a consistent chiral gauge theory with integer charges

qi ∈ Z . (4.9)

I’ll say some words below about why we might want to require this.

First, it’s clear that for N = 2 Weyl fermions, charges obeying (4.7) must come in ±
pairs which is a vector-like theory. What about for N = 3 fermions? We must have two

positive charges and one negative (or the other way round). Set qi = (x, y,−z) with

x, y, z positive integers. The condition for anomaly cancellation (4.7) then becomes

x3 + y3 = z3 . (4.10)

Rather famously, this equation has no positive integer solutions. (This is the baby

version of Fermat’s last theorem, proven by Euler.)

What about chiral gauge theories with N = 4 Weyl fermions? Now we have two

options: we could take three positive charges and one negative and look for positive

integers satisfying

x3 + y3 + z3 = w3 . (4.11)
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The simplest integers satisfying this are 3,4,5 and 6. We can also construct chiral gauge

theories with N = 4 Weyl fermions by having two of positive charge and two of negative

charge, so that

x3 + y3 = z3 + w3 . (4.12)

This equation is closely associated to Ramanujan and the famous story of Hardy’s visit

to his hospital bed. Struggling for small talk, Hardy commented that the number of

his taxicab was particularly uninteresting: 1729. Ramanujan responded that, far from

being uninteresting, this corresponds to the simplest four dimensional chiral gauge

theory, since it is the first number that can be expressed as the sum of two cubes in

two different ways: 13 + 123 = 93 + 103.

There is one further condition that we’ve not yet met. As we will explain shortly, if

you want to be able to couple your theory to gravity (and, let’s face it, we do) then the

condition (4.7) should be augmented by the requirement∑
i

qi = 0 . (4.13)

None of the examples with N = 4 Weyl fermions above obey this. The simplest

Abelian chiral gauge theory that can be coupled to gravity has N = 5 Weyl fermions.

For example, the charges qi = {1, 5,−7,−8, 9} do the job.

We see that restricting to integer valued charges qi ∈ Z means that we have to solve

Diophantine equations and this breathes a little number theory into the proceedings.

But why do we require that qi ∈ Z? The answer to this is a little subtle.

Strictly, there are two different Abelian gauge groups. The first is G = U(1) which

has only integer charges qi ∈ Z. Sometimes, it’s useful to rescale the charges (and

the Standard Model will be an example) so that you take the charges to be rational,

qi ∈ Q, but that doesn’t change the fact that the charges are quantised. The second

is G = R which have charges that can take any value qi ∈ R so you could have, for

example, q1 = 1 and q2 =
√

2.

The gauge groups U(1) and R have other differences, beyond the allowed electric

charges. In particular, the gauge group U(1) admits magnetic monopoles while the

gauge group R does not (essentially because you can’t respect the Dirac quantisation

condition with respect to all charges). So one obvious question is: which of these gauge

groups describes our world?
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Irrep � adj

dim N N2 − 1 1
2
N(N + 1) 1

2
N(N − 1)

I(R) 1 2N N + 2 N − 2

A(R) 1 0 N + 4 N − 4

Table 8. Some group theoretic properties of SU(N) representations. Here is the symmet-

ric representation and the anti-symmetric. Conjugate representations have I(R̄) = I(R)

and A(R̄) = −A(R).

The experimental evidence strongly points to U(1) because all electric charges (and,

as we will see in Section 5, all hypercharges) are quantised. Moreover, there are argu-

ments that invoke quantum gravity that we won’t describe that are reasonably com-

pelling, but far from rigorous, for why the gauge group in any quantum field theory

should be U(1), and not R.

4.1.1 Non-Abelian Gauge Anomalies

So far we’ve only discussed anomalies for an Abelian gauge field. There is an analo-

gous result for non-Abelian gauge symmetry G. Suppose that we have a single Weyl

fermion in the representation R of a group G, with generator TAR so that, under a gauge

transformation, we have

ψL → eigα
A(x)TARψL and Aµ → ΩAµΩ−1 +

i

g
Ω∂µΩ−1 (4.14)

where Ω = eiα
ATA with TA in the fundamental representation. We can define the

partition function just as (4.5), but where various fields are now viewed as their non-

Abelian avatars. Then, under a gauge transformation, the partition function again

changes by a phase

Z[A]→ exp

(
ig3A(R)

16π2

∫
d4x Tr (αFµν

?F µν)

)
Z[A] . (4.15)

Here A(R) is a group theoretic factor. For the fundamental representation, we have

A(R) = 1 while, for all other representations, this is defined to be

TrTAR {TBR , TCR } = A(R) TrTA {TB, TC} . (4.16)
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The emergence of the anti-commutator can be traced to the requirement to sum over

different indices in the triangle diagrams

Some examples of A(R) for SU(N) representations are collected in Table 8. To be

consistent, a non-Abelian gauge theory coupled to a bunch of left-handed Weyl fermions

must obey ∑
i

A(Ri) = 0 (4.17)

which is the non-Abelian version of (4.7).

For Abelian anomalies, we could always ensure that things work by taking fermions

to come in pairs with charges ±q. A similar result holds for non-Abelian anomalies.

This follows from the following result.

Claim: If R is a complex representation, then the conjugate representation R̄ has

A(R̄) = −A(R).

Proof: If we write a group element as eiα
ATAR then, in the conjugate representation,

the same group element is given by the complex conjugate e−iα
ATA?R . This means that

the generators for the conjugate representation are T̄AR = −TA?R = −(TAR )T where the

last equality holds because our generators are Hermitian, so TAR = (TAR )†. Now we have

Tr T̄AR {T̄BR , T̄CR } = −Tr (TAR )T {(TBR )T , (TCR )T} = −TrTAR {TBR , TCR } . (4.18)

Here the last equality holds because TrA = TrAT . (It’s important that we have the

anti-commutator inside the trace, because the two terms get exchanged but, happily,

they come with a relative plus sign rather than a minus sign.) �

The fact that A(R̄) = −A(R) means that we can always satisfy the anomaly by cou-

pling our gauge field to left-handed fermions that come in R and R̄ pairs. Alternatively,

instead of working with left-handed fermions in the R̄ representation, we could instead

view them as right-handed fermions in the R representation. This means that the

anomaly cancellation condition (4.17) is satisfied whenever we have a Dirac fermion.

That, of course, is what happens for QCD.
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One consequence of the relation A(R̄) = −A(R) is that A(R) = 0 for any real

representation. This means that there is no obstacle to coupling a single Weyl fermion

in a real representation to a non-Abelian gauge group. For example, SU(N) coupled

to a single adjoint Weyl fermion is a perfectly good field theory. (In fact, it is a very

well studied field theory known as super-Yang-Mills.) But SU(N) coupled to a single

fundamental Weyl fermion does not make sense as a quantum theory.

This highlights a property of anomalies that will become increasingly important as

we proceed: only massless fermions contribute to anomalies. Or, said differently, the

contribution to the anomaly from any massive fermions will always cancel.

For example, to write down a Dirac mass for a fermion in a complex representation

that preserves a symmetry, we need a left-handed ψL and a right-handed ψR, both

transforming in the same representation, so that we can construct the mass term ψ̄LψR.

But the contribution to the anomaly from these two Weyl fermions cancels. Meanwhile,

if we have a fermion in a real representation, like the adjoint, then we can always write

down a Majorana mass TrψLψL that preserves the symmetry. But now the contribution

to the anomaly vanishes. The upshot is that only fermions that cannot get a mass

preserving G contribute to the anomaly for G.

The story above also means that the only gauge groups that suffer from potential

anomalies are those with complex representations. This already limits the possibilities:

we need only worry about gauge anomalies in simply laced groups when

G =


SU(N) with N ≥ 3

SO(4N + 2)

E6

. (4.19)

We should also add G = U(1) to this list which we discussed previously.

This list is short, but it turns out to be shorter still because all anomaly coefficients

TrTA {TB, TC} vanish for E6 and for SO(4N + 2) with N ≥ 2. (Note that the Lie

algebra so(6) ∼= su(4) so this one remains.) This means that, when it comes to pertur-

bative anomalies discussed above, we only need to worry when we have gauge groups

G = SU(N) with N ≥ 3.

There is, however, a “non-perturbative anomaly”, usually called the Witten anomaly

that rears its head for SU(2) and, indeed, for all Sp(N). We’ll discuss this briefly

below.
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Non-Abelian Chiral Gauge Theories

We could try to write down chiral non-Abelian gauge theories, in which left-handed and

right-handed fermions transform in different representations. This is straightforward

to do. For gauge group G = SU(N), from Table 8, the anomaly coefficients for the

symmetric and anti-symmetric representations are

A( ) = N + 4 and A( ) = N − 4 . (4.20)

Meanwhile, for the anti-fundamental representation N̄, which we denote as �, we have

A(�) = −1. This means that we can construct a chiral gauge theory by taking, for

example G = SU(N) with a and N − 4 � left-handed Weyl fermions. The simplest

of these theories is G = SU(5) with a 10 and a 5̄.

Alternatively, we could build a chiral gauge theory by taking either E6 or SO(4N +

2) with complex representations, for which the anomaly coefficients all vanish. The

simplest such example is SO(10) with a single Weyl fermion in the 16 representation.

This is the spinor representation of SO(10). (Strictly, we should be talking about the

double cover Spin(10) as the gauge group, rather than SO(10).) Rather strikingly,

both this SO(10) example and the SU(5) example above are prominent candidates for

grand unified theories.

One key feature of chiral gauge theories – both non-Abelian and Abelian – is that

it’s not possible to write down mass terms for fermions. Any such mass term should

be of the form χLψL or, equivalently, χ̄RψL, but these quadratic terms are not gauge

invariant.

4.1.2 Mixed Anomalies

Again consider a single Weyl fermion, now coupled to a background non-Abelian gauge

field Aµ in some representation R of the global symmetry G = SU(N) and an Abelian

gauge field that, for the purposes of this argument, we will call aµ. The partition

function is

Z[A; a] =

∫
DψLDψ̄L exp

(
−
∫
d4x iψ̄Lσ̄

µDµψL
)

(4.21)

now with

DµψL = ∂µψL − igAAµTARψL − ieqaµψL . (4.22)

Now when we do a U(1) gauge transformation ψL → eieqαψL, the partition function

picks up two contributions: one is the phase (4.6) that depends on the U(1) field
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strength fµν = ∂µaν − ∂νaµ, but there is another that depends on the SU(N) field

strength,

Z[A; a]→ exp

(
ie3q3

32π2

∫
d4x αfµν

?fµν +
ieg2qI(R)

16π2

∫
d4x αTrFµν

?F µν

)
Z[A; a] .(4.23)

Here I(R) is another group theoretic quantity, known as the Dynkin index, defined as

Tr TAR T
B
R =

1

2
I(R) δAB . (4.24)

The Dynkin index is related to the quadratic Casimir C(R), which we previously defined

in (3.27) by TAR T
A
R = C(R)1. You can take the trace of both sides to get I(R) dim(G) =

2C(R) dim(R). The fundamental representation has I(�) = 1 and the Dynkin index

of the conjugate representation is I(R̄) = I(R). The Dynkin indices for some other

common representations of SU(N) are given in Table 8.

The second term in (4.23) is known as a mixed anomaly. It is again cubic in the

charges, but this is shared between a single U(1) charge q and two non-Abelian charges.

In perturbation theory, it arises from the triangle diagram:

To have a consistent gauge theory, any mixed anomalies must also cancel. For a bunch

of left-handed fermions with U(1) charge qi, sitting in SU(N) representations Ri, the

requirement of anomaly cancellation is∑
i

qiI(Ri) = 0 . (4.25)

You might wonder what happens if we have a single non-Abelian current, and two

Abelian currents,

But this vanishes automatically, because it’s proportional to the trace of the generator

TrTA = 0.
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The Mixed Gauge-Gravitational Anomaly

Something similar plays out if we couple a quantum field theory to gravity. We needn’t

be bold and talk about quantum gravity here: it’s enough just to think about a quantum

field theory on a curved spacetime with metric g.

To motivate this, let’s first review how to couple spinors to a curved spacetime. The

starting point is to decompose the metric in terms of vierbeins,

gµν(x) = eaµ(x) ebν(x) . (4.26)

There is an arbitrariness in our choice of vierbein, and this arbitrariness introduces an

SO(1, 3) gauge symmetry into the game. The associated gauge field ωabµ is called the

spin connection. It is determined by the requirement that the vierbeins are covariantly

constant

Dµeaν ≡ ∂µe
a
ν − Γρµνe

a
λ + ωaµ be

b
ν = 0 (4.27)

where Γρµν are the usual Christoffel symbols. This language makes general relativity

look very much like any other gauge theory. In particular, the field strength of the spin

connection is

(Rµν)
a
b = ∂µω

a
ν b − ∂νωaµ b + [ωµ, ων ]

a
b . (4.28)

This is related to the usual Riemann tensor by (Rµν)
a
b = eaρe

σ
b R

ρ
µν σ.

This machinery is just what we need to couple a Dirac spinor to a background curved

spacetime. The appropriate covariant derivative is

Dµψα = ∂µψα +
1

2
ωabµ (Sab)

β
αψβ (4.29)

where Sab = 1
4
[γa, γb] is the generator of the Lorentz group in the spinor representation.

Written in this way, the coupling of spinors to a curved spacetime looks very similar to

the coupling to any other gauge field.

This manifests itself in the path integral measure. If we assign the Weyl fermion a

charge q and couple it to a U(1) gauge field a transformation, the partition function

shifts as

Z[a]→ exp

(
eq

192π2

∫
d4x αεµνρσRµνλτRρσ

λτ

)
Z[a] . (4.30)

with Rµνλτ the Riemann tensor. This is a mixed U(1)-gravitational anomaly. The

equivalence principle means that everything couples the same to gravity, so there’s no
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analog of the Dynkin index in (4.25) and the requirement that a U(1) gauge theory is

consistent when placed on a curved spacetime becomes∑
i

qi = 0 . (4.31)

This is the condition (4.13) that we advertised previously.

Again, this result can also be seen in perturbation theory, this time by a suitable

regularisation of the triangle diagram,

This mixed gauge-gravitational anomaly only arises for Abelian gauge groups. There’s

no corresponding requirement for non-Abelian gauge theories, essentially because TrTA =

0 for any generator of a simply connected Lie algebra.

It turns out that there is no purely gravitational anomaly, with gravitons on all three

legs, in d = 3 + 1 dimensions. Such gravitational anomalies do exist in d = 2 mod 8

dimensions, and there are important implications in d = 1 + 1 for condensed matter

physics and in d = 9 + 1 for string theory.

4.1.3 The Witten Anomaly

Among the G = SU(N) gauge groups, the smallest G = SU(2) stands out as special.

This is because all representations of G = SU(2) are either real or pseudoreal. (A

pseudoreal representation means that, while not actually real, the representation is

isomorphic to its complex conjugate.) This means that there are no perturbative gauge

anomalies of the kind described above for G = SU(2).

You can check this explicitly for the fundamental representation. This has generators

TA = 1
2
σA with σA the Pauli matrices. But a little matrix multiplication will convince

you that

Tr σA {σB, σC} = 0 (4.32)

for all A,B,C = 1, 2, 3. That’s the statement that there’s no anomaly.
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Taken at face value, this suggests that SU(N) coupled to a single fundamental Weyl

fermion is inconsistent for all N ≥ 3 but is fine for N = 2. That’s a slightly odd

state of affairs, not least because the SU(2) theory has a number of strange and hard-

to-interpret properties. (The instanton has an odd number of fermion zero modes for

example.) However, there’s something else at play that we’ve missed. It turns out that

the SU(2) theory suffers from a different kind of anomaly. This is known as the Witten

anomaly, or sometimes just as the SU(2) anomaly.

The Witten anomaly doesn’t show up in perturbation theory. Instead it can be traced

to some strange field configurations that we must sum over in the path integral that

wind in a non-trivial way around Euclidean spacetime. Mathematically, this follows

from the homotopy group

Π4(SU(2)) = Z2 . (4.33)

For this anomaly to cancel, an SU(2) gauge theory must have an even number of fun-

damental Weyl fermions to be consistent. Again, you can find details of this calculation

in the lectures on Gauge Theory.

4.2 Chiral (or ABJ) Anomalies

As we stressed at the beginning of this section, the anomaly for a symmetry group

G has various avatars depending on whether the symmetry is global or gauged. So

far, we’ve seen one of these avatars: the anomaly provides a collection of consistency

conditions on any gauge theory: the charges, or representations, must obey (4.7) and

(4.17) and, for mixed anomalies, (4.25) and (4.31).

In this section we discuss the second avatar of anomalies: a perfectly good global

symmetry of the classical theory, can fail to be a symmetry of the quantum theory.

This was the first place in which anomalies in quantum field theories were discovered.

This phenomenon is known as the ABJ anomaly, after its discoverer’s Adler, Bell and

Jackiw, and sometimes as the chiral anomaly and sometimes, confusingly, just as the

anomaly.

The ABJ anomaly can be viewed as a mixed anomaly between a U(1) global sym-

metry and a gauge symmetry G. As an example, suppose that we have a bunch of

left-handed Weyl fermions, transforming in the representation Ri under a G = SU(N)

gauge symmetry. Suppose, in addition, that there is a global U(1) symmetry of the

classical action, under which the fermions have charges qi.
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The full Euclidean partition function for this theory is, schematically,

Z =

∫
DA exp

(
−1

2

∫
d4x TrFµνF

µν

)
Z[A] (4.34)

where A is the non-Abelian gauge field and Z[A] is the partition function for the

fermions, which are coupled to this gauge field

Z[A] =

∫
DψL iDψ̄L i exp

(
−
∫
d4x i

∑
i

ψ̄Lσ̄
µDµψL

)
. (4.35)

Note that, in contrast to the previous section, we haven’t introduced a background

gauge field for the U(1) global symmetry. (This is what we called aµ in (4.23).)

Now we do a global U(1) transformation

ψL i → eiαqiψL i (4.36)

for some α ∈ R. The mixed anomaly (4.23) means that the partition function is not

invariant. Instead, the fermionic part of the partition function transforms as

Z[A]→ exp

(
iα

16π2

∑
i

qiI(Ri)

∫
d4x TrFµν

?F µν

)
Z[A] . (4.37)

We see that, although the classical action may be invariant under the global U(1)

symmetry, for this to persist as a symmetry of the quantum theory we also need the

fermionic measure to be invariant. This is true only if∑
i

qiI(Ri) = 0 . (4.38)

If this condition does not hold, then the classical symmetry is not a symmetry of the

quantum theory. It is said to be anomalous.

An Example: The Axial Anomaly in QCD

The most familiar example of this kind of anomaly arises for the (approximate) U(1)A
axial symmetry of QCD. Consider the generalised theory, in which we have a G =

SU(Nc), coupled to Nf massless Dirac fermions. The action is

S =

∫
d4x

−1

2
TrGµνG

µν + i

Nf∑
i=1

ψ̄iγ
µDµψi

 . (4.39)
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We studied this theory in some detail in Section 3.2 where we learned about the im-

plications of chiral symmetry breaking. Recall that the classical action 4.39 has an

U(Nf )L×U(Nf )R global symmetry, with each factor rotating qL and qR independently.

The SU(Nf )L×SU(Nf )R subgroup is the main character in the story of chiral symme-

try breaking. Here we are more interested in the two U(1) subgroups, which we take

to act as

U(1)V : ψL i → eiαψL i and ψR i → eiαψR i

U(1)A : ψL i → eiαψL i and ψR i → e−iαψR i . (4.40)

Here U(1)V is the “vector-like” symmetry, meaning that it acts the same on left- and

right-handed spinors. In the context of the Standard Model, this is also referred to as

baryon number because it counts the number of baryons in a given state. Meanwhile,

the axial symmetry U(1)A acts differently on the left and right-handed spinors.

The left-handed spinors ψL transform in the Nc of SU(Nc) while the conjugated

right-handed spinors ψ̄R (which, due to the conjugation, are themselves left-handed)

transform in the Nc. For both of these, the Dynkin index is I(Nc) = I(Nc) = 1.

Under U(1)V , the ψL have charge +1 and the ψ̄R charge −1, which means that the

anomaly (4.38) vanishes. Hence, U(1)V is a good symmetry of the quantum theory. In

contrast, under U(1)A, the ψL have charge +1 while the ψ̄R also have charge +1. This

means that the anomaly (4.38) does not vanish, and U(1)A is not a symmetry of the

quantum theory.

We’ve already seen one consequence of the QCD axial anomaly in Section 3.2: the

chiral condensate would naively seem to spontaneously break the U(1)A axial symmetry,

but there’s no associated light Goldstone boson in the QCD spectrum. Indeed, the

would-be Goldstone boson is the η′ which is significantly heavier than the pions. The

reason is that U(1)A was never a symmetry of the quantum theory in the first place

and wasn’t available to be spontaneously broken.

4.2.1 The Theta Term Revisited

There is another way to think about the chiral anomaly. We see from (4.37), that

acting with an anomalous U(1) global symmetry adds a term to the path integral that

is proportional to TrFµν
?F µν .

But we’ve met a term like this before. We can always add to the Yang-Mills action

(or, indeed, to the Maxwell action) a theta term that takes the form

Sθ =
θg2

16π2

∫
d4x TrFµν

?F µν . (4.41)
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We discussed some properties of this term in Section 3.4. Comparing with the form

of the chiral anomaly (4.37), we can interpret the anomaly as saying that the theta

parameter is shifted by a U(1) transformation,

U(1)A : θ → θ + α
∑
i

qiI(Ri) . (4.42)

But if a parameter (as opposed to a field) changes under a symmetry, then that means

that the symmetry is explicitly broken. This is another way to frame the anomaly.

For example, if we return to our generalised QCD with G = SU(Nc) gauge group

and Nf massless Dirac fermions then, under the axial transformation (4.40), the theta

angle transforms as

U(1)A : θ → θ + 2Nfα . (4.43)

Thinking about things in this way makes certain aspects of the physics more transpar-

ent. For example, suppose that we have a theory with a single massive Dirac fermion

ψ. There are two different Dirac masses that we could write down:

Lmass = m1ψ̄ψ + im2ψ̄γ
5ψ . (4.44)

If we decompose the Dirac fermion into Weyl fermions, ψ = (ψL, ψR), then these masses

become

Lmass = mψ̄LψR +m?ψ̄RψL with m = m1 + im2 . (4.45)

Now suppose that we do an axial rotation, ψL → eiαψL and ψR → e−iαψR. Then the

theory isn’t invariant because the mass term shifts by a phase. But, from (4.42), so

too does the theta angle. We have

U(1)A : m→ e−2iαm and θ → θ + 2α . (4.46)

However, rotating the phase of the fermion can’t change the physics of the theory.

For example, if we have a free massive fermion (not coupled to a gauge field) then for

every value of the mass m ∈ C in (4.45), the physical excitation always has mass |m|.
Now when we couple the fermion to the gauge field, rotating the phase of the fermion

changes both the phase of m and the value of θ. This means that the physics depends

only on the invariant combination θ + arg(m). More generally, with Nf fermions we

can have a complex mass matrix M and the quantity θ+ arg (detM) remains invariant

under chiral rotations.
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This, ultimately, is the way in which the strong CP problem in QCD gets its teeth:

it’s not quite true to say that θ = 0 in QCD. It’s more accurate to say that θ +

a bunch of phases of masses = 0. And, as we will see in Section 5, those phases of the

masses come from rather different physics of the Yukawa couplings.

There is one further observation that follows from the discussion above. Suppose

that we have a gauge theory coupled to one, or more, massless fermions. Then rotating

the phase of that massless fermion shouldn’t affect the physics of the theory, but acts to

shift theta as in (4.42). This means that, in a theory with massless fermions, the theta

angle isn’t physical: it can just be shifted away by an axial rotation. This suggests a

rather cute solution to the strong CP problem: perhaps the mass of the up quark is

actually zero! In that case, the physics would be independent of the value of θ. Sadly,

as numerical simulations have got better, we’re now pretty confident that the mass

of the up quark is non-zero, and this idea is not a viable solution to the strong CP

problem.

4.2.2 Noether’s Theorem for Anomalous Symmetries

If a theory has a continuous symmetry, then Noether’s theorem tells us that there will

be a corresponding conserved current Jµ, obeying the continuity equation

∂µJ
µ = 0 . (4.47)

What happens if the symmetry is anomalous, so that it’s a symmetry of the classical

action, but not of the full quantum theory? How does this show up in the conservation

of the current?

To answer this, let’s first recall how to derive Noether’s theorem. To start, we’ll

work with scalar fields, even though our ultimate interest is in fermions. Consider the

transformation of a scalar field φ

δφ = αX(φ) . (4.48)

Here α is a constant, infinitesimally small parameter. This transformation is a symme-

try if the change in the Lagrangian is

δL = 0 . (4.49)

We can actually be more relaxed than this and allow the Lagrangian to change by a

total derivative; this won’t change our conclusions below.
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The quick way to prove Noether’s theorem is to allow the constant α to depend on

spacetime: α = α(x). Now the Lagrangian is no longer invariant, but changes as

δL =
∂L

∂(∂µφ)
∂µ(δφ) +

∂L
∂φ

δφ

=
∂L

∂(∂µφ)
∂µ(αX(φ)) +

∂L
∂φ

αX(φ)

= (∂µα)
∂L

∂(∂µφ)
X(φ) +

[
∂L

∂(∂µφ)
∂µX(φ) +

∂L
∂φ

X(φ)

]
α . (4.50)

But we know that δL = 0 when α is constant, which means that the term in square

brackets must vanish. We’re left with the expression

δL = (∂µα)Jµ with Jµ =
∂L

∂(∂µφ)
X(φ) . (4.51)

The action S =
∫
d4x L then changes as

δS =

∫
d4x δL =

∫
d4x (∂µα)Jµ = −

∫
d4x α ∂µJ

µ (4.52)

where we pick α(x) to decay asymptotically so that we can safely discard the surface

term.

The expression (4.52) holds for any field configuration φ with the specific change

δφ. However, when φ obeys the classical equations of motion then δS = 0 for any δφ,

including the symmetry transformation (4.48) with α(x) a function of spacetime. This

means that when the equations of motion are satisfied we have the conservation law

∂µJ
µ = 0 . (4.53)

This is Noether’s theorem.

