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A 3d Superconformal Theory
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U(N;) Chern-Simons theory with N flavours

Leblanc, Lozano and Min ‘93
Nakayama ‘08, ‘09
Lee® ‘09




Comments
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 The particles are anyons
« “Boson” ¢ has spin -1/2k
* “Fermion” ¥ has spin 1/2 - 1/2k

 The gauge invariant operators need dressing by the dual photon o
(I)z' _ 6—20/k¢i \IJZ _ e—ia/k‘wi

« The sign of the potential depends on the sign of k
« k> 0is arepulsive force between bosons
 k <O0is an attractive force between bosons



Bosonic Symmetries
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Particle numbers: A p = /de pp and Np= /dQ:z: OF
_ 4t — bl
PB = gbngz PF = % %

Hamiltonian  and momentum P = /d2513 P

Galilean boosts: G = % / d2$ Z(pB + ,UF)



Bosonic Conformal Symmetries
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Dilatation: D — /de (2P + 575)

Special Conformal: C = %/dQZE ‘ZIQ(PB + pr)

[H,C] = —iD i[D,C] =+2C
S0O(2,1) “Schrodinger” algebra

i[D,H] = —2H




Primary Operators

We want to compute the dimensions of operators

i[D,0] = —ApO

From the algebra, it's simple to show that:

H raises dimension by 2

P raises the dimension by 1
G lowers the dimension by 1
C lowers the dimension by 2

A primary operator sits at the bottom of a tower. It obeys

G, O] = [C,0] =0



The State-Operator Map Nishida and Son 07

(de Alfaro, Fubini and Furlan ‘76)

The Spectrum of D on the plane = Spectrum of H with Harmonic Trap!
Lo=H+C

with C' = %/dzaj ‘Z’z(pB + pr)

For primary operator

To) = e 0(0)[0)

> Lo|Po) = Ao|Vo)

i[D,0] = —Ap©



The Goal

Compute spectrum of primary operators with fixed N; and N,




Super(conformal) Symmetries
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q = z'\/g/d% L% Q= \/g/d% &, D=t S = z'\/?/d%: 2610

{04t =5N  {QQ}-H
susy algebra:

{8, 8M =C




Super(conformal) Symmetries
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(Anti)-Chiral Primary Operators

Primary operators sit in supersymmetric multiplets
* Long multiplets have 8 primary operators
« Short multiplets have just 4

A chiral primary operator obeys
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angular momentum R- charge

An anti-chiral primary operator obeys \

3
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Chiral Primaries (for N=N_=1)

The simplest chiral primary creates n bosons

O =(¢)"

But there’s a surprise with the angular momentum of this operator

n2

]O:—%

This is a well known result for anyons. (Simplest intuition follows from spin-statistics theorem)

. 3 —1
Ap = — (JO—§7“O> :> Ao =n - n(n% )




Chiral Primaries (for N=N_=1)

n(n —1)
O=(¢")" with  Ap=n- O
O =1
: 3y
classical dimension anomalous dimension
We can compute these one-loop anomalous dimensions explicitly this diagram has

/ a log divergence
For two particles >@ - >O n >O n >®

and for multi-particles >% _ >? + Z /\ ;: Nishida and Son ‘07
pairs



Anti-Chiral Primaries (for Ng=Ng=1)
The simplest fermionic anti-chiral primary is
O =Ygt on 1yt
Again, this operator has an unusual angular momentum

, 1 1 n nn-—1 n?
o= (3o )wronyn) o
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Again, we can compute the anomalous dimension explicitly \:@ — \O + 3



A Comparison to Quantum Mechanics

The 3 anyon spectrum has been computed numerically for k > 0
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Similar results are known for the 4 anyon spectrum



A Comparison to Quantum Mechanics

The 3 anyon spectrum has been computed numerically for k > 0
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A Comparison to Quantum Mechanics

The 3 anyon spectrum has been computed numerically for k > 0
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Bosonic spectrum N
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All straight lines are 31
also chiral primaries
(with extra derivatives)
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Sporre, Verbaarschot
and Zahed ‘91

But the interesting states
are those that bend! These
are non-chiral primaries
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A Comparison to Quantum Mechanics

The 3 anyon spectrum has been computed numerically for k > 0
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Is exactly the same as the 3}
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..it just comes at it from the
other end



A Unitarity Puzzle
The chiral primaries have

n(n—1)
2k

O = (¢")" with Aoy =n -

But unitarity requires

Ap >1

What's going on when k < 0?

We hit the unitarity bound when n = 2|k|. We violate it when n > 2|k|.



Resolving the Unitarity Puzzle

For fixed number of particles, we can recast the field theory as quantum mechanics
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Note that k <0 =) an attractive delta-function potential between particles

Solve the Schrodinger equation as two particles approach. The ground state has each pair of particles
in the S-wave. It is given by

v=[Ih—x 7 = 0= (ol

i<j

This diverges as two particles approach. The divergence is non-normalisable when n = 2|k|



Resolving the Unitarity Puzzle

We can match all chiral primary operators to the quantum mechanical wavefuntions

Unitarity violated Quantum mechanical
Ap <1 <:> wavefunction non-normalisable




A Vortex Puzzle

The theory contains vortices. For N.=N=1, the vortices obey the equations

2T

These are Jackiw-Pi vortices. They are non-topological but BPS. Despite 300 papers
on these vortices, no one knows what role they play in the quantum theory. (Including me)

Some tantalising facts:

« Solutions only exist when k < 0.
* Asingle vortex on the plane has