An Example: the Free Fermion

We can apply all of the above ideas to the fermions that we’re really interested in. As

a warm-up, consider a free, massless Dirac fermion ψ with action

S = −
∫
d4x iψ̄γµ∂µψ (4.54)

with ψ̄ = ψ†γ0. This theory has two symmetries, the vector and axial symmetries of

(4.40). Written in terms of the Dirac fermion, the vector symmetry acts as ψ → eiαψ

and, infinitesimally, this becomes

U(1)V : δψ = iαψ and δψ̄ = −iαψ̄ . (4.55)
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We can read off the associated current from (4.51): it is

JµV = ψ̄γµψ . (4.56)

Meanwhile, the axial symmetry acts as ψ → eiαγ
5
ψ and, infinitesimally, this becomes

U(1)A : δψ = iαγ5ψ and δψ̄ = iαψ̄γ5 . (4.57)

Here there’s an extra minus sign that rears its head in the transformation of δψ̄ which

arises because the γ5 has to sneak past the γ0 that sits in the definition of ψ̄. Again,

we can read off the associated current from (4.51): this time it is

JµA = ψ̄γµγ5ψ . (4.58)

As a warm-up to understand the effect of the anomaly, we can see how the currents are

affected when we turn on a mass term for the fermion, so

S = −
∫
d4x iψ̄γµ∂µψ +mψ̄ψ . (4.59)

The action remains invariant under the vector symmetry, and so the current JµV con-

tinues to obey ∂µJ
µ
V = 0. But the mass term is not invariant under the axial symmetry.

Nonetheless, that doesn’t mean that we can’t say anything. Let’s return to our deriva-

tion of Noether’s theorem and do a transformation with the constant α again promoted

to a function of spacetime α(x). We can repeat the steps we did before, except that

we need to include an extra term because the action is no longer invariant under the

symmetry. Instead, we have

δS =

∫
d4x (∂µα)JµA + 2imαψ̄γ5ψ (4.60)

with JµA given in (4.58). Now the argument proceeds as before: when the equations of

motion are obeyed, we must have δS = 0 for all transformations, including those with

α(x). So whenever the equations of motion are obeyed, the axial current satisfies

∂µJ
µ
A = 2imψ̄γ5ψ . (4.61)

This tells us how conservation of axial charge fails when the fermion has a mass.

The Conservation Law for Anomalous Symmetries

Now we can reframe our original question: how is conservation of axial charge affected

by the anomaly? We’ll consider Nf massless Dirac fermions, coupled to a Yang-Mills

theory, with action

Sθ =

∫
d4x

(
− 1

2g2
TrFµνF

µν +
θg2

s

16π2
TrFµν

?F µν − i
Nf∑
i=1

ψ̄iγ
µDµψi

)
.
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We’ve seen that we can capture the effect of the anomaly by shifting the theta angle,

as in (4.43)

U(1)A : θ → θ + 2Nfα . (4.62)

But now we can think of this as a shift of the classical action, and we’re in the same

boat as when we looked at massive fermions above. In particular, we find that the axial

current obeys

∂µJ
µ
A =

Nfg
2

8π2
TrFµν

?F µν . (4.63)

This is the effect of the anomaly.

Above, we have derived the anomaly equation (4.63) by thinking about the classical

action. But one can also show that this holds as an operator equation in quantum field

theory, what’s known as a Ward identity. You can read about this in the lectures on

Gauge Theory.

The anomaly equation (4.63) tells us that the axial symmetry is not conserved.

However, at first glance, it appears that there might be a loophole in this statement.

This is because, as we saw in (3.109), the term TrFµν
?F µν is actually a total derivative,

with

TrFµν
?F µν = 2∂µK

µ with Kµ = εµνρσTr

(
Aν∂ρAσ −

2i

3
AνAρAσ

)
. (4.64)

This suggests that we can define a combination of JµA and Kµ to construct a current

that is conserved. Indeed that is naively possible, but it’s not legal because Kµ is not

gauge invariant, even though ∂µK
µ is.

We can also ask: under what circumstances does the axial charge change? The axial

charge is measured by integrating over a spatial slice

QA =

∫
d3x J0

A . (4.65)

The change in axial charge from time t → −∞ to time t → +∞ is (assuming that

things drop off suitably fast at spatial infinity)

∆QA =

∫
dtd3x

∂J0
A

∂t
=

∫
d4x ∂µJ

µ
A =

Nfg
2
s

8π2

∫
d4x TrFµν

?F µν . (4.66)

But we’ve already seen in section 3.4 that the integral of TrFµν
?F µν is quantised. This

means that QA can jump by integer amounts. At weak coupling, the violation of axial

charge is mediated by instantons.
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There is a similar story for the mixed gauge-gravitational anomaly that we discussed

previously. For example we saw that a single, free Weyl fermion has a U(1) symmetry

that suffers a mixed gravitational anomaly. This shows up because the current for this

U(1) is no longer conserved when the theory is placed in a curved background. Instead,

it obeys

∇µj
µ
A = − Nf

384π2
εµνρσRµνλτRρσ

λτ (4.67)

where ∇µ is the appropriate covariant derivative from differential geometry.

4.2.3 Neutral Pion Decay

The neutral pion, π0 = 1√
2
(ūu− d̄d) has a substantially shorter lifespan than its charged

cousin. It lasts only around ∼ 10−16 seconds, decaying primarily to

π0 → γγ . (4.68)

There is an interesting story associated to this. Indeed, it was the effort to understand

why this decay occurs at all that first led to the discovery of the anomaly.

To set the scene, first note that, although we’ve focused on massless QCD above,

the axial anomaly also arises in QED coupled to massless fermions. Suppose that we

have Nf Dirac fermions ψi, each with charge Qi under a U(1) gauge symmetry. Then

the axial symmetry ψi → eiαγ
5qiψi suffers an ABJ anomaly, and the associated current

obeys

∂µJ
µ
A =

(∑
i

qiQ
2
i

)
1

16π2
Fµν

?F µν . (4.69)

Again, this follows from a triangle diagram with one JµA leg, and two photon legs. This

is reflected in the charges, which are linear in the axial charge qi and quadratic in the

gauge charge Qi.

Now let’s see the implications of this for QCD. We’ll take Nf = 2 light quarks,

corresponding to the up and down. If we assume that these are massless, we know that

the QCD action has a U(1)V × SU(2)L × SU(2)R symmetry. Now we introduce the

coupling to the photon with charges

Q1 =
2

3
and Q2 = −1

3
. (4.70)

Because the quarks have different electric charges, this breaks the flavour symmetry

down to U(1)L×U(1)R ⊂ SU(2)L× SU(2)R. We can combine these into a new vector
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symmetry U(1)′V and a new axial symmetry U(1)′A, under which the quarks transform

as

U(1)′V : u→ eiαu and d→ e−iαd .

U(1)′A : u→ eiαγ
5

u and d→ e−iαγ
5

d . (4.71)

The vector symmetry U(1)′V is anomaly-free, while the axial symmetry U(1)′A does not

suffer an anomaly due to the QCD gauge field because there is a cancellation between

the q1 = +1 charge of the up quark and the q2 = −1 charge of the down quark. However,

the axial U(1)′A does suffer an anomaly with the QED gauge field. To compute this, we

need to remember that, from the perspective of electromagnetism, each quark comes

in Nc = 3 different varieties, due to the fact that they also transform under the SU(3)

gauge group. This means that the ABJ anomaly (4.69) is

∂µJ
′µ
A = Nc

((
2

3

)2

−
(

1

3

)2
)

1

16π2
Fµν

?F µν =
Nc

48π2
Fµν

?F µν . (4.72)

where we’ve left the value of Nc = 3 in this formula to highlight that the anomaly

coefficient depends on the number of quark colours.

This additional axial current is J ′µA = ūγµγ5u− d̄γµγ5d and, from (3.68), is precisely

the current that creates the neutral pion π0,

〈0|J ′µA (x)|π0(p)〉 = −ifπδab pµe−ix·p . (4.73)

The anomaly equation then gives an amplitude for π0 → γγ. This amplitude is propor-

tional to Nc, the number of colours, and gives an experimental method to determine

Nc = 3.

There is more to this story which we mention only briefly. This amplitude for π0 →
γγ is the same as that which would arise from the coupling in the Lagrangian

L =
Nce

2

48π2fπ
π0 Fµν

?F µν . (4.74)

In other words, the neutral pion field π0 acts very much like a dynamical theta term!

There’s something odd in this because π0 is a Goldstone boson and, as such, should

only appear in the action with derivative couplings. But, after an integration by parts,

the pion is derivatively coupled in (4.74) if we remember that Fµν
?F µν = 2∂µK

µ as in

(4.64). There is a much longer story here, involving the beautiful Wess-Zumino-Witten

(WZW) term that you can read about in the lectures on Gauge Theory.
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4.2.4 Surviving Discrete Symmetries

Thinking of the anomalous symmetry as shifting the theta angle reveals something

novel. That’s because the theta angle is, as the name suggests, an angle with θ ∈ [0, 2π).

This means that if we transform by an anomalous U(1) symmetry that maps θ → θ+2π,

then that hasn’t actually changed the value of θ at all. In this way, some discrete

subgroup of the U(1) may remain.

We can see this in the case of QCD, although the end result turns out to be a little

fiddly and not particularly interesting. From (4.43), we see that a U(1)A transformation

of the form e−iα = e2πi/2Nf will send θ → θ+2π. By acting with a compensating U(1)V
transformation, there is a surviving ZNf subgroup which acts as

ZNf : ψL i → e2πi/NfψL i and ψR i → ψR i . (4.75)

But we recognise this as the centre of the SU(Nf )L global symmetry. So in this case,

the surviving discrete symmetry doesn’t tell us anything new.

Here’s a different example where things are more interesting. Consider SU(N) Yang-

Mills coupled to a single, massless Weyl spinor λ in the adjoint representation. We’ve

already seen that the adjoint representation is real, so this theory doesn’t suffer from

a gauge anomaly. Indeed, it’s a rather famous theory because it secretly has a su-

persymmetry, exchanging the gauge field and fermion. This theory is known as super

Yang-Mills. Thankfully, we won’t need to know anything about supersymmetry for our

discussion. (You can read more in the lectures on Supersymmetry.)

Classically this theory has a global U(1) symmetry which rotates the phase of λ

U(1) : λ→ eiαλ . (4.76)

But quantum mechanically, this theory suffers an anomaly. We need the fact, from

Table 8, that I(adj) = 2N for the adjoint representation. Then, from (4.42), we see

that the theta angle shifts under this U(1) symmetry as

U(1) : θ → θ + 2Nα . (4.77)

This is telling us that the U(1) symmetry is anomalous. But, by the argument above,

a discrete Z2N survives since this shifts θ → θ + 2π, while the fermion transforms as

Z2N : λ 7→ e2πi/2Nλ . (4.78)
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This discrete symmetry becomes particularly interesting because this theory, like many

other non-Abelian gauge theories, flows to strong coupling at some scale ΛQCD where

it exhibits confinement and the formation of a fermion condensate,

〈λλ〉 ∼ Λ3
QCD . (4.79)

In actual QCD, such a condensate breaks the chiral symmetry. And the same is true

here, but with the important difference that the chiral symmetry in question is not

U(1) but instead just the surviving Z2N . The condensate breaks this to Z2N → Z2,

where Z2 : λ 7→ −λ. But we know from our discussion in Section 2.1 that, when

a discrete symmetry is spontaneously broken, it means that the theory has multiple,

degenerate ground states. Indeed, that’s the case here: SU(N) gauge theory, with

a single adjoint Weyl fermion, has N degenerate ground states, distinguished by the

phase of the fermion condensate 〈λλ〉.

4.3 ’t Hooft Anomalies

So far we have discussed two manifestations of the anomaly:

• For a gauge symmetry, the anomaly better cancel. Or else.

• A mixed anomaly between a global symmetry and gauge symmetry means that

the global symmetry isn’t.

But what if we have an anomaly just for a global symmetry? What are the conse-

quences? From what we’ve discussed above, we know that the symmetry isn’t conserved

if we couple it to background gauge fields. But nothing compels us to do so. Indeed, if

we’re in the realm of particle physics then it’s a little odd to do so because we’re usu-

ally interested in relativistic physics in Minkowski space, while turning on a constant

background electric or magnetic field breaks Lorentz invariance. So what else can we

learn from this?

The answer is both subtle and powerful. The basic idea is that the anomaly provides

a way to classify different quantum field theories: two quantum field theories with the

same global symmetry group GF can only be deformed into each other if they share

the same anomaly. This is particularly useful when thinking about how theories flow

to strong coupling, where we often don’t know what happens. The anomalies provide

constraints on what the theory can do. Such anomalies in global symmetries are referred

to as ’t Hooft anomalies.
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We can flesh out this idea some more. Suppose that we’ve got some theory with

a global symmetry that, for the sake of this argument, I’ll call GF . We can compute

the anomaly for this symmetry. This is just a number – say
∑

iQ
3
i if the symmetry

is GF = U(1), or the generalisation if GF is non-Abelian. As we will now argue,

this anomaly is a way to characterise the theory and, provided that the symmetry is

not broken, the anomaly remains unchanged under any deformation of the theory. In

particular, the anomaly remains unchanged if the theory flows to strong coupling. In

fact, this anomaly is one of the few handles that we have on the strong coupling physics

of quantum field theories.

We will first explain the basic idea and then give a concrete example. Suppose that

we have some quantum field theory – typically a non-Abelian gauge theory – that is

weakly coupled in the UV, but flows to strong coupling in the IR. The most important

example is, of course, QCD. We will abstractly call the UV theory TUV . We assume

that it has some global symmetry GF . This should be a true symmetry of the quantum

theory meaning, in particular, that it has no mixed anomalies with the gauge symmetry.

This UV theory may have a ’t Hooft anomaly for GF . This anomaly is just a

number. If GF is Abelian, this anomaly is simply
∑
Q3
i as in (4.7); if it is non-Abelian

the anomaly is
∑
A(Ri) as in (4.17). Either way, we will denote this anomaly as AUV

and assume AUV 6= 0.

The theory now flows under RG to a theory TIR in the IR which will typically be

very different. For QCD this is the theory of mesons and baryons. For other quantum

field theories, the infra-red physics may be quite mysterious. We have the following

result:

Claim: Either the symmetry GF is spontaneously broken, or the anomalies match

meaning

AUV = AIR . (4.80)

This is a wonderfully powerful result. If GF is spontaneously broken then we necessarily

have massless Goldstone bosons. But if GF is unbroken then we must have massless

fermions that reproduce the anomaly. This is known as ’t Hooft anomaly matching.

Proof: The argument for ’t Hooft anomaly matching is very slick. Suppose that

AUV 6= 0 then we know from the discussion above that we’re not allowed to couple GF

to dynamical gauge fields. That would lead to a sick theory.
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To proceed, we introduce a bunch of extra massless Weyl fermions transforming

under GF . We call these spectator fermions. These won’t interact directly with our

original fields in TUV , but they are designed so that the total anomaly of the original

fields and these new fermions vanishes:

AUV +Aspectator = 0 . (4.81)

Now that the anomaly cancels, there’s nothing to stop us introducing dynamical gauge

fields for GF . We do so, but with a very (very!) small coupling constant.

Now let’s go back to our original theory TUV . It will flow to strong coupling at some

scale ΛQCD and we’d like to understand the physics TIR below this scale. If the gauge

coupling for GF is small enough, then this RG flow takes place entirely unaffected by

the presence of the GF gauge fields. This means that one of two things could have

happened. It may be that the strong coupling dynamics of TUV spontaneously breaks

the symmetry GF . (For example, as we’ve seen, this is expected to happen if we take

GF to be the chiral symmetry of QCD.) This was the first possibility of our claim.

Alternatively, GF may be unbroken at low-energies. In this case, we’re left with TIR,

together with the spectator fermions, all coupled to the GF gauge fields. But this can

only be consistent if

AIR +Aspectator = 0 . (4.82)

Clearly, this means that we must have AIR = AUV . �

4.3.1 Confinement Implies Chiral Symmetry Breaking

Anomaly matching has many uses. But the most important is a statement about QCD.

Recall from Section 3 that there are two strong coupling effects that arise in QCD.

The first is confinement, the second chiral symmetry breaking. We will now use ’t

Hooft anomalies to argue that the former implies the latter.

We can work more generally with an SU(Nc) gauge theory, coupled to Nf massless

Dirac fermions qi, each in the fundamental representation. This is a vector-like theory,

so doesn’t suffer any gauge anomaly. We’ve already seen that the U(1)A axial symmetry

suffers an ABJ anomaly, so the global symmetry of the theory is

GF = U(1)V × SU(Nf )L × SU(Nf )R . (4.83)

We want to compute the ’t Hooft anomalies of this global symmetry group.
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This is straightforward if we work in the UV where the theory is weakly coupled. In

this case, we can just pretend that the fermions are essentially free and read off the

result. There is no ’t Hooft anomaly for U(1)3
V , where the subscript 3 means that all

three legs in the triangle diagram have U(1)V currents, because this is a vector-like

symmetry. In contrast, there is a ’t Hooft anomaly associated to the chiral, SU(Nf )

factors. In fact, there are two. The first is the purely non-Abelian anomaly,

[SU(Nf )L]3 : A =
∑

A(�) = Nc . (4.84)

Here the anomaly arises because each left-handed quark qL transforms in the fundamen-

tal � of SU(Nf )L and A(�) = 1. But the quarks also come with a colour index which

means that there are Nc such fermions. (More generally, you have to sum over any

other indices that the fermion carries that aren’t themselves involved in the anomaly.)

Hence the result A = NcA(�) = Nc. There is a similar anomaly for SU(Nf )R.

In addition, there is a mixed ’t Hooft anomaly between U(1)V and SU(Nf ). This is

[SU(Nf )L]2 × U(1)V : A′ =
∑

qI(�) = Nc (4.85)

which again simply counts the number of quark colours.

Now the question is: what happens in the infra-red? For suitably low Nf , we’ve seen

in Section 3 that we expect the chiral symmetry GF to be broken down to U(1)V ×
SU(Nf )diag, but proving this remains an open problem. Here we will shed some insight.

We will assume that the theory confines and, moreover, that in the infra-red, the

physics is described by weakly interacting mesons and baryons. (This is in contrast to

the conformal field theories that we see at larger Nf .) In such a situation, ’t Hooft

anomaly matching shows that the chiral symmetry must be broken.

Here is the argument. Suppose that GF is unbroken in the infra-red. Then there must

be massless fermions around that can reproduce the anomalies A and A′. Moreover,

by assumption, these massless fermions must be bound states of quarks, either mesons

or baryons.

Mesons certainly can’t do the job because these are bosons. Baryons, meanwhile,

contain Nc quarks so these too are bosons when Nc is even. This is telling us that when

Nc is even, a confining theory contains no fermions at low-energies and so certainly can’t

reproduce the anomalies. We learn that chiral symmetry breaking must occur when

Nc is even.
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What about Nc odd? Now baryons are fermions. Is it possible that some of these

baryons could be massless and reproduce the ’t Hooft anomalies? Of course, this

doesn’t happen in our world: the simplest baryons are the proton and neutron which are

certainly not massless. But might it be a theoretical possibility? The answer, it turns

out, is no. The basic argument is to figure out what representations of GF the putative

massless baryons must sit in, and then to show that there’s no possible combination of

baryons that can reproduce the ’t Hooft anomalies A and A′. This means that if QCD

confines into weakly interacting colour singlets, then chiral symmetry is necessarily

broken. We now present this argument in more detail.

The Representations of Massless Baryons

It turns out that we can make the argument for any number of colours Nc, but it is

simplest if we restrict to Nc = 3. Which, happily, is the case we care about for QCD.

If the SU(3) gauge group confines, then any massless fermion must be a colour singlet.

The only possibility is baryons, comprised of three quarks. Each constituent quark can

be either left-handed or right-handed. Under SU(Nf )L × SU(Nf )R ⊂ GF , the left-

handed fermions transform as (Nf ,1), while the right-handed fermions transform as

(1,Nf ). Both of these Weyl fermions have charge +1 under U(1)V .

We’ve already seen in Section 3.3 that baryons in QCD can have either spin 1
2

or

spin 3
2
, depending on how the constituent spins of the quarks are aligned. You might

imagine that the same can be true for our putative massless baryons, but there is a

theorem by Weinberg and Witten which says that one cannot form massless bound

states with helicity λ ≥ 1. So if the massless baryons above do indeed form then they

must have helicity ±1
2
.

So what representations of GF = U(1)V ×SU(Nf )L×SU(Nf )R do the colour singlet

baryons sit in? Well, to form a helicity 1
2

baryon, we should contract the spin indices

of two fermions of the same handedness, and then leave the third spinor degree of

freedom hanging. There are different ways to do this. For example, we could have

three left-handed spinors, so that the indices combine to leave us with a left-handed

spinor. In this case, the resulting bound state will transform in one of three possible

representations of the SU(Nf )L symmetry which, in the language of Young diagrams,

read

L L L ,
L
L
L

,
L L
L

(4.86)
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The first representation is the totally symmetric, the second the totally anti-symmetric,

and the final is some representation whose name I don’t know. Some properties of these

representations are listed in Table 9. We’ve labelled the boxes with L to remind us

that these are constructed out of three left-handed quarks.

But, alternatively, we could get ourselves a left-handed spinor by combining the in-

dices on two right-handed spinors, and then leaving the final left-handed spinor hanging.

These baryons would transform in representations of SU(Nf )L × SU(Nf )R that take

the form

L ⊗ R R , L ⊗
R
R

(4.87)

Each of these transforms in the fundamental � of SU(Nf )L, while the first transforms

in the symmetric of SU(Nf )R and the second transforms in the anti-symmetric

of SU(Nf )R.

So (4.86) and (4.87) are the possible representations for massless left-handed baryons.

But there’s also the option for massless right-handed baryons which we get by simply

exchanging L↔ R,

R R R ,
R
R
R

,
R R
R

, L L ⊗ R ,
L
L
⊗ R (4.88)

So these are our options for forming massless baryons. Now the question is: which

combination of these massless baryons will reproduce the ’t Hooft anomalies of the UV

theory?

We started with a vector-like theory, in which all fermions came in left/right pairs

to make a Dirac fermion. So it seems reasonable to assume that we end up with a

vector-like theory. Indeed, a strong constraint comes from the U(1)3
V anomaly which

vanishes. We will assume that we reproduce this by taking left/right pairs, so that if

one of the massless baryons in (4.86) or (4.87) arises in the spectrum, then so too does

its counterpart from (4.88).

So now we have a well-defined problem on our hands. We take some number pα ≥ 0

of each of the α = 1, 2, 3, 4, 5 possible baryons above and then see which values of pα
can reproduce the ’t Hooft anomalies A and A′.
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R dim(R) I(R) A(R)

Nf 1 1

1
2
Nf (Nf + 1) Nf + 2 Nf + 4

1
2
Nf (Nf − 1) Nf − 2 Nf − 4

1
6
Nf (Nf + 1)(Nf + 2) 1

2
(Nf + 2)(Nf + 3) 1

2
(Nf + 3)(Nf + 6)

1
6
Nf (Nf − 1)(Nf − 2) 1

2
(Nf − 2)(Nf − 3) 1

2
(Nf − 3)(Nf − 6)

1
3
Nf (N

2
f − 1) N2

f − 3 N2
f − 9

Table 9. Properties of some representations of SU(Nf )

Actually, at this point a subtlety raises its head. Above, we confidently asserted

that (4.86) and (4.87) were left-handed spinors, while (4.88) were right-handed spinors.

That’s certainly true if we’re dealing with a weakly interacting theory where we can

just read off the representations from contracting indices. But things could be more

complicated in a strongly interacting theory. In particular, it may be that a massless

spin 1 gluon binds with one of the baryons to flip its helicity from +1
2

to −1
2
. So it may

be that some of the baryons that we listed in (4.86) and (4.87) are actually right-handed

instead of left-handed.

In fact, it’s easy to take this subtlety into account. We’ll assign an index, pα ∈ Z,

with α = 1, . . . , 5 to each of the five baryons in (4.86) and (4.87). The magnitude

|pα| denotes the number of species of baryon that arise in the massless spectrum. If

these baryons are left-handed then we take pα > 0; if they are right-handed then we

take pα < 0. Our task is to find which values of pα will satisfy anomaly matching and

reproduce (4.84) and (4.85).

Next, we need a little group theory. For a representation R of SU(Nf ), we will need

to know the dimension dim(R), the anomaly coefficient A(R), as well as the Dynkin

index I(R) that we already met in (4.24). The relevant data is shown in Table 9.
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We can now compute the infra-red anomalies, assuming that we have pα massless

baryons of each type. For SU(Nf )
3
L with Nf ≥ 3, the anomaly is

A =
1

2
(Nf + 3)(Nf + 6)p1 +

1

2
(Nf − 3)(Nf − 6)p2 + (N2

f − 9)p3 (4.89)

+

(
1

2
Nf (Nf + 1)−Nf (Nf + 4)

)
p4 +

(
1

2
Nf (Nf − 1)−Nf (Nf − 4)

)
p5 .

Note that the baryons with numbers p4 and p5 arise from tensor products and have two

terms. For example, for p4 the first term comes from the left-handed baryon L ⊗ R R ,

and the second — with the minus sign — from the right-handed baryon R ⊗ L L .

Meanwhile, for the SU(Nf )
2 × U(1)V anomaly, each baryon has charge 3 under the

U(1)V . Dividing through by this, we get a contribution proportional to the Dynkin

index I(R),

A′

3
=

1

2
(Nf + 2)(Nf + 3)p1 +

1

2
(Nf − 2)(Nf − 3)p2 + (N2

f − 3)p3 (4.90)

+

(
1

2
Nf (Nf + 1)−Nf (Nf + 2)

)
p4 +

(
1

2
Nf (Nf − 1)−Nf (Nf − 2)

)
p5 .

To match the anomalies, we need to find pα such that A = A′ = 3.

To start, let’s look at Nf = 3. Anomaly matching gives

A = 27p1 − 15p4 = 3 and
A′

3
= 15p1 + 6p3 − 9p4 = 1 . (4.91)

We can immediately see that there can be no solutions to the second of these equations

since A′/3 in the infra-red theory is necessarily a multiple of 3 and cannot reproduce

the ultra-violet anomaly A′/3 = 1. We learn that G = SU(3) gauge theory with

Nf = 3 massless fermions must spontaneously break the GF flavour symmetry, as long

as the theory confines. You can check that the same argument works whenever Nf is

a multiple of 3.

Decoupling Massive Quarks

When Nf is not a multiple of 3, things are not quite so simple. Indeed, we will need

one further ingredient to complete the argument. To see this, let’s look at the anomaly

matching conditions for G = SU(3) gauge theory with Nf = 4 flavours. They are:

A = 35p1 − p2 + 7p3 − 22p4 + 6p5 = 3

A′

3
= 21p1 + p2 + 13p3 − 14p4 − 2p5 = 1 . (4.92)
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Now there are solutions. For example p2 = 3 and p5 = 1 with p1 = p3 = p4 = 0 does

the job. This corresponds to four massless baryons in the representations

[3(4̄,1)⊕ (4,6)]L ⊕ [3(1, 4̄)⊕ (6,4)]R (4.93)

where the L and R subscripts denote the chirality of these Weyl spinors. Note that

the left-handed baryons now transform under both SU(4)L and SU(4)R of the chiral

flavour symmetry.

Naively, the existence of the solution (4.93) suggests that there is a phase with

massless baryons and the chiral symmetry left unbroken. In fact, this cannot happen.

The problem comes when we think about giving one of the quarks a mass. We will

make the following assumption: when we give a quark a mass, any baryon that contains

this quark will also become massive. It is not obvious that this happens, but it turns

out to be true, a result known as the Vafa-Witten theorem. (It’s one of a number of

Vafa-Witten theorems.)

If we give one of the quarks a mass, then the symmetry group is explicitly broken to

GF = U(1)V × SU(4)L × SU(4)R −→ G′F = U(1)V × SU(3)L × SU(3)R . (4.94)

What happens to our putative massless spectrum (4.93)? A little group decomposition

tells us that under G′F , the left-handed baryons transform as

3(4̄,1)→ 3(3̄,1)⊕ 3(1,1) and (4,6)→ (3, 3̄)⊕ (3,3)⊕ (1, 3̄)⊕ (1,3) . (4.95)

The right-handed baryons have their SU(3)L × SU(3)R representations reversed. Of

these, the (1,1) and the (3, 3̄) do not contain the massive fourth quark. By our

assumption above, the remainder should become massive.

There is a further constraint however: all of the baryons that contain the fourth

quark should become massive while leaving the surviving symmetry G′F intact. This

is because, as the mass becomes large, we should return to the theory with Nf = 3

flavours and the symmetry group G′F . Although we now know that G′F will ultimately

be spontaneously broken by the strong coupling dynamics, this should happen at the

scale ΛQCD and not at the much higher scale of the fourth quark mass.

So what G′F -singlet mass terms can we write for the baryons that contain the fourth

quark? The left-handed spinors transform as 3(3̄,1)⊕ (3,3)⊕ (1, 3̄)⊕ (1,3). Of these,

(3,3) can happily pair up with its right-handed counterpart. Further, one of the (3̄,1)

representations can pair up with the right-handed counterpart of (1, 3̄). But that still

leaves us with 2(3̄,1) ⊕ (1,3) and these have nowhere to go. Any mass term will

necessarily break the remaining G′F chiral symmetry and, as we argued above, this is

unacceptable.
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The result above should not be surprising. Any baryon that can get a mass without

breaking G′F does not change the ’t Hooft anomaly for G′F . If it were possible for all

the baryons containing the massive quark to get a mass without breaking G′F then the

remaining massless baryons should satisfy anomaly matching. Yet we’ve seen that no

such solution is possible for Nf .

The upshot of this argument is that there exists no solution to anomaly matching

for Nf = 4 which is consistent with the decoupling of massive quarks. It is simple to

extend this to all Nf and, indeed, to all Nc. ’t Hooft anomaly matching then tells us

that the chiral symmetry must be broken for all Nc ≥ 2 and all Nf ≥ 3.

Massless Baryons when Nf = 2?

There is one situation where it is possible to satisfy the anomaly matching: this is

when Nf = 2. Since there is no triangle anomaly for SU(2), we need only worry about

the mixed SU(2)2
L × U(1)V ’t Hooft anomaly. We can import our results from earlier,

although we should be a little bit careful: the anti-symmetric representation
R
R

is the

singlet of SU(2) while the representation
L L
L

does not exist. The ’t Hooft matching

condition for gauge group SU(3) now gives

A′

3
= 10p1 − 5p4 + p5 = 1 . (4.96)

This has many solutions. The simplest possibility is p1 = p4 = 0 and p5 = 1. This

means that we can match the anomaly if there are massless baryons which transform

under SU(2)L × SU(2)R × U(1)V as

(2,1)3 ⊕ (1,2)3 . (4.97)

So for Nf = 2 we cannot use ’t Hooft anomaly matching to rule out the existence of

massless baryons. But it does not mean that they actually arise. To understand what

happens, we need to look more carefully at the actual dynamics. The only real tool we

have at our disposal is the lattice and this strongly suggests that even for Nf = 2 the

chiral symmetry is broken and there are no massless baryons.
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5 Electroweak Interactions

In this section, we turn to the weak force. But, in contrast to the strong force, if we

want to understand the weak force then we really need to take a step back and take in

the full structure of the Standard Model. This is because of the single most important

feature of the weak force: it breaks parity.

The weak force breaks parity because it is a chiral gauge theory. This means that

the gauge bosons interact differently with the left- and right-handed fermions. And, as

we saw in Section 4, this forces us to grapple with the issue of gauge anomalies. And

this, in turn, means that we must look at all the fermions to check consistency.

5.1 The Structure of the Standard Model

As we advertised in the introduction, the Standard Model is built on the gauge group

G = U(1)× SU(2)× SU(3) . (5.1)

Here U(1) is a force known as hypercharge. It is not electromagnetism. We will see how

electromagnetism emerges from the Standard Model in Section 5.2 when we discuss

electroweak symmetry breaking. The group for hypercharge is sometimes denoted

as U(1)Y to distinguish it from electromagnetism. Correspondingly, the charges are

usually denoted as Y .

There are a collection of fermions that are charged under this gauge group. The

fermions for a single generation are:

U(1) SU(2) SU(3)

QL
1
6

2 3

LL −1
2

2 1

uR
2
3

1 3

dR −1
3

1 3

eR −1 1 1

(5.2)

What a weird collection of charges and representations! Why these? We’ll answer this

question below. First some comments.

The hypercharges are taken to be fractional. In some sense, this is merely a con-

vention: we could just have well rescaled the charges so that QL has charge +1 and

eR charge −6. However, as we will see, the slightly odd fractional scaling above will

reproduce our familiar convention for electric charges, in which the electron has charge

−1, the up quark charge 2
3

and the down quark charge −1
3
.

– 179 –



Each of the fields transforms in either the fundamental representations of SU(2)

or SU(3), denoted by 2 and 3 respectively, or in the singlet representation denoted

by 1. This means that a bold 1 for a non-Abelian group is telling us that a field

doesn’t experience that force. (In contrast, a charge 1 for the U(1) means that the field

very much experiences that force; only charge 0 fields are neutral under U(1).) We will

sometimes denote the representations as (R2,R3)Y , with R2 and R3 the representations

of SU(2) and SU(3) respective, and Y the hypercharge. So, for example, the field QL

transforms as (2,3)1/6.

Each of the fields in the table is a Weyl fermion, either left-handed or right-handed as

denoted by the L and R subscripts. As we saw in Section 1, the conjugate fermion has

the opposite handedness. So, for example, Q̄L is a right-handed fermion that transforms

as (2, 3̄)−1/6. (You might have thought that we should have written 2̄ but the doublet

of SU(2) is pseudoreal, meaning that 2̄ ∼= 2.)

The fermions that transform in the 3 of SU(3) are the quarks that we met in Section

3.1. That statement is straightforwardly true for the right-handed quarks, which we’ve

labelled uR and dR for the up quark and down quark. But there is just a single left-

handed quark QL, albeit one that transforms in the 2 of SU(2). Indeed, it’s only the

left-handed fermions that transform in the 2 of SU(2). How should we think of the

associated a = 1, 2 index? In other words, what’s the analog of colour for the SU(2)

gauge group?

It turns out that the SU(2) index is the names that we give to different particles.

We often write the SU(2) gauge structure of the left-handed fermions as

QL =

(
uL

dL

)
and LL =

(
νL

eL

)
. (5.3)

For QL, we interpret the SU(2) doublet components as the left-handed up quark and

left-handed down quark. For LL, which we refer to as the left-handed lepton, we

interpret the SU(2) doublet as the left-handed neutrino νL and left-handed electron

eL.

This part of the story is very surprising. For the strong force, the SU(3) gauge

symmetry rotates different colours into each other. That’s intuitive: we think that

the red quark behaves very much like the blue quark. The analogous statement of

(5.3) is that the SU(2) gauge symmetry rotates, say, the left-handed neutrino into the

left-handed electron. But these particles are nothing like each other, neither in mass

nor their interactions! How can they possibly be related by a gauge symmetry? The
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answer, as we shall see, is that the Higgs field spontaneously breaks the SU(2) gauge

symmetry and, when the dust settles, leaves νL and eL with very different properties.

Indeed, at this point it’s really misleading to write (5.3) because, before we talk about

spontaneous symmetry breaking, there’s really no sense in which the top component

of QL is related to the up quark and the second component to the down quark. These

properties will only manifest themselves after the Higgs mechanism (and, even then,

only when we’ve made an arbitrary choice of vacuum structure).

Including the gauge degrees of freedom, there are a total of 15 fermions listed above.

(The left-handed quark QL has 2×3 = 6. The total number is then 6+2+3+3+1=15.)

It is possible that we should augment these 15 fermions with one additional one. This

is a right-handed neutrino

U(1) SU(2) SU(3)

νR 0 1 1
(5.4)

Unfortunately, we don’t yet know if the right-handed neutrino νR exists or not! This is

deeply unsatisfactory and the situation will hopefully change in the near future. The

main reason for our ignorance is that, as shown above, νR doesn’t interact with any

of the forces. That makes it hard to detect and it is sometimes referred to as a sterile

neutrino. It’s interactions with the other particles are only through the Higgs field and

it manifests itself in the way in which neutrinos get masses. We will describe this in

Section 7. On aesthetic grounds, things look marginally nicer if νR exists, in the sense

that each particle has a right-handed fermion and a left-handed counterpart sitting

in the doublet of SU(2). But this is not a particularly compelling argument and the

situation should ultimately be determined by experiment.

There is one final field in the Standard Model: this is the Higgs boson which we

denote as H. It is the only spin 0 particle in the Standard Model and has quantum

numbers

U(1) SU(2) SU(3)

H 1
2

2 1
(5.5)

These are the same quantum numbers as L̄L. As we will see, it turns out that there is

something magical about this choice which allows the whole jigsaw to fit together.

5.1.1 Anomaly Cancellation

The Standard Model is a chiral gauge theory. The first thing that we have to do is

check that it makes sense! As we’ve seen in Section 4.1, there are a number of stringent
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consistency checks that any chiral gauge theory must pass. You will probably not be

surprised to hear that the Standard Model, and hence our universe, is mathematically

consistent. But it should give you a warm fuzzy feeling to check this explicitly.

Only the charged fermions (5.2) contribute to the anomalies. We can go through

each anomaly in turn and check that it cancels. Some of these are straightforward. For

example, for the SU(3)3 anomaly, we require∑
left−handed

A(R) =
∑

right−handed

A(R) . (5.6)

All fermions are either singlets with A(1) = 0 or sit in the fundamental representation

with A(3) = 1. Clearly there are two right-handed quarks uR and dR. There is only

the single left-handed quark QL but, when computing the anomaly, we should sum

over the SU(2) gauge index. (From the perspective of the SU(3) gauge field, the

anomaly doesn’t know if QL is two distinct fields, or a single field transforming as an

SU(2) doublet.) The upshot is that
∑
A(R) = 2 for both left-handed and right-handed

quarks.

As we mentioned in Section 4.1, there is no perturbative SU(2)3 anomaly, only the

more subtle Witten anomaly which means that we must have an even number of SU(2)

doublets. This is achieved because there are three in QL (when computing the SU(2)

anomaly, we should sum over SU(3) indices) and a single doublet in LL. Note that the

Witten anomaly ties together the quarks and leptons: the theory doesn’t make sense

with just QL alone: we must also have LL.

The remaining gauge anomalies involve the U(1) factor and are even more intricate.

The U(1)3 anomaly requires matching between the sum of the cubes of the charges∑
left−handed

Y 3 =
∑

right−handed

Y 3 . (5.7)

As above, in all of these calculations, we must remember to multiply by the dimension

of the representation of the non-Abelian factors. We have

∑
left−handed

Y 3 = 6×
(

1

6

)3

+ 2×
(
−1

2

)3

= −2

9∑
right−handed

Y 3 = 3×
(

2

3

)3

+ 3×
(
−1

3

)3

+ (−1)3 = −2

9
. (5.8)

So that works.
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We also have to check the mixed anomalies between two factors of the gauge group.

The SU(2)2 × U(1) anomaly requires that∑
left−handed

Y =
∑

right−handed

Y (5.9)

where the sum is only over those fermions that sit in the 2 of SU(2). This is satisfied

by virtue of

SU(2)2 × U(1) : 3×
(

1

6

)
+

(
−1

2

)
= 0 . (5.10)

Meanwhile, the SU(3)2 × U(1) anomaly requires that (5.9) holds when we sum over

the quarks that sit in the 3 of SU(3) which also holds, by virtue of

SU(3)2 × U(1) : 2×
(

1

6

)
=

2

3
− 1

3
. (5.11)

Finally, we want to be able to couple our theory consistently to gravity. This requires

that (5.9) holds when we sum over all fermions. We have∑
left−handed

Y = 6× 1

6
+ 2×

(
−1

2

)
= 0

∑
right−handed

Y = 3× 2

3
+ 3×

(
−1

3

)
− 1 = 0 . (5.12)

The sum over left- and right-handed fermions vanish individually, which is stronger

than is needed for anomaly cancellation. We see that, happily, our universe makes

sense. This is cause for celebration.

This also explains a statement that we made in the introduction to these lectures:

there is a remarkable unification in the Standard Model. It is not the usual kind of

unification, where seemingly different phenomena are seen to have the same underlying

cause. Instead, it is something more subtle: the quarks, electron and neutrino are

unified by the need for mathematical consistency. If you remove one of them, then the

delicate cancellations that we saw above fail. The whole collection of fermions (5.2) is

needed for our theory to hold together.

There are variations on this calculation that we could play. For example, we could

keep the matter content of (5.2), but allow the hypercharges Y to be arbitrary. We

could then ask: what values of hypercharge are consistent? It turns out that there are

two possibilities: one gives a non-chiral theory, the other is (up to rescaling) the world

you inhabit. You will be offered the opportunity to do this, and a related calculation,

on the examples sheet.
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5.1.2 Yukawa Interactions

Because the Standard Model is a chiral gauge theory, it’s not possible to write down

gauge invariant mass terms for the fermions. That would need left- and right-handed

fermions to transform the same way under the gauge symmetry which, as shown in

(5.2), they do not. This is striking: it means that all the fermions in the Standard

Model are naturally massless! Needless to say, that’s not our everyday experience and

something must happen along the way to change the situation.

What happens is that all fermions interact with the Higgs boson. We will tell the

full story of how they get mass later, but for now we can look at the form of these

interactions.

The Higgs field plays no role in the anomaly cancellation story above. But its quan-

tum numbers (2,1)1/2 under the gauge group restrict its couplings to the fermions.

And, as we now show, the quantum numbers (5.5) are such that it can couple to all

fermions through Yukawa couplings.

First, consider the quarks. We can form fermion bilinears which are Lorentz scalars

and singlets under SU(3) by contracting Q̄L with either uR or dR. From (5.2), we see

that Q̄LuR has gauge quantum numbers (2̄,1)+1/2 and Q̄Ldr has (2̄,1)−1/2. We can

then form a gauge invariant Yukawa term by contracting these with either H or H†.

At this point, we need to say a word about how the SU(2) representations combine.

Given two SU(2) vectors xa and za, with a = 1, 2, each of which transform in the 2

of SU(2), there are two ways to form singlets. We can either write x†z = x̄az
a which

is what we would call a “meson” in the context of the strong force. Or we can write

xz = εabx
azb, making use of the epsilon symbol. This is what we would call a “baryon”

for the strong force. The group SU(2) is special because you get to make singlets in

two different ways out of just two vectors. More mathematically, this is the statement

that the representation 2 is pseudoreal because given xa in the 2, we can always form

εabx
b in the 2̄.

For us, Q̄L naturally sits in the 2̄ so we can contract it with H which sits in the 2.

But we need that epsilon symbol if we are to contract it with H†. To this end, it’s

common to define

H̃a = εabH†b (5.13)

with a, b = 1, 2 the SU(2) gauge indices. We can then construct gauge invariant Yukawa

couplings with the quarks of the form

LYuk = −yd Q̄LHdR − yu Q̄LH̃uR + h.c. . (5.14)
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Here yd and yu are Yukawa coupling constants. Both of these terms are neutral under

hypercharge and, by construction, also singlets under SU(2)× SU(3).

We can also write down Yukawa interactions with the leptons. This time we have

the bilinears L̄LeR with quantum numbers (2̄,1)−1/2 and, if the right-handed neutrino

exists, L̄LνR with quantum numbers (2̄,1)+1/2. We can see that both of these also have

gauge invariant Yukawa interactions with the Higgs

LYuk = −ye L̄LHeR − yν L̄LH̃νR + h.c. . (5.15)

Again, ye and yν are Yukawa coupling constants and, as above, the neutrino Yukawa

term with H† should have the SU(2) gauge indices contracted with an εab.

If we have a right-handed neutrino νR, then there is one further term that we can

add. This is a Majorana mass of the kind we introduced in (1.59). It’s possible only

for νR because this fermion isn’t charged under the gauge group,

LMaj = M νRνR + h.c. . (5.16)

We’ll discuss this further in Section 7.

5.1.3 Three Generations

For reasons that remain mysterious, the pattern of fermions presented in (5.2) is re-

peated twice over. Mathematically, it is straightforward to incorporate this: we just

add a flavour index i = 1, 2, 3 to each of the fermions. We ascribe these additional

fields names that we met in the introduction: strange and charm, and bottom and top

for the quarks. We write these as

diR =
{
dR , sR , bR

}
: (1,3)−1/3

uiR =
{
uR , cR , tR

}
: (1,3)2/3 (5.17)

and, writing the SU(2) doublets explicitly,

Qi
L =

{(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

) }
: (2,3)1/6 . (5.18)

As before, it’s really premature to write this: the labelling only makes sense after we

have taken into account the Higgs mechanism.
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The names that we give to the leptons are the electron, muon, and tau. We write

eiR =
{
eR , µR , τR

}
: (1,1)−1 (5.19)

and

LiL =

{(
ν eL

eL

)
,

(
ν µL

µL

)
,

(
ν τL

τL

) }
: (2,1)−1/2 (5.20)

where, again, the labelling is premature and should be taken with a grain of salt before

the Higgs mechanism does its thing.

Meanwhile, the Higgs itself is unaffected by this increase in generations: there is just

a unique Higgs.

The fate of the right-handed neutrino νR is less certain. It seems tempting to also

add an i = 1, 2, 3 index to this field too,

νiR =
{
ν eR , ν

µ
R , ν τR

}
: (1,1)0. (5.21)

Because each of these is sterile, meaning uncharged under the gauge group, they do

not interact directly with any of the forces, nor contribute to anomaly cancellation. It

is quite possible there are no right-handed neutrinos or, indeed, any number!

As far as the gauge interactions are concerned, each generation experiences the same

forces as the others. In particular, anomaly cancellation happens within each individual

generation. There is, as far as we can tell, no necessity to introduce three generations

rather than, say, one or seventeen.

The place where the additional generations really add a level of complexity and

richness is in the Yukawa couplings. In contrast to the gauge couplings, the Yukawa

couplings involve a great deal of inter-generational mixing. The most general Yukawa

interactions that we can write down replace each of the coupling constants yu, yd, ye

and yν with 3× 3 matrices,

LYuk = −ydij Q̄i
LHd

j
R − y

u
ij Q̄

i
LH̃u

j
R − y

e
ij L̄

i
LHe

j
R − y

ν
ij L̄

i
LH̃ν

j
R + h.c. . (5.22)

We will devote Section 6 to understanding the structure of these Yukawa couplings.

5.1.4 The Lagrangian

Usually when introducing a quantum field theory, the first thing that we do is write

down an action. But that’s not the case here: instead, we’ve discussed the symmetry

structure of the theory. The reason this is sensible is because the symmetries are

entirely sufficient to determine the structure of the action.
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The game that we play is to write down all possible marginal and relevant terms.

These terms must be Lorentz invariant and gauge invariant, but otherwise you write

down anything that you want. Despite the plethora of fields, there isn’t too much

freedom. The full Lagrangian takes the form

LSM = Lgauge + Lfermi + LHiggs + LYuk . (5.23)

The first two of these are simply kinetic terms for our fields. We will need to give

our gauge fields some names. Back in Section 3, we already dubbed the SU(3) gluon

field strength Gµν . We will call the SU(2) gauge field strength Wµν = ∂µWν − ∂νWµ−
ig[Wµ,Wν ] and the U(1) hypercharge field strength Bµν = ∂µBν − ∂νBµ. The gauge

field kinetic terms are then

Lgauge = −1

4
BµνB

µν − 1

2
TrWµνW

µν − 1

2
TrGµνG

µν . (5.24)

The kinetic terms for the fermions are

Lfermi = −i
3∑
i=1

(
Q̄i
Lσ̄

µDµQi
L + L̄iLσ̄

µDµLiL + ūiRσ
µDµuiR

+ d̄iRσ
µDµdiR + ēiRσ

µDµeiR + ν̄iRσ
µ∂µν

i
R

)
. (5.25)

The exact form of these kinetic terms depends on the representation of the fermion

field. So, for example, QL is charged under each of the three gauge fields and has

kinetic term

DµQL = ∂µQL − igsGµQL − igWµQL −
i

6
g′BµQL . (5.26)

There are similar expressions for all other fields. Buried within these covariant deriva-

tives are the coupling constants: gs for the SU(3) strong force, g for the SU(2) weak

force, and g′ for the U(1) hypercharge.

The Lagrangian for the Higgs term includes both its kinetic term and potential

LHiggs = DµH†DµH − λ
(
H†H − v2

2

)2

. (5.27)

The potential is written to emphasise that the minimum will lie away from H = 0. We

will explore the consequences of this shortly. The Higgs kinetic term also follows from

its gauge quantum numbers,

DµH = ∂µH − igWµH −
i

2
g′BµH . (5.28)

Finally, the Yukawa terms are given in (5.22).
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We can start to count the parameters in the Standard Model. There are three gauge

couplings, gs, g and g′, one for each gauge group. And there are two parameters λ and

v2 in the Higgs potential. Then there are the plethora of Yukawa couplings that we

will explore further (and count!) in Section 6.

I’ve omitted two possible terms from the Lagrangian (5.23). One is the theta term

for the strong force that we met in Section 3.4. This is omitted on the grounds that,

experimentally, θ ≈ 0. Still, if we’re accounting for parameters of the Standard Model

then we should certainly include this one. The second term that I’ve omitted is the

Majorana masses for the right-handed neutrinos, on the slightly weaker grounds that

we don’t know if they’re there or not. We’ll discuss this more in Section 7.

There’s a lot of repetition in the Standard Model Lagrangian as written. I think that

you could be forgiven for advertising it in the more compact form

L = −1

4

∑
a

F a
µνF

aµν + i
∑
i

ψ̄iσ̄
µDµψi + |DH|2 − V (H)− yψHψ + h.c. . (5.29)

Admittedly, there’s a lot of heavy lifting going on in that
∑

a and
∑

i. Still, it’s

remarkable that everything we know about the universe can be distilled in such a way.

You can sometimes find the Standard Model Lagrangian written out in full compo-

nent form, in which case it looks something like what’s shown in Figure 16. This is

usually done by someone trying to convince you that the theory is inelegant (typically

because they have their own wares to sell). This always strikes me as being deliber-

ately obtuse, like writing out haiku in binary in an attempt to argue that its beauty

is over-rated. The beauty of the Standard Model isn’t in the form of the Lagrangian:

it’s in the consistency conditions inherent in anomaly cancellation that we have taken

pains to explain in these lectures.

5.1.5 Global Symmetries

We’ve built the Standard Model around the gauge group G = U(1)× SU(2)× SU(3).

But it’s natural to ask: what are the global symmetries of the Standard Model?

In the absence of Yukawa terms, this is an easy question to answer: the classical

theory has a U(3)5 global symmetry if there are no right-handed neutrinos, and a

U(3)6 global symmetry if there are right-handed neutrinos. Here the 3 corresponds to

the three generations, and we get a global symmetry group acting on each of QL, LL,

uR, dR, eR and (possibly) νR.
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Figure 16. If you want to write the Standard Model Lagrangian like this, then you should

probably write the Einstein-Hilbert action by expanding out L =
√
−gR in terms of the

metric gµν .

But the Yukawa terms (5.22) break this symmetry. As we will see later, the values of

the Yukawas are different for different generations, ultimately resulting in their different

masses. There are some approximate symmetries remaining, like isospin or the eightfold

way, but when the dust settles the classical theory has just two exact global symmetries.

This is U(1)B×U(1)L, corresponding to baryon number and lepton number respectively.

The charges of the various fields under these two U(1)′s are

QL LL uR dR eR νR

U(1)B
1
3

0 1
3

1
3

0 0

U(1)L 0 1 0 0 1 1

(5.30)

You can see that U(1)B acts only on quarks and U(1)L acts only on leptons. (In

fact, U(1)B is essentially the same as the vector symmetry U(1)V that we saw when

discussing QCD in Section 3.) The normalisation of 1
3

for the charge of the quarks is

just convention: it guarantees that the proton and neutron each have baryon number
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+1. These symmetries U(1)B and U(1)L act the same on each generation. (The Yukawa

interactions include couplings between generations which means that there’s no global

symmetry which acts on one generation, leaving the others untouched.)

Note that we didn’t impose either of these global symmetries U(1)L and U(1)B from

the outset. Instead, we just wrote down all possible terms consistent with the gauge

symmetry and discovered that the end result has U(1)L×U(1)B as a global symmetry.

In this sense, we view these symmetries as accidental. There is no particular reason

to think that they survive to arbitrarily high energies (and, indeed, some reasonably

good reasons that we shall explain shortly to think that they do not survive). This

means, in particular, that if we were to add irrelevant terms to the Standard Model in

an attempt to capture the high energy physics then we should include such terms that

break U(1)B and U(1)L.

ABJ Anomalies Revisited

As we saw in Section 4.2, just because a U(1) symmetry is a good symmetry of the

classical theory, doesn’t mean that it is necessarily a symmetry of the quantum theory.

This is because it may suffer from an ABJ anomaly. And, indeed, both U(1)B and U(1)L
suffer ABJ anomalies. There is an ABJ anomaly with SU(2) gauge group (because only

left-handed fermions carry SU(2) charge), and also with U(1) hypercharge. For the

latter, the anomaly for a single generation is given by∑
left

BY 2 −
∑
right

BY 2 =
1

3

(
6×

(
1

6

)2

− 3×
(

2

3

)2

− 3×
(
−1

3

)2
)

= −1

2
(5.31)

and ∑
left

LY 2 −
∑
right

LY 2 =

(
2×

(
−1

2

)2

− (−1)2

)
= −1

2
. (5.32)

So neither U(1)B nor U(1)L are good symmetries of the quantum theory. However,

in contrast to the ABJ anomaly of the axial symmetry of the strong force, these ABJ

anomalies are associated to the gauge fields of the weak force. And the weak force

is, as we shall see, weak. The upshot is that although neither U(1)B nor U(1)L are

strictly symmetries of the Standard Model, they are both extremely good approximate

symmetries. Indeed, neither has been observed to be violated!

We can quantify this. If we focus just on the SU(2) anomaly, then the conservation

of baryon number picks up a term analogous to (4.63),

∂µJ
µ
B =

12g2

8π2
TrW ?

µνW
µν . (5.33)
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where the factor of 12 arises because there are four SU(2) doublets in each of the three

generations, and 3× 4 = 12. There is a similar contribution from Bµν .

The kind of process that can violate baryon number is an electroweak instanton.

There is a story of fermion zero modes that we will not tell but the end result is that

electroweak instantons cannot, for example, allow a proton to decay into a positron:

the proton is absolutely stable in the Standard Model. Instead, these instantons can

allow a collection of three baryons to decay, where the “three” arises because it’s the

number of generations. This means, for example, that a 3He nucleus could decay. But

the decay is due to instantons and these come with a characteristic suppression factor

of e−8π2/g2 , as in (3.120). For electroweak instantons, this turns out to give a lifetime

of around 10173 years! (The age of our universe is roughly 1010 years.) That’s why

baryons seem stable.

All of which means that, for all practical purposes, both baryon number and lepton

number are good symmetries. But, if you’re a purist (and willing to wait 10173 years)

then you should accept that neither are good symmetries.

Importantly, however, the ABJ anomalies for both U(1)B and U(1)L are the same.

This is true both for the mixed anomaly with U(1)Y shown in (5.31) and (5.32) and

also for the mixed anomaly with SU(2). This means that the combination B − L is

non-anomalous. This is the one exact global symmetry of the Standard Model.

We still have to check if there is a gravitational contribution to the B − L anomaly.

You can check that this vanishes only if there is a right-handed neutrino.

The Weak Theta Term

For the strong force, we can write down a theta term. As we discussed in Section 3.4,

this leads to a mystery because, experimentally, θ ≈ 0 and we don’t know why. This is

the strong CP problem.

What about the theta term for the other two gauge groups, U(1) and SU(2)?

For Abelian gauge theories, we can write down a theta term but it doesn’t affect

the local dynamics, such as masses or cross-sections or decay rates. (This is essentially

because there are no U(1) instantons.) Instead, the effects are much more subtle. For

example, this term would endow magnetic monopoles with electric charge through the

Witten effect. We don’t have any experimental insight into these features of the theory

and so the U(1) theta term remains unknown to us.
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That leaves the SU(2) theta term which takes the form

Sθ =
g2θW
16π2

∫
d4x TrWµν

?W µν . (5.34)

Is this another term that we should add to the Standard Model action? The answer

is no. And the reason is because of the global U(1)L (or, equivalently U(1)B) ABJ

anomaly. As shown in (4.42), if we act with a U(1)L transformation of eiαL, where L

is the charge of each fermion, then the anomaly can be re-interpreted as shifting the

theta term

U(1)B : θW → θW + 3α (5.35)

where the factor of 3 comes from the existence of three generations. This means that

the value of θW is unphysical and does not affect the physics. Said differently, we

can always use the anomalous U(1)L symmetry to set θW = 0. There is no weak CP

problem. In contrast, this mechanism doesn’t work for the strong force.

Black Holes

We have seen that the Standard Model has just a single U(1) global symmetry, namely

B−L. But the standard lore is that there are no global symmetries in the fundamental

laws of physics. The main argument for this is black holes.

Black holes aren’t black. Hawking taught us long ago that they slowly emit radiation

due to quantum effects. While there is much that we don’t understand about quantum

gravity, the existence of Hawking radiation stands out as one of the few robust and

trustworthy calculations that we can do. The prediction of this radiation follows from

the known laws of physics and doesn’t rely on any speculative ideas about what lies

beyond.

If we wait long enough (and we’re talking ridiculously long times here), then any

black hole will eventually evaporate and disappear. So we can ask: what became of

the stuff that we threw in?

First, the black hole can’t destroy electric charge. If you throw, say, an electron into

a black hole then the black hole itself now carries the electric charge. Moreover, this is

visible outside of the event horizon because the black hole emits an electric field and

we can detect the electric field by Gauss’ law. (This is the Reissner-Nordström solution

that we described in the lectures on General Relativity.) That electric field can’t just

disappear. So, as the black hole evaporates, it must eventually spit out a charged

particle – maybe an electron, maybe an anti-proton – which carries the electric charge.

The process of black hole evaporation must respect conservation of electric charge.
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In contrast, there is nothing to prevent black holes from destroying baryons and

leptons. When a black hole forms from the collapse of a star, it will typically contain

around 1057 protons, and roughly the same number of electrons. But there’s no way

to detect the baryons from outside the black hole. Furthermore, as the black hole

evaporates there’s no reason that it should spit back these particles intact. In fact,

the vast majority of the mass of a black hole will be emitted in gravitational and

electromagnetic radiation rather than baryons or leptons. In this way, we expect black

hole evaporation to respect neither baryon number nor lepton number conservation.

This means that, in a full theory of quantum gravity, one doesn’t expect any global

conservation laws, since one can always construct states in the theory in which the

symmetry is violated. What does this mean for our parochial Standard Model? The

usual answer is that we shouldn’t view B − L as something sacrosanct, but rather

just a symmetry that emerges in the infra-red simply because there are no relevant

or marginal operators that we can write down that violate it. When we get to high

energy scales – and certainly by the time we get to the Planck scale – we expect it to

be violated.

5.1.6 What is the Gauge Group of the Standard Model?

The title of this section seems a little daft. After all, we’ve been running through these

lectures safe in the knowledge that the gauge group of the Standard Model is

G = U(1)× SU(2)× SU(3) . (5.36)

Or is it?! In fact, there’s a subtlety here.

To see this subtlety, consider the action on all fermions by the centre elements (−1) ∈
SU(2) and e2πi/3 ∈ SU(3). A quick check will confirm that

QL → ω−1QL , LL → ω3LL , uR → ω2uR , dR → ω2dR , eR → eR (5.37)

with ω = e2πi/6. If we simultaneously act with the U(1) hypercharge transformation

e2πiY , then the result is that every fermion is either left unchanged, or picks up a minus

sign. But a minus sign on a fermion is just part of the Lorentz group. The upshot is

that there is a Z6 subgroup of G that does not act on the fermions (or, indeed, on the

Higgs).

This means that it’s tempting to say that the gauge group of the Standard Model is

G =
U(1)× SU(2)× SU(3)

Γ
(5.38)
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where Γ = Z6. But this too is overly hasty! The honest answer is that we don’t know

what the gauge group of the Standard Model is. There are four different choices, given

by (5.38) where Γ is a subgroup of Z6, meaning Γ = Z6, Z3, Z2 or nothing at all.

Strictly, these are all different quantum field theories, although the differences between

them are rather subtle and don’t show up in correlation functions of local operators.

This means, among other things, that the differences between them won’t show up in

particle colliders like the LHC. Instead, one has to look to more formal aspects of the

theories to see the difference, like the spectrum of allowed magnetic monopoles or what

happens when the theory is placed on a manifold with non-trivial topology9 .

5.2 Electroweak Symmetry Breaking

We now have the full Standard Model laid out before us in (5.23). The next question

is: how does it give rise to the physics that we know and love? The answer largely lies

in the role that the Higgs plays.

The dynamics of the Higgs boson is governed by the action (5.27)

LHiggs = DµH†DµH − λ
(
H†H − v2

2

)2

. (5.39)

The potential is such that it causes the Higgs to condense. This breaks the U(1)×SU(2)

gauge symmetry under which the Higgs is charged, giving masses to the gauge bosons

in the way we saw in Section 2.3. And, through the Yukawa interactions (5.22), it also

gives masses to the fermions. In this section, we describe these effects.

Including the Maxwell and Yang-Mills terms for the U(1) × SU(2) gauge fields, we

have the Lagrangian

L = −1

4
BµνB

µν − 1

2
TrWµνW

µν + LHiggs . (5.40)

To understand the physics, we need the Higgs covariant derivative which is given by

DµH = ∂µH − igWµH −
i

2
g′BµH . (5.41)

This reflects the charges (5.5).

9For more details on these ideas, see Ofer Aharony, Nati Seiberg, and Yuji Tachikawa’s Reading

Between the Lines paper. Applications of these ideas to the Standard Model were given in Line

Operators in the Standard Model.
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In the ground state of the potential (5.27), we have H†H = v2/2. As usual, we have

to pick a direction for the Higgs vacuum expectation value to point in. We choose

〈H〉 =
1√
2

(
0

v

)
. (5.42)

Then we parameterise the fluctuations of the Higgs as

H = eiξ
A(x)TA 1√

2

(
0

v + h(x)

)
. (5.43)

Here h(x) is a real scalar field, TA = 1
2
σA with A = 1, 2, 3 are the generators of SU(2)

and ξA(x) are the would-be Goldstone bosons. As usual, they are eaten by the gauge

bosons as part of the Higgs mechanism. A quick way to say this is to observe that

we can just eliminate the factor of eiξ
ATA in (5.43) through a gauge transformation.

Alternatively, to make contact with what we saw in Section 2.3, we can look at the

covariant derivative. If we write Ω(x) = eiξ
A(x)TA , then we have

DµH =
1√
2

Ω

((
0

∂µh

)
− i
[
g

(
Ω−1WµΩ +

i

g
Ω−1∂µΩ

)
+
g′

2
Bµ

](
0

v + h

))
.(5.44)

Here we see that the overall field Ω sits in a way that can be eliminated by a gauge

transformation (1.82).

We can always choose to work in unitary gauge in which, through a judicious SU(2)

rotation, we simply take ξA(x) = 0 or, equivalently, Ω = 1. In this case, the Lagrangian

(5.40) becomes

L = −1

4
BµνB

µν − 1

2
TrWµνW

µν +
1

2
∂µh∂

µh− λh2

(
v +

h

2

)2

+
1

8
(v + h)2

(
g2(W 1

µ)2 + g2(W 2
µ)2 + (gW 3

µ − g′Bµ)2
)
. (5.45)

To get the second line, we expanded out SU(2) gauge boson fields Wµ in terms of the

generators TA = 1
2
σA, and contracted them with the Higgs field. From this we can

read off the masses from the quadratic term. There is a λv2h2 term that gives a mass

for h. This is the particle that, experimentally, we call the Higgs boson. It’s mass is

measured to be

Mh =
√

2λv ≈ 125 GeV . (5.46)

We see that this mass is a combination of the Higgs vev v and the dimensionless coupling

λ.
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We can also read off the masses of the gauge bosons from the second line in (5.45).

Both W 1
µ and W 2

µ have the same mass MW = vg/2. It will prove fruitful to combine

them into the complex combination

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) . (5.47)

Note the flip of the ± sign on the right-hand side. We will see shortly that this ensures

that W± has electric charge ±1. The experimentally measured mass of these spin 1

bosons is

MW =
gv

2
≈ 80 GeV . (5.48)

This mass is set by the Higgs vev v and the SU(2) gauge coupling g.

The final massive gauge boson is slightly more interesting. We see from (5.45) that it

is a linear combination of the W 3
µ which is part of SU(2) and Bµ which is associated to

the fundamental U(1) hypercharge gauge symmetry. The relevant linear combination

is set by the two coupling constants, g and g′. To this end, we define the Weinberg

angle, also known as the weak mixing angle

cos θW =
g√

g2 + g′ 2
⇐⇒ sin θW =

g′√
g2 + g′ 2

. (5.49)

We then define the two linear combinations of gauge fields

Zµ = cos θW W 3
µ − sin θW Bµ

Aµ = sin θW W 3
µ + cos θW Bµ . (5.50)

The first of these has a mass from (5.45) which is experimentally measured to be

MZ =
v

2

√
g2 + g′ 2 ≈ 91 GeV . (5.51)

We don’t have any way to determine any of these masses from first principles. They

are combinations of the Higgs vev v, the Higgs coupling λ and the gauge couplings g

and g′, none of which we know without going out and measuring them. However, the

theoretical framework does ensure the mild inequality

MW = MZ cos θW < MZ (5.52)

which is indeed observed.
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We can do some simple counting here. Our original Higgs boson H was a doublet of

SU(2). This means that it has two complex degrees of freedom or, equivalently, four

real degrees of freedom. One of these remains as the real scalar h that we call the Higgs

boson. The other three got eaten by the three gauge bosons W 1
µ , W 2

µ and Zµ.

The discovery of the Higgs boson h was announced at CERN in 2013. But in a

very real sense, 3/4 of the more fundamental Higgs boson H were discovered when the

massive W and Z bosons were first seen in 1983. As we’ve seen, they get their mass

only by eating three of the components of H.

The scales of the masses of the Higgs h and the W and Z bosons are all set by the

Higgs expectation value v, multiplied by some dimensionless coupling constant. This is

a theme that will continue shortly when we discuss matter particles. These couplings

can all be measured directly, through cross-sections or decay rates. We learn that

the only dimensionful parameter in the classical Standard Model Lagrangian takes the

value

v ≈ 250 GeV . (5.53)

We will later see that this is directly related to the Fermi constant that governs the

strength of weak decays. The dimensionless parameters are

λ ≈ 0.35 and g ≈ 0.64 and g′ ≈ 0.34 . (5.54)

Each of these runs under RG; the values above are given at the scale µ = MZ . We also

have the Weinberg angle (5.49) which takes the value

cos θW ≈ 0.88 =⇒ θW ≈ 29◦ . (5.55)

It’s common to quote the value sin2 θW ≈ 0.223.

5.2.1 Electromagnetism

There is one of the U(1)× SU(2) gauge bosons that escapes the clutches of the Higgs

and remains massless. This is the field Aµ defined in (5.50) and it is the most famous

gauge boson of all: the photon.

We can look at this more closely. From a group theoretic perspective, the photon

remains massless because the Higgs induces the symmetry breaking

U(1)Y × SU(2)→ U(1)EM . (5.56)

This is why the U(1)×SU(2) sector of the Standard Model is referred to as electroweak

theory.
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We can identify this unbroken U(1) symmetry by looking at how the Higgs vev (5.42)

transforms under a general U(1)× SU(2) transformation, with parameters αA and β,

〈H〉 =

(
0

v

)
−→ eigα

ATAeig
′βY

(
0

v

)
. (5.57)

The Higgs has hypercharge Y = 1
2

so, writing the SU(2) generators TA = 1
2
σA, we have

gαATA + g′βY =
g

2

(
α3 + g′β/g α1 − iα2

α1 + iα2 −α3 + g′β/g

)
. (5.58)

We see that the choice of parameters that leaves 〈H〉 invariant is α1 = α2 = 0 and

gα3 = g′β. This means that the unbroken generator is the combination

Q = T 3 + Y . (5.59)

We identify this with the generator of the unbroken U(1)EM subgroup which, in more

everyday terms, means that Q determines the electric charge of the fields. We’ll see

how this works in practice for all the fermion fields below.

The electroweak theory also sets the electromagnetic coupling constant e. This is

simplest to see if we look at the general covariant derivative for a field that transforms

in the fundamental of SU(2) and with hypercharge Y ,

Dµ = ∂µ − igWA
µ T

A − ig′Y Bµ . (5.60)

We work with the fields W±
µ defined in (5.47) and the corresponding generators T± =

(T 1 ± iT 2)/
√

2. We also work with the fields Zµ and Aµ defined in (5.50) to get

Dµ = ∂µ − ig(W+
µ T

+ +W−
µ T

−)− i(g cos θWT
3 − g′ sin θWY )Zµ − ieQAµ . (5.61)

For our immediate interests, it’s that last term that’s important. It involves the charge

Q, together with the coupling

e = g sin θW = g′ cos θW . (5.62)

The electromagnetic coupling takes value

e ≈ 0.30 . (5.63)

This particular coupling constant is better known in the form α = e2/4π which is called

the fine structure constant and takes the famous value α ≈ 1/137.
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The bosons of the electroweak sector are the Higgs, and the W and Z bosons. The

Higgs h is electrically neutral. This must be the case simply because it’s a real scalar

field, but we can check explicitly by noting that it sits in the lower component of the

doublet (5.43) which has T 3 = 1
2
σ3 eigenvalue −1

2
. The Higgs also has hypercharge

Y = +1
2

ensuring that Q = T 3 + Y = 0.

The Z boson is similarly neutral. Again, this must be the case because it is a real

field. Operationally, this follows because it carries no hypercharge and commutes with

the SU(2) generator T 3.

That leaves us with the W bosons. Under an SU(2) transformation with α1 = α2 = 0

and α3 constant, we have, from (1.87),

δWµ = −ig[Wµ, α
3T 3] = gα3(−W 1

µT
2 +W 2

µT
1) . (5.64)

We can write this as δW 1
µ = gα3W 2

µ and δW 2
µ = −gα3W 1

µ . We think of this SU(2)

transformation as part of the U(1)EM transformation, with gα3 = eα. Then, written in

terms of our fields W±
µ defined in (5.47), we have

δW±
µ = ±ieαW±

µ . (5.65)

This is telling us that the W boson W±
µ has electric charge Q = ±1.

5.2.2 Running of the Weak Coupling

The gauge couplings of the electroweak sector run with energy scale. Because hyper-

charge is a U(1) gauge theory, the associated coupling g′ gets smaller as we flow to the

infra-red.

But for the non-Abelian SU(2) gauge symmetry, we have to be more careful. We gave

the general formula for SU(Nc) gauge theory coupled to Nf massless Dirac fermions in

(3.11) when discussing QCD. Now we need the generalisation to include Ns scalars in

the fundamental representation. The result is

1

g2(µ)
=

1

g2
0

− b0

(4π)2
log

Λ2
UV

µ2
(5.66)

with the coefficient given by

b0 =
11

3
Nc −

2

3
Nf −

1

6
Ns . (5.67)

Applied to electroweak theory, we clearly have Nc = 2 and Ns = 1, corresponding to the

Higgs doublet. But what about Nf? We saw in (5.2) that each generation of fermions
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has an SU(2) doublet of quarks QL and a doublet of leptons LL. This is 3 + 1 = 4

Weyl fermions. But the Nf in (5.67) counts Dirac fermions, so each generation has

Nf = 2 Dirac fermions as far as the beta function is concerned. And, of course, we

have three generations. So the coefficient of the one-loop beta function for the weak

force is b0 = bweak with

bweak =
11

3
× 2− 2

3
× 6− 1

3
= 3 . (5.68)

With bweak > 0, we see that the SU(2) sector of the Standard Model is, like QCD,

asymptotically free. It flows to strong coupling in the infra-red.

This begs the question: do we have to worry about strong coupling effects in the

weak sector, like we did for QCD? The answer is no. And the reason is that the Higgs

mechanism gives masses to the gauge bosons and, in doing so, freezes the running of

the coupling g at the scale µ ∼ MW . This is where the quoted value of g ≈ 0.64 in

(5.54) is measured.

It’s worth commenting that, although we call the weak nuclear force “weak”, the

actual value of the coupling is not small. Indeed, αW = g2/4π ≈ 1/30, which is almost

5 times bigger than the fine structure constant! The reason that the weak force is

actually weak has nothing to do with the strength of the coupling and everything to

do with the mass of the W and Z bosons (or, equivalently, the scale of the Higgs vev).

As we will see in Section 5.3, particles that decay through the weak force do so by the

emission of an intermediate W or Z boson. The large mass of these bosons translates

to a small decay rate.

It’s also fruitful to compare the couplings for the weak and strong force. Measured

at the weak scale MZ , we have

αs(MZ) ≈ 0.12 and αw(MZ) ≈ 0.034 . (5.69)

So the weak force is indeed weaker than the strong force.

Asymptotic freedom ensures that both gs and gw get smaller as we look at higher

energies. But they do so at different speeds. The running of the strong coupling

(assuming three massless generations) is dictated by

bstrong =
11

3
× 3− 2

3
× 6 = 7 . (5.70)

Because we have bstrong > bweak, the two couplings will converge as we go to higher

energies. And it’s natural to ask: where does this convergence take place?
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You have to be a little bold to do this calculation. We will take ΛUV = MW in

(5.66) and then extrapolate the equation to energy scales µ � MW and, moreover, to

energy scales beyond those that we’ve probed experimentally. There’s nothing wrong

with this per se, since the equation is invertible: if you know the coupling at one scale,

then we can always determine it at any other scale, whether lower or higher. But we

are assuming that there’s no additional matter to discover which would change the

coefficient b0 as we go to higher energies. That seems like a rather big assumption.

With these health warnings in place, the two couplings meet at a scale µ given by

1

g2
s

− bstrong

(4π)2
log

M2
W

µ2
=

1

g2
w

− bweak

(4π)2
log

M2
W

µ2
. (5.71)

Solving, we find

µ = MW exp

(
2π

bstrong − bweak

(
1

αw
− 1

αs

))
≈ 2× 1016 GeV . (5.72)

So the two couplings do indeed meet, although it takes them a long time because the

running is only logarithmic.

Nonetheless, the couplings meet in an intriguing place. The Planck scale sits at

about Mpl ∼ 1019 GeV (or a bit less depending on where you put factors of 8π.) Had

the two couplings converged at a scale µ � Mpl then we could have simply discarded

this computation. We did it assuming that there was nothing new to find as we went

to higher energies but as soon as quantum gravity effects kick in there’s certainly no

reason to trust the formula (5.66). The fact that the two lines meet at a scale just

below Mpl is, if nothing else, telling us that we don’t have an immediate reason to

discard it. It also suggests that perhaps something more interesting is going on.

That something is the idea of unification. Is it perhaps possible that the two coupling

constants are meeting because the SU(2) and SU(3) forces sit within a larger gauge

group? The answer is: we don’t know. But it is a compelling idea. Proposals for this

larger gauge group include SU(5) and SO(10) (strictly Spin(10)).

There is, of course, a third coupling constant in the Standard Model. This is the

hypercharge coupling g′. This is the smallest of the three couplings and it too runs,

now getting bigger as we go to higher energies. This means that it must also meet the

other two. But where? A similar calculation shows that αY = g′ 2/4π meets the strong

and weak couplings at

αY = αs at µ ≈ 5× 1019 GeV

αY = αw at µ ≈ 1021 GeV . (5.73)
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We see that the three lines don’t meet. Things aren’t as clean as that. Moreover,

the unification of the hypercharge coupling seems to be in the regime where quantum

gravity comes into play. Nonetheless, it’s still in the same ballpark. So, while not

perfect, this also lends credence to the idea of unification. Needless to say, we don’t

know if unification does indeed take place. But if we’re searching the Standard Model

for clues for what lies beyond, this is certainly one of the most striking.

5.2.3 A First Look at Fermion Masses

The Higgs gives mass to the W and Z boson. But it also gives masses to all the funda-

mental fermions in the Standard Model. These arise through the Yukawa interactions.

First, a repeat of a comment that we made previously: it’s not possible to write down

straightforward mass terms for the fermions in the Standard Model. This is because it

is a chiral theory, with left- and right-handed fermions transforming differently under

the gauge group. This means that any mass term necessarily violates gauge symmetry.

The Yukawa terms are the gauge invariant interaction terms and give a mass only once

the Higgs field gets an expectation value.

To kick things off, let’s ignore the fact that we have three generations of fermions

and focus only on the first. This will allow us to see how the basic structure of particles

arises. We will then see the complications that arise from having multiple generations

in Section 6.

The Yukawa couplings for a single generation were given in (5.14) and (5.15),

LYuk = −yd Q̄LHdR − yu Q̄LH̃uR − ye L̄LHeR − yν L̄LH̃νR + h.c. . (5.74)

Here H is the Higgs doublet that transforms in the 2 of the SU(2) gauge group, and

H̃ is the conjugated Higgs doublet, contracted with an ε so that it too transforms in

the 2,

H̃a = εabH†b with a, b = 1, 2 . (5.75)

Meanwhile, yd, yu, ye and yν are dimensionless Yukawa couplings. We’ll give their values

in Section 6. (This is one place where we really should include all three generations

to appreciate the values.) Recall, also, that we’re not sure if there is a right-handed

neutrino field νR, so we might have to dispense with the final term in (5.74).
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Our immediate interest is to understand the implications of the Higgs vev (5.42)

〈H〉 =
1√
2

(
0

v

)
=⇒ 〈H̃〉 =

1√
2

(
v

0

)
. (5.76)

This will distinguish the two components of the SU(2) doublets QL and LL, giving them

different masses and, as we will see, different charges under the unbroken symmetry of

electromagnetism. For this reason, it’s useful to introduce different names for the two

components of these doublets. We write

QL =

(
uL

dL

)
and LL =

(
νL

eL

)
. (5.77)

(We already introduced these names in (5.18) and (5.20) although, as we noted at the

time, it was premature before we discussed electroweak symmetry breaking.)

Now we can look at the Yukawa couplings (5.74), focussing only on the role of the

vev v and ignoring the interactions with the fluctuations of the Higgs boson h. We

have

LYuk = − v√
2

(
yd d̄LdR + yu ūLuR + ye ēLeR + yν ν̄LνR

)
. (5.78)

We see that each of the fermions gets a mass, given by

mX =
1√
2
yXv (5.79)

where X = d, u, e, ν labels the appropriate Yukawa coupling yX . The scale of all these

masses is, like all particles in the Standard Model, set by Higgs vev. If the Higgs did

not condense, all fermions would be massless.

This is the source of the oft-repeated claim that the Higgs boson is responsible for all

mass in the Standard Model. It is, as we stressed in Section 3, a lie. It is true that the

Higgs vev v is the only dimensionful scale in the Standard Model Lagrangian and that

all fundamental particles would be massless if it were to vanish. But there is another,

more subtle, scale in the Standard Model itself which is ΛQCD, the scale at which the

strong force lives up to its name. And this scale would exist even in the absence of the

Higgs vev and would continue to give a mass to the proton and neutron. Of course,

that’s not to say that the Higgs is unimportant: in this hypothetical world in which

v = 0, electrons would be massless so physics, atoms, and life would be vastly different.
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We can also determine the electric charges of each of the fermions using the formula

(5.59)

Q = T 3 + Y . (5.80)

We listed the hypercharges Y of all particles previously. They are

QL LL uR dR eR

Y 1
6
−1

2
2
3
−1

3
−1

(5.81)

Each of the right-handed fermions is uncharged under the SU(2) gauge group and so

we have simply Q = Y . Indeed, we recognise the hypercharge as the usually advertised

electric charge of these particles.

For the SU(2) doublets QL and LL, we have a small calculation to do. The T 3

eigenvalues are ±1
2
, with + for the upper component and − for the lower component.

This means that the electric charges Q = T 3 + Y are:

uL : Q =
1

2
+

1

6
=

2

3
and dL : Q = −1

2
+

1

6
= −1

3

νL : Q =
1

2
− 1

2
= 0 and eL : Q = −1

2
− 1

2
= −1 . (5.82)

We see that the electric charges of the left-handed fermions coincide with those of the

right-handed fermions in (5.81), as indeed they must so that the mass terms (5.78) are

invariant under the surviving U(1)EM ⊂ SU(2)× U(1)Y .

The upshot of symmetry breaking is that we are left with four Dirac fermions. These

are the up quark u with charge +2/3, the down quark d with charge −1/3, the electron

e with charge −1, and the neutral neutrino ν. If the right-handed neutrino νR doesn’t

exist then the neutrino is a Weyl fermion and cannot get a mass through the simple

mechanism described above. We will discuss the issue of neutrino masses further in

Section 7.

The collection of electric charges of fermions in the Standard Model looks kind of

random. And, viewed as a low-energy vector-like theory, they are! But, as we have seen,

there is a deeper reason underlying this choice that only becomes apparent when you

realise that the Standard Model is a chiral theory, subject to the stringent constraints

of anomaly cancellation.
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5.3 Weak Decays

Since the time of Newton, we’ve tended to think of forces as things that push and pull.

That’s an intuition that holds well for QED and the Coulomb force, and also for QCD

which binds quarks together into hadrons. But it’s not the best way to think about

the weak force. Instead, the weak force is an instrument of decay.

One of the consequences of the weak force is that it rents asunder what the strong

force so carefully put together. We saw in Section 3 that quarks are bound into baryons

and mesons. In a world of just QCD, the baryon octet that contains, among other

things, the proton and neutron would be stable. So too would the octet of pseudoscalar

mesons that includes the pions and kaons. But in our world, only the proton is stable.

(Admittedly, we can also have stable nuclei consisting of bound states of protons and

neutrons.) Everything else decays through the weak force.

In this section, we will start to understand how these decay processes take place. We

will start by better understanding what fermions the W and Z bosons couple to and

constructing the relevant Feynman diagrams.

5.3.1 Electroweak Currents

To start, we understand how the various gauge bosons couple to the fermions. For now,

we will again stick with just a single generation. (There is an interesting twist to the

story when we introduce multiple generations that we describe in Section 6.)

The fermion kinetic terms are

Lfermi = −i
(
Q̄Lσ̄

µDµQL + L̄Lσ̄
µDµLL + ūRσ

µDµuR + d̄Rσ
µDµdR + ēRσ

µDµeR
)
.(5.83)

We haven’t included the right-handed neutrino νR because it is neutral under all gauge

symmetries. We’ll ignore the gluon fields for now, and just focus on the terms that

involve interactions with the electroweak gauge bosons. These are

Lkin

∣∣∣
weak

= −g
2
W 3
µ

(
ūLσ̄

µuL − d̄Lσ̄µdL + ν̄Lσ̄
µνL − ēLσ̄µeL

)
− g√

2
W+
µ (ūLσ̄

µdL + ν̄Lσ̄
µeL)− g√

2
W−
µ (d̄Lσ̄

µuL + ēLσ̄
µνL)

− g′Bµ

(1

6
ūLσ̄

µuL +
1

6
d̄Lσ̄

µdL −
1

2
ν̄Lσ̄

µνL −
1

2
ēLσ̄

µeL

+
2

3
ūRσ

µuR −
1

3
d̄Rσ

µdR − ēRσµeR
)
. (5.84)
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If we replace W 3
µ and Bµ with the Z boson and photon fields, as in (5.50), these terms

can be written as

Lkin

∣∣∣
weak

= − e√
2 sin θW

(W+
µ J

µ
+ +W−

µ J
µ
−)− e

sin θW cos θW
ZµJZµ − eAµJEM

µ . (5.85)

Here we’ve replaced the two coupling constants g and g′ with the Weinberg angle

tan θW = g′/g and the electromagnetic coupling e = g sin θW = g′ cos θW and we’ve

introduced various currents that interact with the gauge fields. The electromagnetic

current that couples to the photon is given by

JEM
µ =

2

3
(ūLσ̄µuL + ūRσ

µuR)− 1

3
(d̄Lσ̄µdL + d̄Rσ

µdR)− (ēLσ̄µeL + ēRσ
µeR)

=
(2

3
ūγµu−

1

3
d̄γµd− ēγµe

)
. (5.86)

This takes the expected form, with each fermion multiplied by its electric charge. In

the second line, we’ve written this in terms of Dirac spinors u, d, and e and the gamma

matrices γµ to emphasise that, despite its chiral origins, this is the kind of vector-like

current that we’re used to in QED.

For the Z boson, we have a little more work to do. Some algebra reveals that the

current takes the form

JZµ =
1

2
(ūLσ̄µuL − d̄Lσ̄µdL + ν̄Lσ̄µνL − ēLσ̄µeL)− sin2 θW JEM

µ . (5.87)

Finally, the currents for the W bosons can be read off immediately from (5.85); they

are

J+
µ = ūLσ̄µdL + ν̄Lσ̄µeL and J−µ = d̄Lσ̄µuL + ēLσ̄µνL . (5.88)

The currents for both the W and Z bosons are chiral, treating left-handed fermions

differently from their right-handed counterparts.

5.3.2 Feynman Diagrams

From the interaction terms (5.85), we can read off the Feynman rules for the electroweak

sector. We see from (5.86) that the photon couples in the usual way to the up and down

quarks and to the electron, with coupling constant given by eq with q the charge. This

gives rise to the kind of Feynman diagram that we met in our first course on Quantum

Field Theory.
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ē

e

γ

ū

u

γ

d̄

d

γ

The photon couples to the up and down quarks and the electron. It doesn’t couple to

the neutrino because it’s neutral.

From (5.87), we see that there are similar diagrams involving the Z boson. But, in

contrast to the photon, this couples to all low energy particles, including the neutrino.

So we have diagrams of the form

fermion

fermion

Z

where the fermion could be u, d, e or ν. This time, the coupling is more complicated:

there is an overall factor of e/ sin θW cos θW , with different coefficients depending on

the fermion species. And more care is needed with the spinor indices because of the

chiral nature of the coupling.

Finally, the W boson relates two different fermions. We have the Feynman diagrams:

d̄

u

W+

e+

ν

W+

The two fermions in these diagrams have electric charges that differ by ±1 to ensure

that the overall electric charge is conserved at the vertex. We’ve included an arrow on

the gauge boson propagator because it is now a complex spin 1 field. The arrow going

the other way corresponds to the anti-particle W−.

Here, we’ve only focussed on a single generation. There are similar diagrams where

u, d, e and νe are replaced by their higher generational cousins. So, for example, there

are additional W boson diagrams that connect the strange and charm quark, and the

bottom and top quark:
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s̄

c

W+

b̄

t

W+

There are also diagrams with muons and taus replacing electrons. In fact, it turns out

that there is an additional subtlety when considering these higher generations that we

will turn to in Section 6.

5.3.3 A First Look at Weak Processes

Historically, the weak force was first observed in beta decay of nuclei. We can view this

as a neutron decaying to a proton, electron and anti-neutrino

n→ p+ e− + ν̄e . (5.89)

The possibility of such a process follows immediately from our discussion above. As

we saw in Section 3, a neutron is a baryon with quark content udd. This decays to a

proton with quark content uud through the tree level Feynman diagram

d
u

W−

e−

ν̄e

The lifetime of the neutron is about 10 minutes.

An obvious comment: the reason that down quarks decay into up quarks, rather

than the other way around, is because the mass of the down quark is heavier than the

masses of the decay products, md > mu + me + mνe . As we’ve mentioned previously,

we have no understanding of why the masses of fundamental particles are ordered in

this way.

Neutrons are not the only victim of the weak force. A world without the weak

force would be awash with pions which, as we saw in Section 3, are the lightest of the

hadrons. The vast majority of the time (something like 99.99%) charged pion π− = dū

decays through the weak force to a muon and anti-neutrino. This occurs through a

similar Feynman diagram to that responsible for beta decay, but with muons replacing

electrons as the end products,
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d
u

W−

µ−

ν̄µ

The resulting up quark then combines with the anti-up quark in the pion, and the two

rapidly decay into photons. The lifetime of the charged pion is about 10−8 seconds.

The resulting muons don’t live too long either. Their demise is also due to the weak

force and they decay to electrons and neutrinos through the process

µ−
νµ

W−

e−

ν̄e

The lifetime of the muon is around 2 × 10−6 seconds. All other particles involving

quarks and leptons from the second and third generation have the same fate, decaying

through the weak force to the more familiar particles from the first generation.

5.3.4 4-Fermi Theory

Although the weak force is mediated by W and Z bosons, if we focus on processes that

take place at low energies, E � MW , MZ , then it’s possible to ignore these gauge

bosons and write down interaction terms that describe the relevant physics directly.

There are a couple of (essentially equivalent) ways to remove the W and Z bosons

while leaving behind the processes that they induce. The first, and most direct, way

to see this is to start with the terms linear and quadratic in W bosons. (We’ll ignore

the Higgs field h in what follows but, crucially, keep its vev v.) We have

Lweak = −1

2
(∂µW

+
ν − ∂νW+

µ )(∂µW− ν − ∂νW−µ)

+
g2v2

4
W+
µ W

−µ − g√
2

(W+
µ J

µ
+ +W−

µ J
µ
−) . (5.90)
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At low energies, we can neglect the kinetic terms for the W bosons. We then proceed

by completing the square in the remaining terms,

Lweak ≈
g2v2

4

(
W+
µ −

2
√

2

gv2
J−µ

)(
W−µ − 2

√
2

gv2
Jµ+

)
− 2

v2
J+µJ

µ
− . (5.91)

Performing the path integral over the W bosons effectively sets the first term to zero,

leaving us just with the current-current interaction. We write this, for historic reasons,

as

Lweak = −4GF√
2
J+µ J

µ
− (5.92)

with

GF =
1√
2v2
≈ 1.16× 10−5 GeV−2 . (5.93)

Our final result (5.92) is a 4-fermion interaction. The coupling constant GF is called the

Fermi coupling and provides a direct measurement of the Higgs vev. It has dimensions

[GF ] = −2 (because the fermion has dimension 3/2 so the JµJ
µ term has dimension 6).

This means that the four fermi term is irrelevant in the renormalisation group sense. It

is, however, very relevant in the cosmic sense. For example, it is what makes the Sun

shine.

There is a second way to arrive at the same result (5.92) using Feynman diagrams.

In this approach, we start by examining the propagator for a massive vector field. In

momentum space, it takes the form

Dµν(p) =
i

p2 −M2

(
−ηµν +

pµpν
M

)
. (5.94)

In the limit E �M , we ignore the momentum terms and get

Dµν(p) ≈
i

M2
ηµν =⇒ Dµν(x− y) =

i

M2
ηµνδ

4(x− y) . (5.95)

In this limit, the propagator in position space becomes a delta-function, as shown, and

the kind of couplings induced by the massive gauge boson, which are generally of the

form Jµ(x)Dµν(x, y)Jν(y) collapse to the direct current-current interaction that we saw

in (5.92).
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We can see what this means for, say, muon decay. If we ignore the quarks for now,

but include both electron and muon contributions, then the W boson current (5.88)

includes the term

J+
µ = ν̄ eLσ̄µeL + ν̄ µL σ̄µµL . (5.96)

The 4-fermi terms then include

Lweak ∼ −
4GF√

2
(ν̄ eLσ̄µeL)(µ̄Lσ̄

µν µL ) . (5.97)

This gives rise directly to muon decay through the Feynman diagram

µ−
νµ

e−

ν̄e

It’s as if we’ve squinted and ignored the W boson that mediates the weak force.

These kinds of 4-fermion interactions were first written down by Fermi in 1933. His

purpose was to describe beta decay, with the neutron coupled to the proton, electron

and neutrino fields (the latter later realised to be an anti-neutrino). This was an

important breakthrough in our understanding of particle physics because it changed

the way we think about particles. In beta decay, a neutron decays into a proton and

electron. But that doesn’t mean that the neutron is made of a proton and electron!

They’re not sitting there inside the neutron all along, waiting to escape. Instead, the

key idea of quantum field theory is that the four-fermion couplings allow one type of

field to transmute into the others.

Second, there’s some spin structure going on in (5.97) that Fermi was unaware of.

This arises because the W boson couples only to left-handed fermions, not their right-

handed counterparts. We can also write the resulting coupling in terms of Dirac spinors

where we need a projection operator onto the left-handed part. The coupling (5.97)

can then be written as

Lweak ∼
GF√

2

(
ν̄eγµ(1 + γ5)e

)(
µ̄γµ(1 + γ5)νµ

)
. (5.98)

This is referred to as the V-A theory, because the coupling involves the difference

between the vector current ψ̄γµψ and the axial current ψ̄γ5γµψ. (Admittedly, the

expression “V-A” would probably have made more sense if I’d defined my γ5 matrix

with a different sign so that it appeared as (1−γ5) rather than (1+γ5) in the expressions

above. Oh well.)
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6 Flavour

The purpose in this section is to understand how the three different generations of the

Standard Model fit into the story. We will focus on the quark fields, where this topic

usually goes by the name of flavour physics. We will comment briefly on the leptons,

but their full story will only be told in Section 7 when we discuss neutrino masses.

6.1 Diagonalising the Yukawa Interactions

Including three generations, the quark Yukawa terms read (5.22)

LYuk = −ydij Q̄i
LHd

j
R − y

u
ij Q̄

i
LH̃u

j
R + h.c. . (6.1)

Here the i, j = 1, 2, 3 indices label the generations. We can expand the fields out in

terms of the more familiar quark names,

diR =
{
dR , sR , bR

}
and uiR =

{
uR , cR , tR

}
Qi
L =

(
uiL

diL

)
=

{(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

) }
. (6.2)

Now the Yukawa couplings yd and yu in (6.1) are each 3× 3 matrices. Generally these

coefficients can be complex, which means that we have 2×3×3 = 18 complex parameters

or, equivalently, 36 real parameters. That’s a lot of parameters! The purpose of flavour

physics is to understand what they mean and to put some order to them.

6.1.1 Counting Yukawa Parameters

Happily, many of these parameters are redundant. At this point, there are two ways

to proceed. The first is to follow the restrictions imposed by gauge invariance. The

second is to do something practical that helps comparison with experiment. For once,

it turns out, these two requirements are rather different.

Let’s first bow to the altar of gauge symmetry. The kinetic terms are (5.25)

Lkin = −i
3∑
i=1

(
Q̄i
Lσ̄

µDµQi
L + ūiRσ

µDµuiR + d̄iRσ
µDµdiR

)
. (6.3)

We can always rotate the fermions among themselves, leaving these kinetic terms in-

variant, by acting with

Qi
L → V i

jQ
j
L , diR → (Ud)i jd

j
R , uiR → (Uu)i ju

j
R (6.4)
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with V, Uu, Ud ∈ U(3). These transformations leave the kinetic terms invariant, but

they change the Yukawa couplings which become

yd → V †ydUd and yu → V †yuUu . (6.5)

Such field redefinitions don’t change the physics. This means that we can use these

rotations to diagonalise one of the Yukawa couplings – say yu – but, because the

same matrix V ∈ U(3) appears in both the transformations of yu and yd, we cannot

diagonalise both. The upshot is that if we insist on doing transformations (6.4) that

respect the full gauge invariance of the Standard Model, then the mass terms for quarks

will typically be non-diagonal.

Ultimately, we’ll work with a different set of transformations that do not respect

gauge invariance. But, before we do this, it’s useful to do a little counting. We’ve

already seen that the two Yukawa matrices yd and yu contain 36 real parameters. But

we can act with U(3)3 to rotate away some of these. We have dimU(3) = 9, so naively

we can remove 3× 9 = 27 parameters. But, a closer inspection, shows that there’s an

overall U(1) ⊂ U(3)3 that doesn’t affect the Yukawa couplings in (6.5). This means

that we can, in fact, eliminate 26 of the parameters in the Yukawa couplings by this

method. We’re left with

36− 26 = 10 (6.6)

physical parameters in yu and yd.

In fact, we can be a bit more precise than that. We can think of each of the elements

of the Yukawa matrix as consisting of a real parameter, together with a complex phase,

so that yij = rije
iθij . So our original Yukawa matrices yd and yu each contain 9 real

parameters and 9 complex phases.

How many of each of these are eliminated? Here’s a slick argument. A real N ×N
unitary matrix O obeys OTO = 1 which is the same thing as an orthogonal matrix.

This suggests that, of the N2 components of a unitary matrix, 1
2
N(N − 1) of them are

“real parameters” and the remaining 1
2
N(N +1) of them are “complex phases”. So our

U(3)3 consists of 9 real parameters and 18 complex phases, with one complex phase

corresponding to the overall U(1) that doesn’t affect the Yukawas. This means that,

of the 10 physical parameters sitting inside yd and yu, we have

(2× 9)− 9 = 9 real parameters (6.7)

and

(2× 9)− (18− 1) = 1 complex phase . (6.8)
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Why is this distinction important? It’s because a theory with non-vanishing complex

phases violates CP symmetry. We’ll look at this more closely in Section 6.4. For now,

we note that if we took the Standard Model with N = 1 or N = 2 generations, then

there’s no possibility of writing down Yukawa matrices that violate CP. (You can do the

same counting as above and see that there are no physical phases remaining after using

the U(N)3 symmetries.) The first time that CP violation becomes a possibility is with

N = 3 and, moreover, it is a possibility that the Standard Model chooses to embrace.

Presumably it is no coincidence that N = 3 is the minimal number of generations that

allows for CP violation although the deeper significance of this remains something that

we have yet to fully appreciate.

There is also a remarkable historical fact here. A counting similar to the one above

was first done by Kobayashi and Maskawa in 1972 who argued that there must be a

third generation of quarks to account for the observed CP violation in hadronic physics.

This was before the discovery of the charm quark!

6.1.2 The Mass Eigenbasis

There’s nothing wrong with the analysis above, but it doesn’t jibe with how we usually

do quantum field theory.

Typically, we start with terms in the Lagrangian that are quadratic in fields and

make sure that they’re diagonal. This is akin to working in the energy, or equivalently

mass, eigenbasis of the free theory. We then add interaction terms which, as always in

quantum mechanics, change the energy eigenstates. If the interaction terms are small,

so that we can use perturbation theory, then this approach is the one that most clearly

highlights the physics.

But, as we’ve seen, if we keep with gauge invariant fields then the transformation

(6.5) is not sufficient to diagonalise both Yukawa matrices. We can achieve this only

if we’re willing to sacrifice gauge invariance and rotate the two components of QL

independently, so

diL → (V d)i jd
j
L , uiL → (V u)i ju

j
L , diR → (Ud)i jd

j
R , uiR → (Uu)i ju

j
R (6.9)

with V u, V d, Uu, Ud ∈ U(3). While this is necessary if we want to diagonalise both

Yukawa matrices, it is only tenable because we have already spontaneously broken the

SU(2) gauge symmetry through the Higgs mechanism. The Yukawa couplings now

transform independently as

yd → V d †ydUd and yu → V u †yuUu . (6.10)

– 214 –



By a prudent choice of these unitary matrices, we can now diagonalise both Yukawa

couplings

yd = diag(yd, ys, yb) and yu = diag(yu, yc, yt) . (6.11)

These Yukawa couplings dictate the masses of the quarks, with

mX =
1√
2
yXv (6.12)

now with X running over all quark fields, X = d, u, s, c, b, t. These diagonal components

of the Yukawa matrices are such that they reproduce the quark masses that we met in

Section 3,

top : yt ≈ 1 =⇒ mt ≈ 173 GeV

bottom : yb ≈ 2.5× 10−2 =⇒ mb ≈ 4.2 GeV

charm : yc ≈ 7.5× 10−3 =⇒ mc ≈ 1.3 GeV

strange : ys ≈ 5.5× 10−4 =⇒ ms ≈ 93 MeV

up : yu ≈ 1.3× 10−5 =⇒ mu ≈ 2 MeV

down : yd ≈ 2.7× 10−5 =⇒ md ≈ 5 MeV

Although we’ve reduced the masses of the various quarks to dimensionless coupling

constants yX , we currently have no understanding of why the Yukawa couplings take

these values. The Yukawa couplings span 5 orders of magnitude and we don’t know why.

In particular, the top Yukawa is apparently almost exactly one. Is this coincidence?

We don’t know. (I’ve not heard any convincing idea for it being anything other than a

coincidence.)

Our counting in Section 6.1.1 told us to expect 10 physical parameters in the two

Yukawa matrices. Yet now we’ve diagonalised the two Yukawa matrices to leave our-

selves with just 6 masses. Which suggests that there are still 4 other parameters

lurking somewhere. As we will see in Section 6.2, these have been pushed, like a bubble

in wallpaper, to a different part of the theory.

6.1.3 A Brief Look at Leptons

So far, our attention has been solely on the quarks. We can ask: what’s the analogous

story for leptons? We decompose the left-handed leptons as (5.20)

LiL =

{(
ν eL

eL

)
,

(
ν µL

µL

)
,

(
ν τL

τL

) }
. (6.13)
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Their Yukawa couplings are given by

LYuk = −yeij L̄iLHe
j
R − y

ν
ij L̄

i
LH̃ν

j
R + h.c. . (6.14)

However, as we mentioned previously, there remains a question mark about the exis-

tence of the right-handed neutrino. This is all tied up with how the neutrinos get a

mass, a subject that we will discuss in Section 7. To avoid getting into this can of

worms, lets for now assume that there is no right-handed neutrino, in which case the

lepton Yukawa terms are just

LYuk = −yeij L̄iLHe
j
R + h.c. . (6.15)

Then we have a single 3× 3 Yukawa matrix ye and there is no obstacle to rotating the

two fields, LL and eR, to ensure that this matrix is diagonal

ye = diag(ye, yµ, yτ ) . (6.16)

The values of these Yukawa couplings determine the masses of the electron, muon,

and tau through the same formula (6.12) as the quarks. The experimentally measured

values of these couplings are

tau : yτ ≈ 1× 10−2 =⇒ mτ ≈ 1.8 GeV

muon : yµ ≈ 6.1× 10−4 =⇒ mµ ≈ 106 MeV

electron : ye ≈ 2.9× 10−6 =⇒ me ≈ 0.5 MeV .

We won’t say any more about leptons in this section. Instead, we’ll return to the quarks

where the need to simultaneously diagonalise two Yukawa matrices implies something

interesting. Having understood what happens for quarks, we’ll then return to leptons

in Section 7 and see how something similar plays out in the world of neutrinos.

6.2 The CKM Matrix

Although we’ve diagonalised the quark mass matrices, there’s a price to pay. And

this comes in the interactions with the gauge bosons. We computed these for a single

generation in (5.85) where we saw that the interactions take the form

Lkin

∣∣∣
weak

= − e√
2 sin θW

(W+
µ J

µ
+ −W−

µ J
µ
−)− e

sin θW cos θW
ZµJZµ − eAµJEM

µ (6.17)

with the various currents computed in (5.86), (5.87) and (5.88). To extend these results

to multiple generations is easy: we simply sum over all generations. For our immediate
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purposes, we will ignore the coupling to leptons so the electromagnetic current (5.86)

becomes

JEM
µ =

3∑
i=1

(2

3
(ūiLσ̄µu

i
L + ūiRσ

µuiR)− 1

3
(d̄iLσ̄µd

i
L + d̄iRσ

µdiR)
)
. (6.18)

The coupling to the Z bosons (5.87) is

JZµ =
1

2

3∑
i=1

(
ūiLσ̄µu

i
L − d̄iLσ̄µdiL

)
− sin2 θW JEM

µ . (6.19)

And, finally, the couplings to the W bosons (5.88) are

J+
µ =

3∑
i=1

ūiLσ̄µd
i
L and J−µ =

3∑
i=1

d̄iLσ̄µu
i
L . (6.20)

Each of these currents is diagonal in flavour, but this is before we do the rotation (6.9)

needed to diagonalise the Yukawa matrices. What becomes of the currents after we

rotate the quarks to go to the mass eigenbasis?

Neither the electromagnetic current JEM
µ nor the Z boson current JZµ are affected by

the change of basis (6.9). This is because the quarks in these currents always appear

together with the corresponding anti-quark as q̄iqi.

The novelty comes when we look at the W boson current. Here there are different

kinds of quarks, ūiLd
i
L and these rotate differently when we diagonalise the Yukawa

matrices. This means that if we work in the mass eigenbasis, the coupling to the W

boson takes the form

J+
µ = ūiLσ̄µVij d

j
L and J−µ = d̄iLσ̄µV

†
ij u

j
L . (6.21)

where

V = (V u)†V d (6.22)

captures the mismatch between the rotations of the left-handed up and down quarks.

This matrix V is the CKM matrix, sometimes denoted as VCKM and named after

Cabibbo, Kobayashi and Maskawa. This is where the remaining parameters of the

Yukawa couplings are hiding after we diagonalise them.
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6.2.1 Two Generations and the Cabibbo Angle

Before we turn to the full CKM matrix, it’s useful to look at what happens when we

have just two generations. In this case the analogous matrix V is a 2 × 2 matrix.

Moreover, as we can see from the form (6.22), the matrix is necessarily unitary. The

most general unitary 2 × 2 matrix can be written as a rotation matrix, dressed with

various complex phases

V2×2 =

(
eiδ1 cos θ eiδ2 sin θ

−e−iδ3 sin θ eiδ4 cos θ

)
(6.23)

where unitarity requires δ1 − δ2 − δ3 + δ4 = 0. Here we see the decomposition that we

described in Section 6.1.1: the four parameters comprise of 3 complex phases and a

single real angle θ.

However, we can eliminate all the complex phases in this case. This is because the

diagonal mass terms are invariant under the U(1)4 symmetry

diR ,L → eiαi diR ,L and uiR ,L → eiβiuiR ,L with i = 1, 2 . (6.24)

Of these, U(1)3 acts on V2×2, leaving the overall sum δ1− δ2− δ3 + δ4 unchanged. This

means that the lone physical parameter in V2×2 is the angle θ. This is known as the

Cabibbo angle and we denote it θ = θc. We have

V2×2 =

(
cos θc sin θc

− sin θc cos θc

)
. (6.25)

To see the physical meaning of this, we can return to the W boson currents (6.21). For

two generations, the quark labels are d = (d, s) and u = (u, c), so the current is

J+
µ = cos θc (ūLσ̄µdL + c̄Lσ̄µsL) + sin θc (ūLσ̄µsL − c̄Lσ̄µdL) . (6.26)

We see that we get two terms: the first, proportional to cos θc, relates quarks within the

same generation: up to down, and charm to strange. The second term, proportional to

sin θc, relates quarks within different generations: up to strange, and charm to down.

This is what the additional parameters in the Yukawa matrices buy us.
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This means that we have additional Feynman diagrams. The diagram that we met

previously comes with a factor of cos θc,

∼ cos θc

But we also get a diagram that relates quarks in different generations,

∼ sin θc

This inter-generational mixing occurs only for interactions involving W bosons. They

are referred to as flavour changing currents.

The value of the Cabibbo angle is, like all other things Yukawaesque, something that

we cannot predict from first principles and have to go out and measure. It takes the

value

sin θc ≈ 0.22 =⇒ θc ≈
π

14
≈ 13◦ . (6.27)

We don’t currently have any deeper explanation for this value.

This resolves an issue that we gracefully swept under the rug when describing weak

decays in Section 5.3. How does the kaon decay?

Consider the kaon K− whose quark content is ūs. If there was no way for the

flavour to change, then there would be nowhere for the strange quark to go. It cannot

decay into a charm quark because that is significantly heavier. But the quark mixing

described above means that there is a Feynman diagram that allows the strange quark

to decay to an up quark,

s
u

W−
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The resulting up quark can then annihilate with the ū in the kaon, while the W− can

decay into, say, an electron and anti-neutrino in the usual way. This Feynman diagram

comes with a factor of sin θc which, in turn, means that the decay rate is suppressed

by sin2 θc ≈ 0.05. This results in an increased lifetime for mesons containing strange

quarks.

6.2.2 Three Generations and the CKM Matrix

Now we can turn to the full CKM matrix (6.22). This is a unitary 3 × 3 matrix with

the general form

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (6.28)

Each of these elements can, in principle, be complex and we will discuss the phases

shortly. But for now we can give the experimentally measured absolute values, which

are roughly

|VCKM| =


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 ≈


0.97 0.22 0.004

0.22 0.97 0.04

0.009 0.04 0.999

 . (6.29)

You can see the Cabibbo angle sitting there in Vus ≈ sin θc ≈ 0.22.

Just like we have no understanding of why the Cabibbo angle takes its particular

value, nor do we have any good understanding of the CKM matrix. As you can see,

it’s not far from a diagonal matrix, with the Cabibbo terms Vus and Vcd the only ones

that aren’t completely tiny. We don’t know why.

Not all the parameters in matrix (6.29) are independent. The CKM matrix is unitary

and a general unitary matrix contains a total 9 parameters which decompose as 3 real

angles and 6 phases. But, as in the 2× 2 case, we can eliminate some of these because

the diagonal mass terms are invariant under the U(1)6 symmetry

diR ,L → eiαi diR ,L and uiR ,L → eiβiuiR ,L . (6.30)

Of these, U(1)5 acts on the CKM matrix and can be used to set 5 of the phases to zero.

The U(1) symmetry that fails to act has αi and βi all equal and corresponds to the

baryon number symmetry of the Standard Model. All of which means that we expect

the CKM matrix to depend on four parameters, 3 real angles and one complex phase.

This agrees with our counting in Section 6.1.1.
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This prompts the question: how should we write the CKM matrix in terms of these

four parameters? There’s no right and wrong answer here: merely more or less conve-

nient ways of doing things. One of the most standard choices is to take Vud, Vus, Vcb
and Vtb to be real and to write the CKM matrix in terms of three angle θ12, θ13 and θ23,

together with a complex phase eiδ, constructed in a similar way to the Euler angles for

rotating rigid bodies,

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12 c13 s12 c13 s13e

−iδ

−s12 c23 − c12 s23 s13e
iδ c12 c23 − s12 s23 s13e

iδ s23 c13

s12 s23 − c12 c23 s13e
iδ −c12 s23 − s12 c23 s13e

iδ c23 c13

 . (6.31)

where we’re using the convention

cij = cos θij and sij = sin θij . (6.32)

Here θ12 = θc is the Cabibbo angle. The angles are given in degrees by

θ12 = 13.02◦ ± 0.004◦

θ13 = 0.20◦ ± 0.02◦

θ23 = 2.56◦ ± 0.03◦

δ = 69◦ ± 5◦ . (6.33)

We see that the complex phase δ is not at all small, but it appears in the elements of

the CKM matrix multiplying sin θ13 so its effects are tiny. We will see these effects in

Section 6.4.

It’s worth pausing to take in a bigger perspective here. In the first part of Section 5,

we described how the matter content of the Standard Model interacts with the different

forces. There we found a beautiful consistent picture – a perfect jigsaw – in which the

interactions were largely forced upon us by the consistency requirements of anomaly

cancellation. For a theoretical physicist, it is really the dream scenario. This contrasts

starkly with the story of flavour. Even focussing solely on the quarks, we find that

there are 6 Yukawa couplings that determine their mass, plus a further 4 entries of the

CKM matrix that determine their mixing. And none of these parameters are fixed or

understood at a deeper level.
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Somewhat ironically, much of this complexity can be traced to the simplicity of

the Higgs. Yang-Mills theories and Weyl fermions all come with subtleties that are

responsible for the quantum consistency conditions. But the Higgs is a spin 0 particle

and, as we observed earlier: scalars are basic. There are no consistency conditions

beyond the requirements of Lorentz invariance and gauge invariance so the Higgs can

do what it likes. This is what leads to the plethora of extra parameters that we’ve seen,

and it is why the Higgs is simultaneously both the simplest and the most complicated

field in the Standard Model.

Turning this on its head, the flavour sector of the Standard Model may well offer a

unique opportunity. The structure of quark masses, together with the CKM matrix,

surely contains clues for what lies beyond the Standard Model. Why the hierarchy of

masses? Why these values of the CKM matrix? Hopefully one day we will find out.

6.2.3 The Wolfenstein Parameterisation

There is a way to write the CKM matrix that highlights the numerical values that the

various elements take. This is motivated by the observation that the absolute values

(6.29) seem to roughly follow the pattern

|VCKM| ∼


1 λ λ3

λ 1 λ2

λ3 λ2 1

 (6.34)

with λ ≈ 0.2. The idea of the Wolfenstein parameterisation is that we take this as a

starting point and then add corrections. We parameterise these corrections by one real

number that we call A and one complex number that we write as ρ − iη, so that the

overall number of parameters is the same as the CKM matrix. Then numbers A and

ρ− iη are all of order one. We then write

VCKM ≈


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (6.35)

You will recognise the upper-left 2× 2 matrix as the Taylor expansion of V2×2 given in

(6.25), with λ = θc.

The Wolfenstein parameterisation (6.35) is not unitary. It sacrifices that property of

the CKM matrix to highlight some other numerical structure. Note, in particular, that

only the far off-diagonal elements Vub and Vtd have an imaginary piece. This contrasts
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Figure 17. The unitarity triangle, plotted on the complex plane.

with the exact CKM matrix (6.31) where Vcd, Vcs and Vts also have imaginary parts

but you can check that these are one or two orders of magnitude smaller than Im(Vub)

and Im(Vtd), which is why they are neglected in (6.35).

6.2.4 The Unitarity Triangle

The CKM matrix is unitary,

V †CKMVCKM = 1 . (6.36)

This means, in particular, that a given row of V †CKM is orthogonal to two of the three

columns of VCKM.

For example, if we contract the middle row of V †CKM with the first column of VCKM,

we have the requirement

3∑
i=1

V ?
isVid = V ?

usVud + V ?
csVcd + V ?

tsVtd = 0 . (6.37)

If we look at this in the Wolfenstein parameterisation, then we see that the first two

terms are of order λ while the final term is of order λ5. This means that the equation

essentially boils down to the requirement that V ?
usVud ≈ V ?

csVcd.

We get something more interesting if we contract the bottom row of V †CKM with the

first column of VCKM. This reads

3∑
i=1

V ?
ibVid = V ?

ubVud + V ?
cbVcd + V ?

tbVtd = 0 . (6.38)
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Figure 18. The experimental data, constraining the unitarity triangle. Taken from the

CKMfitter website.

Now each of the terms has a comparable magnitude ∼ λ3, but they have different

phases. But we can go out and measure each of the terms in this equation and check if

they do, indeed, add up to zero. This gives us a very useful test on the whole framework

of flavour, not to mention an opportunity to search for physics beyond the Standard

model. So far, it is a test that the Standard Model has passed with flying colours.

To perform this test, it’s traditional to divide by V ?
cbVcd and write the constraint as

V ?
ubVud
V ?
cbVcd

+ 1 +
V ?
tbVtd
V ?
cbVcd

= 0 . (6.39)

Each of the two non-trivial terms is a complex number whose magnitude is of order 1.

We can then plot these numbers on the complex plane. You can check that, to leading

order in λ, we have V ?
ubVud/V

?
cbVcd = −(ρ+iη). The result is called the unitarity triangle

and is shown in Figure 17. The data from a multitude of experiments, constraining the

corners of the triangle, is shown in Figure 18.
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6.3 Flavour Changing Neutral Currents

When we diagonalise the mass matrices for quarks, neither the electromagnetic current

(6.18) nor the Z boson current (6.19) are affected. It’s only the W boson current that

couples up-type and down-type quarks that gets hit by this diagonalisation, and that

is where the CKM matrix sits.

This means that the tree level processes that change one generation of quarks with

another always involve charged currents. So, for example, we can change a strange

quark into an up quark by emitting a W boson. But we can’t change a strange quark

directly into a down quark which has the same charge. We phrase this as saying that

there are no tree level flavour changing neutral currents, often abbreviated as FCNC.

That’s not to say that flavour changing neutral currents don’t exist. We can cook

them up at loop level, and an example is given by the neutral kaon mixing that we

will discuss in Section 6.4 where K0 turns into the K̄0 by exchanging s and d quarks.

But it does mean that these processes are suppressed because they can only come from

loop diagrams.

In fact, the situation is even more interesting than that. The structure of the Stan-

dard Model is such that these one-loop contributions are further suppressed. A par-

ticularly simple example arises if we look at how a bottom quark might decay into a

strange quark, with b→ sγ. The simplest Feynman diagrams take the form

b s

γ

u,c,t

W−

As shown, we should sum over all up-like quarks running in the loop. But this means

that the amplitude comes with factors of the CKM matrix,

M∼
3∑
i=1

VibV
?
is = 0 (6.40)

which vanishes by unitarity of the CKM matrix. This observation is known as the GIM

mechanism, named after Glashow, Iliopoulos, and Maiani.
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In fact, the cancellation isn’t precise because the quarks running in the loop have

different masses. This means that we actually get terms that are of the form

M∼
3∑
i=1

VibV
?
isf(mi) (6.41)

for some function f(mi). These diagrams also contain a W boson running in the loop

and, because mi � mW for each of the u, c, and b quarks, it can be shown that this

function takes the form f(mi) ∼ m2
i /m

2
W .

Remarkably, this kind of argument was first used by GIM to predict the existence

of the charm quark in 1970, before its discovery in 1974. (This was also before the

Standard Model had been fully constructed, and certainly before the importance of

anomaly cancellation was realised.) The issue arose from looking at decays of the

neutral kaon K0 with quark content ds̄ to a pair of muons.

K0 → µ+µ− . (6.42)

This proceeds through the one loop diagram

d µ−

s̄ µ+

W−

W+

u ν̄µ

The problem is that this diagram gives a contribution to K0 → µ+µ− that is much

greater than observed. The suggestion by GIM was to add an additional quark – the

charm – that contributes with a similar diagram

d µ−

s̄ µ+

W−

W+

c ν̄µ

Under the (obviously wrong!) assumption that the up and charm quark have similar

masses, these two diagrams would cancel. This is because each is proportional to the

appropriate CKM matrix elements which, with just two generations, can be written in

terms of the Cabibbo angle. The resulting amplitude scales as

M∼ VudV
?
us + VcdV

?
cs = cos θc sin θc − sin θc cos θc = 0 . (6.43)
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This illustrates the general idea captured in (6.40). When you take into account the

fact mu 6= mc, there is still partial cancellation but it is not complete. The amplitude

scales as

M∼ g4 m
2
c

m2
W

(
1− m2

u

m2
c

)
. (6.44)

It’s that overall factor of g4m2
c/m

2
W that makes the decay rate to muons so small.

The lack of flavour changing neutral currents is special to the Standard Model and

any attempt to introduce new physics that goes beyond the Standard Model will typi-

cally generate these currents. This means that experiments involving neutral currents

provide an important class of constraints on what theories govern the next level of

reality.

Here’s an example. It’s possible that flavour changing neutral currents could be

generated by the Higgs field. But that doesn’t happen in the Standard Model because

the Higgs field couples, like its vev, to the mass matrix which, as we have seen, can be

diagonalised for both up and down sectors. This means that we have, for example,

LYuk = −ydij(v + h)d̄iLd
j
R (6.45)

with a diagonal Yukawa matrix yd = diag(yd, ys, yb). There is a similar term for the up

sector.

Now suppose that we had a theory with two Higgs fields, H1 and H2. We’ll assume

(without any justification) that their vacuum expectation values align, so that 〈H1〉 =

(0, v1) and 〈H2〉 = (0, v2). Then we should include two sets of Yukawa interactions

that, for the down sector, take the form

LYuk = y1
ij(v1 + h1)d̄iLd

j
R + y2

ij(v2 + h2)d̄iLd
j
R . (6.46)

Now the fermion mass matrix is Mij = v1y
1
ij + v2y

2
ij. We could rotate the quarks to

ensure that this is diagonal, but the Higgs fields h1 and h2 will couple to the fermions

through y1
ij and y2

ij respectively and there is no reason that these will be diagonal. This

means that in a model with two Higgs fields, there will generically be flavour changing

neutral currents at tree level, mediated by the two Higgses, in contradiction to what is

observed in experiment. If you want to make a two-Higgs model fly (and many people

do), then you need to find a way to suppress these currents.
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6.4 CP Violation

The complex phase eiδ in the CKM matrix (6.31) is important. This is because it is

responsible for the laws of physics violating the symmetry CP. Said differently, because

any relativistic quantum field theory is invariant under CPT, a non-vanishing phase δ

means that the laws of physics are not invariant under time reversal.

We discussed the discrete symmetries of C, P and T in Section 1.4. There we saw

that parity and charge conjugation both exchange left-handed and right-handed spinors.

The electroweak sector of the Standard Model violates both parity and charge conju-

gation from the get go because, as a gauge chiral theory, the left- and right-handed

fermions transform differently under the gauge symmetries. But the combination CP

is more subtle.

We derived how CP acts on left-handed and right-handed Weyl spinors in (1.132).

For fermions with real masses, we have

CP : ψL(t,x) 7→ ∓iσ2ψ?L(t,−x) and CP : ψR(t,x) 7→ ±iσ2ψ?R(t,−x) . (6.47)

From this, you can check that the fermion bilinear ψ̄LψR transforms under CP as

CP : ψ̄LψR(t,x) 7→ ψ̄RψL(t,−x) . (6.48)

A Yukawa coupling between two fermions and a scalar φ takes the form

LYuk = yψ̄LφψR + y?ψ̄Rφ
†ψL (6.49)

where the second term is what was hiding in the + h.c. in our previous expressions

(5.74) and (6.1). The scalar gets mapped to its conjugate under CP, so these two

terms get mapped into each other, with CP : ψ̄LφψR 7→ ψ̄Rφ
†ψL. This means that the

Yukawa terms (6.49) are invariant under CP only if the Yukawa coupling is real, so

y = y?.

There’s a quicker argument that gets us to the same conclusion. This is to note that

T is an anti-unitary symmetry: it maps i 7→ −i. Only theories with real parameters

are invariant under time reversal.

From the structure of CKM matrix (6.31), we see that CP violation will only occur in

processes that mix different generations. Moreover, as emphasised in the Wolfenstein

parameterisation (6.35), CP violation will be strongest in processes that mix the first

and third generations of quarks, even though this is the smallest element of the CKM

matrix in magnitude.
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6.4.1 How to Think of the Breaking of Time Reversal

The fact that the fundamental laws of physics are not invariant under time reversal is

an extraordinarily big deal. And yet, when we get to see the details one can’t help but

be a little disappointed. It just boils down to a complex phase eiδ in the CKM matrix

that can’t be removed by a field redefinition. Surely there’s more to it than that!

The purpose of this section is to give some intuition for why such a complex phase

results in the breaking of time reversal symmetry. We will do this by providing an

analogy with the meaning of time-reversal in quantum mechanics.

Let’s return to our Yukawa coupling matrices ydij and yuij in (6.1). We will consider

the general case where we have i, j = 1, . . . , N generations rather than setting N = 3.

Before we do any field redefinitions, each of these is an N × N complex matrix. Any

complex matrix y can be written in terms of a matrix polar decomposition as

y = Y U . (6.50)

with U a unitary matrix and Y a Hermitian matrix, so Y = Y †. Because Y is Hermitian,

it necessarily has real eigenvalues and these can always be taken to be non-negative.

This is the matrix version of writing a complex number as z = reiθ. But, for each

Yukawa coupling, the unitary matrix U can be absorbed into a redefinition of the

right-handed quarks, as in (6.4). This means that we can always take the Yukawa

matrices to be Hermitian. We will denote these two Hermitian Yukawa matrices as Y u
ij

and Y u
ij .

One benefit of having Hermitian Yukawa matrices is that we can start to import

some intuition from quantum mechanics. For example, we can consider conjugating

the two matrices by a unitary matrix V ,

Y d → V †Y dV and Y u → V †Y uV . (6.51)

These are the remaining field redefinitions (6.5) that keep the matrices Hermitian. We

know from quantum mechanics that it is possible to simultaneously diagonalise both

Y d and Y u by such a transformation if and only if

[Y d, Y u] = 0 . (6.52)

The fact that this condition isn’t satisfied for the Yukawa matrices of the Standard

Model is what leads to the CKM matrix. Said differently, the CKM matrix is a measure

of the failure of Y d and Y u to commute.
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There’s also a less familiar question that we can ask: is it possible to find a unitary

matrix V such that, by conjugation (6.51), we can make both Y d and Y u real? If this

is possible, we will say that Y d and Y u are mutually real. First note that if Y d and

Y u are simultaneously diagonalisable then they are necessarily mutually real. But the

requirement that matrices are mutually real is weaker than the requirement that they

commute.

Next we will show that if Y d and Y u are mutually real then the CKM matrix is

real. (In fact, the converse also holds: a real CKM matrix implies that Y d and Y u are

mutually real.) To see this, note that if V †Y dV and V †Y uV are both real then each

can be diagaonalised by a (different) orthogonal real matrix, Od and Ou:

(Od)TV †Y dV Od = diag(yd, ys, . . .) and (Ou)TV †Y uV Ou = diag(yu, yc, . . .) .(6.53)

Comparing to (6.10), we see that we can identify the unitary matrices V d and V u that

diagonalise the Yukawa interactions as V d = V Od and V u = V Ou so the CKM matrix

is

VCKM = (V u)†V d = (Ou)TOd . (6.54)

This is now real as both Ou and Od are real.

So far we’ve just phrased our previous results in a slightly different language. The

Standard Model is not invariant under time reversal if the CKM matrix is not real.

And this, in turn, holds if the Hermitian Yukawa matrices are not mutually real. Now

we’d like to explain why this should result in breaking time reversal. We will do so by

analogy with quantum mechanics.

A Quantum Mechanical Analogy

To this end, suppose that we have two N ×N Hermitian matrices A and B that act on

an N -dimensional Hilbert space. These will be analogous to our two Yukawa matrices

Y d and Y u. What is the implication in quantum mechanics if A and B are mutually

real? The answer, as we now explain, is related to time reversal invariance.

One particularly physical way to think of this is to take A to be the Hamiltonian of

the system. We then measure B. Suppose that we find ourselves in one eigenstate |bi〉
of B, evolve for some time under A, and then measure B again. The probability that

we find ourselves in an eigenstate |bj〉 is

P (i→ j; t) =
∣∣〈bj|e−iAt|bi〉∣∣2

= 〈bj|e−iAt|bi〉〈bi|e+iAt|bj〉 . (6.55)
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We can compare this to the same probability if we instead run time backwards

P (i→ j;−t) =
∣∣〈bj|e+iAt|bi〉

∣∣2
= 〈bj|e+iAt|bi〉〈bi|e−iAt|bj〉 . (6.56)

First we see that

P (i→ j;−t) = P (j → i; +t) . (6.57)

Now we can ask about time reversal invariance. When is the probability the same,

regardless of whether we run backwards or forwards in time? In other words, when is

P (i→ j; t) = P (j → i; t)?

The answer is that these two probabilities are equal whenever A and B are mutually

real or, equivalently, whenever the CKM-type matrix is real. First we introduce some

notation. We introduce unitary matrices VA and VB that diagonalise A and B,

V †AAVA = diag(a1, . . . , aN) and V †BBVB = diag(b1, . . . , bN) . (6.58)

If we introduce the basis |i〉, then the eigenvectors of A are

|ai〉 = (VA)ij|j〉 =⇒ A|ai〉 = ai|ai〉 (6.59)

and similar for B. If we’re avoiding using subscripts, we will sometimes write this as

|ai〉 = VA|i〉. The eigenvectors of A and B are then related by

|bi〉 = Uij|aj〉 with Uij = (VBV
†
A)ij . (6.60)

Notice that this isn’t quite of the CKM matrix form (6.22); the CKM matrix is VCKM =

V †BVA while here we have U = VBV
†
A. We’ve already shown that VCKM is real if A and

B are mutually real. It will turn out that the probability is time reversal invariant if

we can pick phases for the bases |ai〉 and |bi〉 so that U is also real.

To show this, we will consider an anti-unitary time reversal operator Θ in our quan-

tum mechanics. We will show that whenever A and B are mutually real, it’s possible to

construct a time reversal operator such that [Θ, A] = [Θ, B] = 0. We do this by showing

that the eigenvectors |ai〉 and |bi〉, with suitably chosen phases, are also eigenvectors of

Θ.
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We start by taking the basis of states |i〉, with i = 1, . . . , N , and introduce the

anti-linear involution K defined by

K|i〉 = |i〉 . (6.61)

If K were a linear operator, this equation would tell us that K = 1. But k is an

anti-linear operator which means that, for any α ∈ C, we have

K(α|i〉) = α?|i〉 . (6.62)

Now we define the time reversal operator

Θ = VAKV
†
A . (6.63)

With this definition, it’s straightforward to check that the eigenvectors of A, |ai〉, are

also eigenvectors of time reversal

Θ|ai〉 = |ai〉 . (6.64)

But, importantly, so too are the eigenvectors of B provided that A and B are mutually

real. This follows by plugging in the various definitions,

Θ|bi〉 = VAKV
†
AVB|i〉 = VA(V †AVB)?K|i〉n = VAV

†
AVB|i〉 = |bi〉 (6.65)

where, in the third equality, we’ve used the fact that the CKM-like matrix V †AVB is real

if A and B are mutually real.

But we can look at what this time reversal means for the matrix U defined in (6.60).

We have

Θ|bi〉 = ΘUij|aj〉 = U?
ij|aj〉 = |bi〉 = Uij|aj〉 =⇒ U?

ij = Uij . (6.66)

Finally, we can now use this to prove that our forward probability (6.55) and backward

probability (6.56) are equal, so that P (i → j; t) = P (j → i; t). We could do this

directly using the time reversal operator Θ, but it’s a bit fiddly as we need to think

about how anti-unitary operators act on the dual vectors |bi〉. Instead, we can proceed

in a more pedestrian fashion. We have

〈bj|e−iAt|bi〉 =
∑
k

〈ak|U?
kjUkie

−iakt|ak〉

=
∑
k

〈ak|UkjU?
kie
−iakt|ak〉 = 〈bi|e−iAt|bj〉 (6.67)

where, in the second line, we’ve used the fact that U?
ij = Uij. This is exactly what

we need to equate the probabilities in the forwards (6.55) and backwards (6.56) time

directions.
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This quantum mechanical story was designed to give some intuition for why having

two mutually real Hermitian matrices – A and B above, or Y d and Y u in the Standard

Model – implies time reversal symmetry. And why, conversely, the failure of these two

matrices to be mutually real implies time reversal symmetry breaking. The analogy

with the Standard Model isn’t perfect but you could, for example, think of diagonalising

Y d so that this gives mass eigenstates, and then measuring flavour eigenstates of Y u.

Indeed, this way of thinking works better in the lepton sector where there is a similar

issue that results in neutrino mixing, as explained in section 7.)

6.4.2 The Jarlskog Invariant

We can ask: how much does the CKM matrix violate CP or, equivalently, time reversal?

Clearly the answer is “not much” but it would be nice to find a way to quantify this.

There is a way that is independent of the choice of basis. This is known as the Jarlskog

invariant.

To see this, it’s useful to work with Hermitian Yukawa couplings Y d and Y u; this is

always possible as explained above. Then we know that there can be no CP breaking

whenever [Y d, Y u] = 0. This suggests that we look at the Hermitian matrix

C = [Y u, Y d] (6.68)

as a way to measure CP breaking. We can individually diagonalise each of these Yukawa

matrices by

(V d)†Y dV d = Dd := diag(yd, ys, yb)

and (V u)†Y uV u = Du := diag(yu, yc, yt) . (6.69)

The commutator then becomes

C = V u[Du, VCKMDd V †CKM]V u † . (6.70)

We would like to construct something that is invariant under the field redefinitions

Y d → V †Y dV and Y u → V †Y uV . The obvious way to do this is to take traces of

powers of C. Clearly TrC = 0 while TrC2 is a measure of the failure of Y u and Y d to

commute or, in other words, a measure of the size of VCKM. However, for a measure of

CP violation, the relevant quantity is

TrC3 = 3 detC . (6.71)

It’s straightforward to see why this is the appropriate measure of CP violation. From

(6.70), the matrix C shares its eigenvalues with the matrix [Du, VCKM Dd V †CKM]. But
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if VCKM is real then this is an anti-symmetric matrix and so are pure imaginary and

come in conjugate ± pairs. That means in particular that, for N = 3 generations, the

matrix C must have a zero eigenvalue whenever VCKM is real and hence detC = 0.

We can see this through an explicit calculation: we have

detC = −2iF uF dJ (6.72)

where

F u = (yt − yc)(yt − yu)(yc − yu)
and F d = (yb − ys)(yb − yd)(ys − yd) . (6.73)

We see that these factors vanish if any of the quark masses of the same type are equal.

That’s because, in this case the CKM matrix degenerates to become analogous to the

situation with just two flavours, but we know that there can be no CP violation in

that case. For the situation where all quark masses differ, the relevant measure of CP

violation lies in the remaining factor J which is given by

J = Im (VudV
?
ubVtbV

?
td) . (6.74)

This is the Jarlskog invariant. Its measured value is

J = s12 s23 s13 c12 c23 c
2
13 sin δ ≈ 3× 10−5 . (6.75)

The Jarlskog invariant depends on each of the mixing angles θij. If any of them vanishes

(or, indeed, if any of them equals π/2) then the situation effectively reduces to that of

just two flavours where, as we have already seen, there is no CP violation. Conversely,

you can show that the theoretical maximum value of the Jarlskog invariant is Jmax =

1/6
√

6 ≈ 0.07. The measured value of the Jarlskog invariant J/Jmax ≈ 4 × 10−4 is

telling us that CP violation in the quark sector of the Standard Model is really small.

As we’ve mentioned before, this isn’t because the complex phase δ is small: it’s not. It’s

all those other angles that kill us. We can see this in the Wolfenstein parameterisation,

which gives

J ≈ λ6A2η . (6.76)

CP violation is small because it’s proportional to λ6.
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The Jarlskog invariant has a nice interpretation in terms of the unitarity triangle.

The area of the triangle (6.38) (computed before normalising one of the sides to have

length 1) is of order ∼ λ6. One can show that it is given by the Jarlskog invariant

Area =
J

2
. (6.77)

In fact, this result is stronger. If one considers the area of the triangle formed by the

(extremely squashed) triangle defined by the complex numbers in (6.37), that too obeys

(6.77). Indeed, the areas of all such triangles are equal and given by J/2.

6.4.3 The Strong CP Problem Revisited

In Section 3.4, we described the theta term of QCD,

Sθ =
θg2

s

16π2

∫
d4x TrGµν

?Gµν . (6.78)

This would provide a contribution to CP violation directly within the strong force

except that, as far as we can tell, the theta angle takes the value θ = 0. (Or, more

precisely, θ < 10−10.) Understanding why θ = 0 is known as the strong CP problem.

It’s worth revisiting this now that we understand how CP is violated in the weak

sector. In particular, this new perspective gives the strong CP problem extra bite.

The issue comes when we choose to remove various phases of the CKM matrix by

shifting the phases of the up and down quarks in (6.30). As we saw in Section 4, the

U(1) symmetries in (6.30) have a mixed anomaly with the SU(3) gauge group. This

means that the phase rotations (6.30) are not entirely innocuous because they shift the

QCD theta angle as described in Section 4.2.1.

This suggests that the strong CP problem is tied up with the question of flavour and

the CKM matrix. The fuller statement is that θ ≈ 0 when we remove all but one of

the phases from the CKM matrix.

6.4.4 Neutral Kaons

How does CP violation manifest itself in our world? Although the imaginary part of

the CKM matrix is largest in the Vub and Vtd components, the place where CP violation

shows up most clearly is among kaons, for the simple reason that it’s easy to produce

a gazillion kaons and study them with precision.

Recall from Section 3 that the neutral kaon K0 contains the quarks ds̄. Its anti-

particle K̄0 contains sd̄. These mesons have mass mK ≈ 498 MeV.
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The mesons K0 and K̄0 are degenerate eigenstates of the strong interactions. (For

example, they have well defined strangeness, which is a symmetry of QCD, but not of

the full Standard Model.) However, the weak interactions can act to mix these two

degenerate eigenstates. This happens through so-called box diagrams of the form

d s

s̄ d̄

W−

W+

q q′

d s

s̄ d̄

q

q′

W− W+

where the q and q′ quarks in the diagrams can be either u, c or t. Each of these vertices

comes with the corresponding CKM matrix element Vdq or V ?
sq and, as we’ve seen, some

of these have imaginary parts, reflecting the fact that CP is broken. As we now explain,

this has an interesting consequence for these kaons.

As usual in degenerate perturbation theory in quantum mechanics, we should figure

out the new linear combinations of states that are energy eigenstates which, in the

context of quantum field theory, is the same as a mass eigenstate.

To start, let’s assume that CP is a good symmetry of the weak interactions. We will

deduce the consequences of this and then see that these consequences are almost, but

not quite, respected by nature, reflecting the fact that CP is almost, but not quite, a

good symmetry.

If CP is a good symmetry of the weak force, then the mass eigenstates should be

eigenstates of CP. But neither K0 nor K̄0 are eigenstates of CP . To see this, first note

that the kaon is a pseudoscalar meson (recall that it was a Goldstone boson from chiral

symmetry breaking) and so, under parity, we have

P : |K0〉 7→ −|K0〉 and P : |K̄0〉 7→ −|K̄0〉 . (6.79)

Meanwhile, under charge conjugation we have C : ds̄ 7→ d̄s and so

C : |K0〉 7→ |K̄0〉 and C : |K̄0〉 7→ |K0〉 . (6.80)

The upshot is that we can construct eigenstates under CP by taking

|K1〉 =
1√
2

(|K0〉 − |K̄0〉) and |K2〉 =
1√
2

(|K0〉+ |K̄0〉) (6.81)

with

CP : |K1〉 7→ +|K1〉 and |K2〉 7→ −|K2〉 . (6.82)
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So we have two eigenstates of CP, |K1〉 and |K2〉, and if CP were a good symmetry

then these would also be mass eigenstates. Let’s now figure out what this means for

the decay of kaons.

Kaons decay primarily to pions. The pions have mass mπ ≈ 140 MeV which means

that, in principle, a kaon could decay to either two pions or to three pions (because

140× 3 < 498). Which of these happens is dictated by their CP quantum numbers.

Claim Two pion states have CP = +1.

Proof: There are actually two possible two pion decays: π0π0 and π+π−. We deal

with each in turn.

The intrinsic parity of all pions is P = −1. (This was described in Section 3 and,

as for the kaons, follows because they are Goldstone modes for chiral symmetry.) So

the parity of a pair of pions is P = (−1)2 × (−1)L where L is the orbital angular

momentum. But because the pions arise from the decay of a spin 0 particle, we must

have L = 0 and hence P = +1.

That leaves us with charge conjugation. The neutral pion has quark content π0 =
1√
2
(uū−dd̄) and so has C = +1. Meanwhile, the charged pions are exchanged under C.

This means, in particular, that their positions are swapped and so charge conjugation

acts in the same way as parity, meaning C(π+π−) = P (π+π−) = (−1)L. But, as we’ve

seen, L = 0 and so π+π− also has C = +1.

Putting this together, we learn that the pair of pions has CP = +1. �

Claim: The three pion states nearly always have CP = −1.

Proof: Again, we have two cases to consider: π0π0π0 and π+π−π0.

Each of these states has intrinsic parity (−1)3 = −1, leaving us with the contribution

from orbital angular momentum to worry about. Let’s start with the π0π0π0 state. We

can think of the first two pions as having mutual angular momentum L1 and the

third as orbiting this pair with angular momentum L2. The contribution to the parity

of the state is then (−1)L1(−1)L2 . We add angular momentum in the usual quantum

mechanical way, L1⊕L2 = |L1−L2|+. . .+|L1+L2|. But for this to include the required

angular momentum L = 0 state, we must have L1 = L2 and so (−1)L1(−1)L2 = +1.

We learn that π0π0π0 has parity (−1)3(−1)L1(−1)L2 = −1. It also has C = +1, and so

CP = −1.
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Things are a little more complicated for π+π−π0. We again have total parity

P = (−1)3(−1)L1(−1)L2 = −1 . (6.83)

The charge conjugation of π0 is again C = +1, but the charge conjugation of the π+π−

pair is now C(π+π−) = P (π+π−) = (−1)L1 and this time there is no reason that L1

should be even. This is why we’ve got the weasel words “nearly always” in the claim

above. If the three pion state π+π−π0 has L1 = 0 then it does indeed have CP = −1

as claimed. But for L1 = +1, the CP differs. Happily, this isn’t an issue in practice

because it costs extra kinetic energy for the pions to decay in the L1 = 1 state but,

with only mK − 3mπ ≈ 80 MeV to play with, these decay products with L1 6= 0 are

strongly suppressed. �

The upshot of this argument is that, if CP is conserved, then the state |K1〉 will

decay to two pions, and the state |K2〉 will decay to three pions. But there’s a vast

difference in the energy available for these decays. We have

mK − 2mπ ≈ 220 MeV and mK − 3mπ ≈ 80 MeV . (6.84)

This means that there’s much more phase space available for the first decay than for

the second and, correspondingly, we expect that the first decay will happen much

faster than the second. Indeed, this is what is observed: the neutral kaons with mass

mK ≈ 498 MeV have two different lifetimes, τshort and τlong, given by

τshort ≈ 0.9× 10−10 s and τlong ≈ 0.5× 10−7 s . (6.85)

Putting all this together, we have the following conclusion: if CP is preserved, then we

expect to identify the short-lived kaons with the CP = +1 eigenstates,

|Kshort〉 = |K1〉 =
1√
2

(|K0〉 − |K̄0〉) . (6.86)

These will decay to two pions KS → ππ in time τshort. Meanwhile, the long-lived kaons

should correspond to the CP = −1 eigenstates,

|Klong〉 = |K2〉 =
1√
2

(|K0〉+ |K̄0〉) . (6.87)

These will decay to three pions Klong → πππ in a time τlong.

So is this what’s seen? Well, almost but not quite.
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We can produce kaons through collisions π−+ p→ Λ +K0. These kaons are a linear

combination of CP even and odd eigenstates, |K0〉 = 1√
2
(|K1〉 + |K2〉). If we produce

a beam of such kaons, then we should see them initially decay to two pions, and later

decay to three pions. Indeed, that’s what happens. Mostly.

Suppose that we wait for a time τshort � t � τlong, at which point we can be sure

that the beam contains only |Klong〉. We then look closely at the decay products. This

is what Cronin and Fitch did in 1964. They observed 22700 kaon decays, of which

22655 decayed to three pions. But not all. There were 45 long-lived kaons that decayed

to two pions. This tiny effect was the first evidence for CP violation. It arises because

the long-lived energy eigenstates are not CP eigenstates. Instead, we have

|Kshort〉 =
1√

1 + |ε|2
(
|K1〉+ ε|K2〉

)
|Klong〉 =

1√
1 + |ε|2

(
|K2〉+ ε|K1〉

)
. (6.88)

Experimentally, |ε| ≈ 2 × 10−3. This is the signature of CP violation in the neutral

kaon system.

We can understand this from the box diagrams that we drew previously. We should

sum over all different quarks running in the loop but, for simplicity, we will focus on

the following diagram that mixes K0 → K̄0,

d s

s̄ d̄

c t

This diagram is proportional to the product of the CKM matrix elements,

M(K → K̄) ∼ VcdV
?
csVtdV

?
ts . (6.89)

Meanwhile, the diagram that mixes K̄0 → K0 is

s d

d̄ s̄

c t

This diagram is proportional to

M(K̄ → K) ∼ V ?
cdVcsV

?
tdVts =M?(K → K̄) . (6.90)
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CP violation is reflected in the fact that the CKM matrix elements are not real, and

hence M(K → K̄) 6=M(K̄ → K). The difference in the amplitude is

M(K → K̄)−M(K̄ → K) ∼ Im
(
VcdV

?
csVtdV

?
ts

)
. (6.91)

The value of ε in (6.88) is set by this imaginary part, together with further contributions

from other quarks running in the loop.

6.4.5 Wherefore CP Violation?

The CPT theorem tells us that CP violation is tantamount to a violation of time

reversal. And that sounds interesting!

It’s worth comparing the implications of parity violation and time reversal violation.

At first glance, they seem very similar: one is a flip of spatial coordinates, x → −x,

the other a flip of time t → −t. Yet, despite their similarities, the mathematical

consequences of these two broken symmetries could not be more different.

The breaking of parity is sewn into the heart of the Standard Model which is a

chiral gauge theory. As we’ve seen, the requirements of anomaly cancellation then put

stringent constraints on the allowed interactions which pretty much fixes the gauge

sector of the Standard Model.

This stands in sharp contrast to the theoretical consequences of time reversal vio-

lation, which shows up only as some complex phase in the CKM matrix. There are

seemingly no deep mathematical consequences for theories that violate time reversal,

no consistency requirements that we have to deal with. You just make a parameter

complex and you’re done. It’s striking how little impact this has, not just on our

daily lives, but on our deeper understanding of physics. It makes you wonder if there’s

something that we’re missing!

There is, however, thought to be one very important implication of CP violation,

albeit one that we don’t fully understand. This follows from the fortunate observation

that our universe contains lots of matter, but very little anti-matter. It is thought that

this imbalance occurred naturally in the early universe, but for this to happen there

have to be processes where matter and anti-matter behave differently. This, it turns

out, requires CP violation.

It’s not clear if the formation of matter over anti-matter can happen solely using

the Standard Model (perhaps including some further CP violation that occurs in the

lepton sector) or if it requires some new physics that lies beyond the Standard Model.

This process, whatever causes it, goes by the name of baryogenesis.
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7 Neutrinos

No one would accuse a neutrino of being gregarious. They interact less than a first year

undergraduate mathematics student forced to sit next to their theoretical physics pro-

fessor at a matriculation dinner (to give a weirdly specific yet shudderingly memorable

analogy).

For example, in the time it takes you to read this sentence, around 100 trillion

neutrinos will have passed through your body. Most of them came from the Sun,

but a significant minority have a cosmic origin, and have been streaming through the

universe, uninterrupted since the first few seconds after the Big Bang. Moreover, in

contrast to photons, the number of neutrinos hitting you doesn’t change appreciably

as day turns into night. The neutrinos from the Sun will happily pass right through

the Earth and out the other side. This is vividly demonstrated in the picture of the

Sun at night shown in Figure 19.

There are two reasons why neutrinos are so intangible. The first is that they are the

only particle to interact solely through the weak force. And, as we’ve seen, the weak

force is weak. The second reason is that their mass is much much smaller than any

other fermion which means that on the rare occasion that they do interact, they don’t

deliver much of a punch. The purpose of this section is to describe some properties of

neutrinos in more detail.

7.1 Neutrino Masses

There is much that we don’t know about neutrino masses. But we do know that the

masses are not zero.

At the moment, we have no direct measurement of the mass of each neutrino. But

we do have some precious information. First, we know that one neutrino must have a

mass greater than

mν & 0.05 eV . (7.1)

Second, constraints from cosmology give us an upper bound on the sum of all neutrino

masses. This comes from the imprint that neutrinos in the early universe leave on

the cosmic microwave background radiation and on subsequent structure formation of

galaxies (in particular, baryon acoustic oscillations – you can read more about this in

the lecture notes on Cosmology.) This bound is∑
ν

mν . 0.25 eV . (7.2)
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Figure 19. The Sun at night. This is a picture, taken by Super-Kamiokande, shows the

neutrino flux coming from the Sun. The picture was taken at night, with the neutrinos

passing through the Earth before hitting the detector.

In addition, we have information about the mass differences between neutrinos. We

denote the mass of the neutrinos as m1, m2 and m3. Much like for quarks, the mass

eigenstates do not correspond to the flavour eigenstates νe, νµ and ντ and we will

explain the relation more in the next section. We know that the mass splitting between

two of the states is comparable to the overall mass of neutrinos,

|m2
3 −m2

2| = 2.5× 10−3 eV2 . (7.3)

We’ve taken the magnitude of the difference on the left-hand side to hide the fact that

we don’t actually know which of m3 and m2 is heavier: we will describe this ambiguity

further below. Then there is a much smaller mass splitting between of order

m2
2 −m2

1 ≈ 7.4× 10−5 eV2 . (7.4)

There are still a number of possibilities consistent with these bounds. It may even be,

for example, that one neutrino is massless while others have mass ∼ 0.1 eV or so. Still,

our ignorance notwithstanding, a rough summary of the masses of all fermions is shown

in Figure 20.

In the rest of this section, we will describe the basics of neutrino masses. We will

learn how they can get a mass in the Standard Model and its extensions, and how we

are able to determine the structure of masses described above.
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Figure 20. Fermion masses, arranged by generation. The charged leptons are green, the

−1/3 quarks are orange, and the charge +2/3 quarks are purple. The neutrinos are way off

to the left.

7.1.1 Dirac vs Majorana Masses

Even with our limited knowledge, it’s clear that neutrinos aren’t like the other particles.

There are six orders of magnitude separating the mass of the top quark from the mass

of the electron. Then there is a gap of another six orders of magnitude before we get

to the neutrinos. The first question we should ask is: why?

We don’t have a definitive answer to this question. But we do have a plausible

answer. In what follows, I will sketch what appear to be the most reasonable ways in

which neutrinos can get a mass. They are not the only ways: if you’re willing to add

new fields to the Standard Model, and then try to hide them from experiments, then

you can cook up other possibilities. Ultimately, experiment must be our guide to figure

out which is right.

The most obvious way to give neutrinos a mass is to add a right-handed neutrino νR
to the Standard Model. Indeed, we already included this in Section 5 when describing

the fields of the Standard Model, although we also raised a question mark about its

existence. If we include a right-handed neutrino that is uncharged under the Standard

Model gauge group, then it can participate in a Yukawa coupling. Restricting to a

single generation for now, the lepton Yukawas are then (5.74),

LYuk = −ye L̄LHeR − yν L̄LH̃νR + h.c. . (7.5)

– 243 –



When the Higgs condenses, the neutrino gets a mass just like all other fermions, given

by

m =
yν√

2
v . (7.6)

We refer to this as a Dirac mass.

There’s nothing wrong with this explanation for neutrino masses. But it does raise a

question of why the dimensionless Yukawa coupling is yν ∼ 10−12. Of course, as we’ve

repeatedly seen, we don’t understand the values of any of the Yukawa couplings so

perhaps this is just one more mystery to add to the list. Nonetheless, it’s such a wildly

small number that it feels like it’s crying out for some explanation. And the good news

is that there is a very natural explanation at hand.

Moreover, this explanation doesn’t require us to do anything than follow our original

philosophy when constructing the Standard Model. That is, given all the fields at our

disposal, we should write down all possible relevant and marginal terms consistent with

Lorentz invariance and gauge symmetry. And the addition of the right-handed neutrino

allows for something new. This is the term

LMaj =
1

2
MνRνR + h.c. . (7.7)

Here M ∈ C. This is called a Majorana mass.

Suppose that we have both the Dirac mass m, as in (7.6), and the Majorana mass

M , as in (7.7). What is the physical mass of the neutrinos? To answer this, we write

the combined mass term as

Lmass =
1

2
(ν̄L, νR)

(
0 m

m M

)(
ν̄L

νR

)
+ h.c. . (7.8)

The physical masses are the eigenvalues of this matrix. We have

mass =
1

2

∣∣∣M ±√M2 + 4m2

∣∣∣ . (7.9)

What does this buy us? We know that the neutrinos have a mass in the eV range.

One possibility is that both m and M are in this ballpark. But there’s an alternative

option, which is that the Majorana mass M is very large. If we take M � m, then the

two masses above become

mass ≈M and mass ≈ m2

M
. (7.10)
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The particle with mass ≈ M is mostly the right-handed neutrino, while the particle

with mass ≈ m2/M is approximately the left-handed neutrino. And, crucially, it’s

quite possible for the latter of these to be light, even if the Yukawa couplings are the

same order of magnitude as those for electrons.

For example, if yν ≈ 1 (like the extraordinarily heavy top quark) then a Majorana

mass of order 1013 GeV or so will get us in the ballpark of the observed masses. This

is getting close to the realm of grand unified theories. Obviously, for smaller Yukawa

couplings, the corresponding Majorana mass should be smaller. This suggests, some-

what counterintuitively, that the smallness of the neutrino mass might be because the

right-handed neutrino gets a very large mass. This is known as the seesaw mechanism.

7.1.2 The Dimension 5 Operator

There’s something a little unsettling about the seesaw mechanism. We introduced a

right-handed neutrino to give both left- and right-handed particles a mass. But then we

saw that the physical mass of one of these states M was extremely large, way beyond

current experiments. Which suggests that it should be possible to describe the resulting

physics without invoking it in the first place!

And, indeed there is. But it does require us to go beyond our original philosophy

when constructing the Standard Model. We originally set ourselves the task of writing

down all relevant and marginal terms consistent with Lorentz and gauge symmetries.

We can incorporate neutrino masses without a right-handed neutrino if we also allow

ourselves to include irrelevant operators.

As usual, operators in quantum field theory are classified by their dimension. Those

with dimension ∆ < 4 are relevant, and those with dimension ∆ = 4 are (classically)

marginal. There are an infinite number of irrelevant operators, but their importance

can still be judged by how irrelevant they are. And, among them, there is a unique

operator with dimension ∆ = 5. This is

L5 =
λ

M
(L̄LH̃)(L̄LH̃) + h.c. . (7.11)

This is sometimes called the Weinberg operator although Weinberg has so many things

named after him in the Standard Model that I’m not sure it’s helpful terminology.

It has dimension 5 because it contains two fermions (each of dimension 3/2) and two

scalars (each of dimension 1). Here λ is a dimensionless coupling and M is a mass scale.

If we integrate out the massive right-handed neutrino, then we generate the coupling

(7.11) with M the Majorana mass and λ = (yν)2. However, the operator (7.11) may

be generated by something else that isn’t associated to a right-handed neutrino.
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We see that (7.11) captures the spirit of the seesaw mechanism: when the Higgs gets

a vev v, the left-handed neutrino νL gets a Majorana mass ∼ λv2/M . This retains the

irony in which detecting a very small Majorana mass points towards physics at a very

high energy scale.

7.1.3 Neutrinoless Double Beta Decay

Above, we’ve seen that there are two ways that a neutrino can get a mass: either a bog

standard Dirac mass (7.6), or a Majorana mass (7.7) which, if large, is captured in the

dimension 5 operator (7.11).

There is one important difference between these: the Majorana mass violates lepton

number at tree level. This means that it might be possible to detect the neutrino

Majorana mass by observing a process which explicitly violates lepton number.

You can’t have a process that changes lepton number by just one because (in the

absence of any other fermion getting involved) that would also violate (−1)F which is

part of the Lorentz group. So, in searching for signals of lepton number violation, we

are looking for processes that change L by two. The most clear cut process of this

type is something called neutrinoless double beta decay, sometime referred to rather

elliptically as 0νββ.

Recall that beta decay is the process n → p + e− + ν̄e. This increases the atomic

number of an element by one. Double beta decay is what it sounds like: we have

2n→ 2p+ 2e− + 2ν̄e, increasing the atomic number of an element by two.

Double beta decay occurs, albeit rarely. It’s most easy to observe in elements for

which the normal single beta decay is forbidden. For example, 76Ge (with atomic

number 32) can’t decay through single beta decay to 76As (with atomic number 33)

because the germanium nucleus is lighter than the arsenic nucleus. However, it is

possible for germanium to decay to 76Se (with atomic number 34) which happens to

have a lighter nucleus. The decay process is

76Ge→ 76Se + 2e− + 2ν̄e . (7.12)

This decay has been observed with lifetime of around 1021 years. (That was a very long

experiment.)

Ordinary double beta decay preserves lepton number. But if the neutrino has a

Majorana mass, so lepton number is violated, then there is another option: this is

neutrinoless double beta decay

76Ge→ 76Se + 2e− . (7.13)

– 246 –



Despite many ongoing searches, no such decay process has been observed, either in

germanium or the dozen or so other elements that exhibit ordinary double beta decay.

Current bounds put the effective half-life of elements due to double beta decay at > 1025

years or so. These put bounds on the mass of a neutrino coming from a dimension 5

operator of mν . 0.3 eV.

7.1.4 The PMNS Matrix

The fact that we have three generations of fermions means that, as for quarks, there

is a misalignment between the mass and flavour eigenstates of leptons. As we saw in

Section 5, we label the three generations of leptons as (5.20),

LiL =

(
νiL

eiL

)
=

{(
ν eL

eL

)
,

(
ν µL

µL

)
,

(
ν τL

τL

) }
. (7.14)

These left-handed leptons appear in the charged currents that couple to the W bosons

(5.88). If we omit the quarks terms, and focus only on the leptons, we have

J+
µ = ν̄iLσ̄µe

i
L and J−µ = ēiLσ̄µν

i
L . (7.15)

As with the quarks, the leptons that appear here are before we diagonalise the mass

matrices. In other words, the leptons that appear here are in the flavour basis.

If, however, we choose to work in the mass basis, which means that the mass terms

are diagonal then, as with the quarks, we get a 3×3 unitary mixing matrix U appearing

in the charged current which becomes

J+
µ = ν̄iLσ̄µU

†
ije

j
L and J−µ = ēiLσ̄µUijν

j
L . (7.16)

This matrix U is known as the PMNS matrix, named after Pontecorvo, Maki, Naka-

gawa, and Sakata or simply the neutrino mixing matrix.

We learn that there are two natural bases that we can use: the mass basis in which

the masses are diagonal, or the flavour basis in which the coupling to W bosons are

diagonal. And these differ from each other. Correspondingly, there are two different

linear combinations of fields.

What we usually refer to as the “electron neutrino”, “muon neutrino”, and “tau

neutrino” are fields in the flavour basis. For example, beta decay happens by n →
p+ e− + ν̄e and that neutrino ν̄e is the one that couples to the W boson and electron,

so it is ν̄e in the flavour eigenbasis. Which means that the neutrino that is emitted is

not in a mass eigenstate!
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It’s useful to introduce some new notation to highlight what’s going on. We will

refer to the left-handed neutrinos in the flavour basis as νe and νµ and ντ . And we will

refer to the neutrinos in the mass basis simply as ν1 and ν2 and ν3. Each of these is a

left-handed Weyl fermion, but we’ve suppressed the subscript L. The νi in (7.16) are

in the mass basis and we see that these are related to the flavour basis by the PMNS

matrix, 
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 . (7.17)

The PMNS matrix is to leptons what the CKM matrix is to quarks. Just as for the

CKM matrix, we have no way to determine the values of U from first principles. Instead,

we must measure these from experiment. The magnitude of each component is now

known reasonably accurately: these are
|Ue1| |Ue2| |Ue3|
|Uµ1| |Uµ2| |Uµ3|
|Uτ1| |Uτ2| |Uτ3|

 ≈


0.8 0.5 0.1

0.3 0.5 0.7

0.4 0.6 0.6

 . (7.18)

Some values are known fairly well; others less well. There are, for example, error bars

of ±0.1 on Uτ2.

The first thing to note is that the PMNS matrix is strikingly different from the CKM

matrix describing the mixing of quarks10. In the quark sector, the CKM matrix was

close to being the unit matrix, with just small off-diagonal elements. This meant that

there was close alignment between the masses and the weak force. But we see no such

thing in the neutrino sector. The mixing is pretty much as big as it can be! The lepton

sector is really nothing like the quark sector. We do not have an explanation for the

structure of the PMNS matrix. Indeed, its form came as a surprise to theorists. Surely

it is telling us something important. It’s just we don’t yet know what!

10Recall that


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 ≈


0.97 0.22 0.004

0.22 0.97 0.04

0.009 0.04 0.999

. Note also that the indices of the CKM

matrix and PMNS matrix are in the opposite order. For VCKM, the different rows are labelled by the

up-type quarks, which is the first component of QL. For UPMNS, the rows are labelled by the charged

lepton, which is the second component of LL.
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7.1.5 CP Violation in the Lepton Sector

As with the CKM matrix, CP violation is captured by the complex phases of the PMNS

matrix. Here we must distinguish between neutrinos getting a purely Dirac mass and

neutrinos getting a Majorana mass.

In the case where there are three right-handed neutrinos and each species of neutrino

gets a Dirac mass, then the story is the same as for the CKM matrix: the neutrino

mixing matrix has just a single phase.

But the counting is different if we have a Majorana mass. For this exercise, we will

ignore the (unknown) mass of the right-handed neutrino and assume that the neutrino

mass comes from the dimension 5 operator (7.11). With three generations, this takes

the form

L5 =
Cij
M

(L̄iLH̃)(L̄jLH̃) . (7.19)

Here Cij is a complex symmetric 3 × 3 matrix, which means that it has 6 complex

parameter or 12 real parameters. This means that in Cij and the electron Yukawa yeij,

there are a total of 12 + 18 = 30 real parameters. And we can eliminate some of these

through U(3)2 rotations acting on LiL and eiR. This leaves us with

30− 2× 9 = 12 (7.20)

physical parameters. That’s two more than for the quark sector. Note that, in contrast

to the quark sector, there’s no overall U(1) that leaves the parameters untouched: that’s

because of the Majorana mass.

As for quarks, we can also see how this decomposes into real mixing angles and

complex phases. A U(3) matrix has 3 real parameters and 6 complex phases, so the

lepton sector with Majorana masses has

(6 + 9)− 2× 3 = 9 real parameters (7.21)

and

(6 + 9)− 2× 6 = 3 complex phases . (7.22)

We see that the total number of real parameters is the same as for the quarks: it

decomposes into 6 masses for electrons and neutrinos, together with three angles which

live inside the PMNS matrix. In contrast, with a Majorana mass there are two more
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complex phases lurking inside the PMNS matrix. The usual way to parameterise these

is by embellishing the CKM matrix structure (6.31) with two additional phases,

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 −s23 0

0 0 1




1 0 0

0 eiα1 0

0 0 eiα2



=


c12 c13 s12 c13 s13e

−iδ

−s12 c23 − c12 s23 s13e
iδ c12 c23 − s12 s23 s13e

iδ s23 c13

s12 s23 − c12 c23 s13e
iδ −c12 s23 − s12 c23 s13e

iδ c23 c13




1 0 0

0 eiα1 0

0 0 eiα2

 .

While the real angles θij are measured with some precision, as shown in (7.18), the

complex phases eiδ and (if they exist) eiα1 and eiα2 remain unknown for neutrinos.

This means that we don’t currently know if CP violation is possible in the lepton

sector of the Standard Model. We note, however, that because none of the mixing

angles θij are particularly small, there is the possibility that CP violation in the lepton

sector is significantly larger than in the quark sector. Future experiments should decide

this.

7.2 Neutrino Oscillations

So far we have described the different ways in which neutrinos can get a mass. But

we haven’t yet explained how we know that they have mass. After all, it’s not like we

can simply collect a bunch of neutrinos in a jar and weigh it. Instead, our information

comes in a less direct manner.

We have met the key piece of physics already: the mass eigenstates of the neutrinos

are misaligned with the flavour eigenstates. The two are related through the PMNS

matrix (7.17).

Neutrinos are always created or observed in flavour eigenstates. For example, in beta

decay we have

n −→ p+ e− + ν̄e (7.23)

and it’s definitely an electron neutrino that is emitted. Relatedly, we can detect an

electron neutrino through a neutrino capture process, νe + n −→ p+ e−. For example,

the earliest neutrino detection experiments used tanks filled with dry-cleaning fluid

which was rich in chlorine and looked for electron neutrinos through the process

νe + 37Cl −→ 37Ar + e− . (7.24)
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Again, it’s necessarily an electron neutrino that induces this process, not a neutrino of

any other type.

However, as we have seen, the electron neutrino νe is not a mass eigenstate. In the

language of quantum mechanics, this means that it’s not an energy eigenstate. But we

know from our first courses on quantum mechanics what happens when systems are

placed in states that are not energy eigenstates: the state you sit in varies with time.

And so it is with neutrinos: the flavour of neutrino oscillates over time.

Before we put some mathematical meat on these ideas, it’s worth pointing out that

neutrino mixing comes with a slightly different change of perspective compared to the

entirely analogous quark mixing that we met in Section 6. When we talk about quarks,

we usually think of mesons as energy eigenstates. The mixing then manifests itself as

interactions allowing, say, a strange quark to decay to a up quark.

In contrast, in the world of leptons we can be confident that we have a particular

flavour of neutrino to hand. The mixing then manifests itself as this flavour evolving,

coherently, to a superposition of other flavours over time.

7.2.1 Oscillations with Two Generations

To see the basic physics, it’s useful to restrict ourselves to the situation with just two

flavours of neutrino. We’ll take these to be the electron and muon neutrinos, related

to mass eigenstates by the rotation matrix(
νe

νµ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ν1

ν2

)
. (7.25)

If the neutrinos have Majorana masses then there can be an additional complex phase

in these relations. This will not affect neutrino oscillations and we won’t consider it

here.

We can think of the neutrinos as a 2-level system in quantum mechanics. Suppose

that we start with an electron neutrino. Written in terms of energy eigenstates, this is

|νe〉 = cos θ|ν1〉+ sin θ|ν2〉 . (7.26)

The neutrino νe is emitted with some energy E but, as we’ve seen, |νe〉 isn’t an energy

eigenstate so we should view this as the average energy, E = cos2 θ E1 +sin2 θ E2, where
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E1 and E2 are the energies of the states |ν1〉 and |ν2〉. Now, as we evolve in time, each

of the energy eigenstates picks up a different phase,

|νe(t)〉 = e−iE1t cos θ|ν1〉+ e−iE2t sin θ|ν2〉
= e−iE1t

(
cos θ|ν1〉+ e−i∆E t sin θ|ν2〉

)
(7.27)

where ∆E = E2 −E1 is the energy difference between the states. Now we can convert

back to the flavour eigenstates to get

|νe(t)〉 = e−iE1t
((

cos2 θ + e−i∆E t sin2 θ
)
|νe〉 − cos θ sin θ

(
1− e−i∆E t

)
|νµ〉

)
. (7.28)

This is a standard result in quantum mechanics, entirely analogous to, say, Rabi oscil-

lations in atomic physics. We see that, as time evolves, we have a probability of the

electron neutrino νe to convert to a muon neutrino νµ,

P (νe → νµ) = sin2(2θ) sin2

(
∆E t

2

)
. (7.29)

The fact that this probability depends on sine functions is telling us that the change

of flavour is an oscillation, in the sense that it goes back and forth. At this point, we

need an expression for the energy difference ∆E. For each of the mass eigenstates, we

have the usual relativistic dispersion relation

Ei =
√

p2
i +m2

i ≈ |pi|+
m2
i

2|pi|
(7.30)

where, in the second equality, we’ve used the fact that our neutrinos are ultra-relativistic

with |p| � m. We can think of the neutrinos as sitting in momentum eigenstates, so

that p1 = p2. Further, we can replace the p in the denominator with the original

energy E, giving

∆E =
∆m2

2E
(7.31)

with ∆m2 = m2
2 −m2

1. There’s one final flourish: the neutrinos are travelling at very

close to the speed of light and so, in time t, travel a distance L = t (because, of course,

c = 1). We can then write the probability for an electron neutrino to convert into a

muon neutrino, depending on the distance it travels

P (νe → νµ) = sin2(2θ) sin2

(
∆m2

4E
L

)
. (7.32)
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We can put some numbers in this to figure out what kind of length scales L we need to

see neutrino oscillations. First, we should put factors of ~ and c back into the formula.

On dimensional grounds, we should have

P (νe → νµ) = sin2(2θ) sin2

(
∆m2c4

4E~c
L

)
. (7.33)

We have ~ = 6.5× 10−16 eV s. For mass differences ∆mc2 of order an eV (which, as we

will see, is a little on the high side) and neutrino energies E measured in GeV (which,

as we shall see, is also a little on the high side), the argument of the sine function is of

order 1 for

L ∼ 4~c× GeV

(eV)2
∼ 1 km . (7.34)

That’s a remarkably human length scale to emerge from fundamental physics! It sets

the kind of scale over which neutrino experiments should take place. We will see

examples below. Putting in the numbers, the probability is often written as

P (νe → νµ) ≈ sin2(2θ) sin2

(
1.27× ∆m2

(eV)2

(GeV)

E

L

(km)

)
. (7.35)

This formula contains two fundamental parameters: the mixing angle θ and the differ-

ence in masses ∆m2. To see oscillations, both need to be non-zero. The formula also

contains two parameters that can vary from one experiment to another: the energy E

of the beam and the length travelled L. In principle, by varying E and L, and seeing

how one kind of neutrino morphs into another, we can determine the mixing angle θ

and mass difference ∆m2. As you can see from the formula above, to see oscillations it

is best to tune E/L ∼ ∆m2.

Oscillations with Three Flavours

Repeating this calculation with three species of neutrinos gives the probability for

oscillation from one flavour species α to another β in terms of the PMNS matrix U ,

P (να → νβ) =
∣∣∣Uα1U

?
β1 + Uα2U

?
β2 e

−i∆m2
21L/2E + Uα3U

?
β3 e

−i∆m2
31L/2E

∣∣∣2 . (7.36)

If we take a limit in which ∆m2
21L� E, then we have

P (να → νβ) =
∣∣∣Uα1U

?
β1 + Uα2U

?
β2 + Uα3U

?
β3 e

−i∆m2
31L/2E

∣∣∣2 . (7.37)

But, because U is unitary, we have Uα1U
?
β1 + Uα2U

?
β2 + Uα3U

?
β3 = δαβ. For α 6= β, we

then have

P (να → νβ) =
∣∣Uα3U

?
β3

∣∣2 ∣∣∣−1 + ei∆m
2
31L/2E

∣∣∣2 . (7.38)

This reproduces our two flavour result (7.35).
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Figure 21. The scattering of electron neutrinos through a charged current, and any kind of

neutrino through a neutral current.

7.2.2 Oscillations in Matter

There is a variation on the neutrino oscillation calculation that arises when neutrinos

propagate through matter. This is both important and surprising.

The result is important because one source of neutrinos is the Sun, and the neutrinos

that are created in the centre of the Sun have a way to travel before they emerge into

empty space. And we would like to understand what happens to them on that journey.

In addition, it is quite possible to detect neutrinos at night, after they have passed

through the Earth and, again, we would like to understand if this last part of the

journey has any noticeable effect.

The result is surprising because neutrinos are famously not impeded by things that

sit in their way. Most happily pass straight through the Earth without being scattered.

And yet, as we will see, the fact that they move in a density of matter does affect the

oscillations. (There is also a second reason why the result is surprising which is to do

with the orders of magnitude of energy involved and we will highlight this below.)

The effect that we care about arises from the elastic, forward scattering of neutrinos

off a background of matter. This means that the neutrinos exchange neither energy

nor momentum with the background matter. This process arises through the Feynman

diagrams shown in Figure 21. All three types of neutrino can scatter off protons,

neutrons and electrons through the exchange of a Z boson, while the electron neutrino

can additionally scatter off electrons through the exchange of a W boson.

The neutral currents give the same contribution to all flavours of neutrinos while,

for oscillations, we care about differences in neutrino energies. For this reason, we look
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only at the contribution from charged currents. We’ve already seen in Section 5 that, at

low energies, this is captured by the 4-fermion current-current interaction (5.92) which,

in the present context, we view as contribution to the Hamiltonian

∆H = 2
√

2GF J+µ J
µ
− . (7.39)

Here, GF ≈ 10−5 GeV−2 is the Fermi coupling. The currents J±µ were given in (5.88)

and include the term

J+µ J
µ
− = (ν̄Lσ̄µeL) (ēLσ̄

µνL) + . . .

= (ēLσ̄µeL) (ν̄Lσ̄
µνL) + . . . (7.40)

where, in the second line, we’ve done a Fierz shuffle to reorder the fermions. In the

presence of matter, the µ = 0 component of the vector ēLσ̄
µeL gets an expectation

value

〈ēLσ̄µeL〉 = nδµ0 (7.41)

where n is the background (number) density of electrons. This expectation value breaks

Lorentz invariance, as a background density of matter must. It also breaks both CP

and CPT as the background is made of normal matter, not anti-matter. (Recall that

the CPT theorem is a statement about Lorentz invariant theories only.) The upshot is

that we get a contribution to the Hamiltonian governing neutrinos that takes the form

∆H = V ν̄Lσ̄
0νL where V = 2

√
2GFn . (7.42)

At this point, we see the next surprise. The extra term in the Hamiltonian Hc is

quadratic in neutrinos and so, in that sense, looks like an additional contribution to

the neutrino mass. The mass density of matter in the Sun is about ρ ≈ 1 g cm−3 which

gives V ≈ 10−12 eV. In the centre of the Earth, the density is an order of magnitude

larger and, correspondingly, V ≈ 10−13 eV. Both of these are tiny compared to typical

neutrino masses of 10−3 eV which naively suggests that this effect can’t possibly be

important for neutrino propagation.

But that intuition is wrong. And it’s wrong because of the different index structure.

That extra factor of σ̄0 in (7.42) makes all the difference: it is telling us that the

background matter couples to neutrinos much like a background gauge field of the

form V µ = (V, 0, 0, 0). This means that the dispersion relation for neutrinos now takes

the form

(pµ − Vµ)(pµ − V µ) = m2 =⇒ (E − V )2 = m2 + p2 . (7.43)
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We’re in a ultra-relativistic regime, with E, p � m � V , so we expand and drop the

V 2 term to get the

E ≈ p+
m2 + 2EV

2p2
+ . . . . (7.44)

We see that the relevant comparison is not m vs V but, instead, m2 vs EV . And for

energies in the MeV range, these can be comparable.

Our next task is to understand how this affects the oscillations. Recall that, in the

vacuum, the neutrino Hamiltonian was diagonal in the mass basis. But now we’ve

added an extra term that is diagonal in the flavour basis, contributing only to the

electron neutrino. This means that we have some more matrix diagonalisation ahead

of us.

To keep things simple, we’ll stick to just two flavours of neutrino which we take to

be νe and νµ. We’ll again reduce things to a two-state quantum system. In the flavour

basis, the vacuum Hamiltonian is given by

H = U

(
E1 0

0 E2

)
U † with U =

(
cos θ sin θ

− sin θ cos θ

)
. (7.45)

We use the result (7.31) that gives the energy difference in terms of the mass difference,

E2 − E1 = ∆m2/2E, to write

H =
1

2
(E1 + E2)1+

∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
. (7.46)

The overall energy contribution 1
2
(E1 +E2)1 is unimportant for our needs and we drop

it in what follows. This is the vacuum Hamiltonian. Now we want to include the effects

of matter which, as we have seen, give a new contribution

H + ∆H =
∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
+

(
V 0

0 0

)
. (7.47)

We need to extract the new eigenvalues and eigenvectors of this matrix. If we call

these eigenvalues λ1 and λ2 then the effective mass splitting in the presence of matter

is ∆m2
m = 2E(λ2 − λ1). A short calculation shows that

∆m2
m =

√
(∆m2 cos 2θ − 2EV )2 + (∆m2 sin 2θ)2 . (7.48)
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Meanwhile, we also want to know the effective mixing angle θm. This comes from com-

puting the eigenvectors of the new Hamiltonian which take the form (cos θm,− sin θm)

and (sin θm, cos θm). The result is most simply expressed using a double angle formula

as

tan 2θm =
sin 2θ

cos 2θ − 2EV/∆m2
. (7.49)

The probability for oscillation from one species to the other is then given by our previous

expression (7.33) with ∆m2 and θ replaced by ∆m2
m and θm. This probability is

maximised when

cos 2θ =
2EV

∆m2
=⇒ θm =

π

4
. (7.50)

For anti-neutrinos, we replace V with −V in the expressions above. This means that

when mixing is maximal for neutrinos, with cos 2θ = 2EV/∆m2, it is not maximal for

anti-neutrinos.

Briefly, the MSW Effect

You might think that it’s rather unlikely that we will hit the resonance condition (7.50)

for maximal mixing. However, as neutrinos propagate outwards from the centre of the

Sun, they experience a changing matter density. This means that we should think of

the parameter V in our 2-state quantum system as being time-dependent. It may well

be that, at some point on its journey, a given neutrino experiences a point where the

effective mixing is maximal. In this way, large mixing can be generated even though

the fundamental mixing angles may be small. This is known as the MSW effect.

We saw in the lectures on Topics in Quantum Mechanics that there are two limits in

which it is straightforward to analyse systems with time-dependent parameters. When

the time dependent is slow (in a suitable sense), we can use the adiabatic approximation.

This is appropriate in the interior of the Sun. When the time dependence is fast, we

can use the sudden approximation. This is appropriate when the neutrinos exit the Sun

or when they enter the Earth. Both of these effects are important when understanding

the observed oscillations in solar neutrinos.

7.2.3 Neutrino Detection Experiments

Nature provides two different sources of neutrinos that allow us to see oscillations. In

what follows, we provide some very brief sketches of the experiments that revealed

oscillations in each of these sources. In recent years, these results have been confirmed

by looking at terrestrial neutrinos, created in reactors and accelerators.
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Solar Neutrinos

Most neutrinos in the Sun are created in a reaction that turns hydrogen into helium,

4p→ 4He + 2e+ + 2νe + 2γ . (7.51)

This produces neutrinos with energy E . 400 keV. There are also further reactions,

notably those involving 7Be and 8Be that produce significantly fewer neutrinos, but at

energy up to 10 MeV. It is now thought that we have a reasonably good understanding

of the neutrinos at various energy scales produced by the Sun. A number of experiments

show very cleanly that what leaves the Sun is rather different from what reaches Earth.

• The first set of experiments use neutrino capture,

νe + n→ p+ e− . (7.52)

Clearly, this only works for electron neutrinos. This was first done in the late

1960s, useing tanks of chlorine with the reaction

νe + 37Cl −→ 37Ar + e− . (7.53)

The resulting argon atoms were then counted and used as a proxy for the original

neutrino. The incoming neutrinos require an energy of E > 800 keV to achieve

this heat, which means that this is detecting the neutrinos produced in the rarer

neutrino processes. The observed solar neutrinos are a factor of 3 smaller than

expected.

This experiment can be repeated with the chlorine replaced by gallium,

νe + 71Ga −→ 71Ge + e− . (7.54)

Now the threshold is lower, needing only energies of E ≈ 200 keV, meaning that

many more of the Sun’s neutrinos can partake. Indeed, the number of events seen

is significantly higher, but still with a shortfall of about 40% compared to the

theoretical prediction. This shows that the oscillations are energy-dependent, as

predicted.

• It is possible to see neutrinos of any type by looking at the scattering process

να + e− → να + e− . (7.55)

As shown in Figure 21, all neutrinos scatter by exchanging Z bosons, while the

electron neutrinos have an additional contribution coming from exchanging a W

boson.
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Figure 22. Neutrino detectors tend to look like the lair of a James Bond villain. On the left

is a boat cleaning the Super-Kamiokande photosensors as the tank slowly fills up. On the

right is the SNO tank, filled with heavy water.

Typically, the neutrinos are scattered off electrons which sit in a large tank of

water and detected by the resulting Cerenkov radiation. This, for example, is how

the super-Kamiokande experiment in Japan works. The neutrinos must have an

energy threshold of E ≈ 8 MeV and so, as with the chlorine experiments, is

sensitive only to the rarer beryllium neutrinos. This time there is a shortfall of

around 50%.

These experiments have the advantage that they reveal the direction of the in-

coming neutrino, and show clearly that the neutrinos are indeed coming from the

Sun. In addition, the neutrinos are measured in real time which means that it’s

possible to detect differences between day, when the neutrinos come directly from

the Sun, and night, when the neutrinos must first pass through the Earth before

reaching the detector. (We will explain below why such a difference is expected.)

• The state of the art in neutrino detection is offered by the Sudbury neutrino

observatory (SNO). This has a tank filled with heavy water, D20, where the

hydrogen is replaced by deuterium D. It doesn’t take much to split the deuterium

nucleus apart; just 2 MeV of energy is enough. Moreover, neutrinos can knock

apart a deuterium nucleus in two different ways. A weak interaction involving an

intermediate W boson does the job through a neutrino capture process analogous

to those that occur in chlorine or gallium,

νe +D → p+ p+ e− . (7.56)

Only electron neutrinos contribute to such processes. However, the neutrinos can
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also split the deuterium through a weak interaction involving a Z boson,

ν +D → n+ p+ ν . (7.57)

This time there is no charged lepton created, meaning that all three kinds of

neutrinos, νe, νµ and ντ contribute.

In addition, SNO measured neutrino scattering events of the form ν+e− → ν+e−

where, again, the electron neutrinos have an additional scattering mode through

the W boson. The upshot is that SNO was able to see everything – electron, muon

and tau neutrinos. And once you see everything, nothing is missing. The end

result agreed perfectly with theoretical expectations of the nuclear reactions inside

the Sun. The electron neutrinos missed by previous experiments had transmuted

into muon and tau neutrinos, incontrovertible evidence for neutrino oscillations.

Atmospheric Neutrinos

The story of missing neutrinos is repeated when we look elsewhere. Cosmic rays, mostly

in the form of protons or helium nuclei, are constantly bombarding the Earth. When

they hit the atmosphere they create a constant stream of π± pions. These pions decay

to muons

π+ −→ µ+ + νµ and π− −→ µ− + ν̄µ

and the muons then quickly decay to electrons,

µ+ −→ e+ + νe + ν̄µ and µ− −→ e− + ν̄e + νµ

The resulting atmospheric neutrinos have significantly higher energies than solar neu-

trinos; often around a GeV or higher. Given the decay processes described above, each

collision should result in two muon neutrinos (strictly one νµ, one ν̄µ) for every electron

neutrino. The question is: can we find them?

The answer, given by Super-Kamiokande, is interesting and shown in Figure 23.

These show plots of the neutrino flux (on the vertical axis) against the angle at which

the neutrinos come into the detector (on the horizontal axis). An angle cos θ = 1, on

the far right, means that the neutrinos come directly down. An angle cos θ = −1, on

the far left, means that neutrinos come up, through the Earth.

The data on the left two boxes is for electron neutrinos, both for low-energy events

(shown in the top box) and high-energy events (in the bottom box). The red line is the

theoretical expectation; the black dots the observed flux. We see that the agreement

between experiment and theory works well.
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Figure 23. The observed flux of electron neutrinos (on the left) and muon neutrinos (on

the right). The top boxes show low-energy neutrinos; the lower boxes high-energy neutrinos.

The red line is the theoretical expectation without neutrino oscillations, and the black boxes

the data.

The story is more interesting for muon neutrinos, shown in the two boxes on the

right. The number of neutrinos coming straight down agrees perfectly with what we

expect, but there’s a clear deficit for those that come up through the Earth. Why?

For any other particle, you might think that the Earth is simply getting in the way.

But neutrinos pass right through the Earth without any difficulty. (Remember the

picture of the Sun at night in Figure 19.) Besides: theorists aren’t stupid and had

taken the presence of the Earth into account when computing the red line! Instead,

the key point is that the muon neutrinos have travelled further, and so had more

opportunity to convert into other neutrinos, in this case tau.

Importantly, the atmospheric neutrinos clearly show us that neutrino oscillations

depend on the length L that neutrinos travel. For those neutrinos that come straight

down, we have L ≈ 15 km and no oscillations are seen. Meanwhile, for those that come

up through the Earth we have L ≈ 13000 km and νe is unaffected, while νµ → ντ .
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Figure 24. A colour coded description of the possible ordering of neutrino masses.

Neutrino Mass Differences

The experiments sketched above, together with similar terrestrial experiments, are

how we determine the precious information about the fundamental parameters in the

Standard Model. These tell us the values of the mixing angles that lie within the PMNS

matrix (7.17) which, roughly speaking, translate into the following statements about

the mass eigenstates: ν1, ν2 and ν3

• ν1 acts like an electron neutrino two thirds of the time, and as a muon or tau

neutrino the other third.

• ν2 acts like any one of the three neutrinos one third of the time.

• ν3 acts like a tau neutrino 45% of the time and like a muon neutrino 45% of the

time. The remaining 10%, it acts like an electron neutrino.

We also get information about mass differences. The eigenstate ν1 is known to be

lighter than ν2 and the squares of their masses differ by

m2
2 −m2

1 ≈ 7.4× 10−5 eV2

The resulting difference in their masses is of order ∼ 10−2 eV, an order of magnitude

smaller than the biggest mass. We also know the difference between the masses of ν3

and ν2 but, crucially, we don’t yet know which one is heavier! We have

m2
3 −m2

2 = ± 2.5× 10−3 eV2
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Of course, if we could measure the mass difference between m1 and m3 then we would

be able to resolve this ± ambiguity. As it stands, we just don’t know the order of the

masses.

The two possibilities are shown in Figure 24. Given the pattern seen in all other

fermions, one might expect that the electron neutrino νe would be the lightest. Since

the νe has the biggest overlap with ν1, this would mean that ν1 is lightest. This is

referred to as the normal hierarchy. But, as we’ve seen, very little about the neutrinos

follows our expectation. So another possibility is that ν3, which contains very little of

the electron neutrino, is the lightest. This is called the inverted hierarchy. The latest

evidence from cosmological observations of the CMB and structure formation give an

improved bound on
∑

imi and point towards the normal hierarchy.
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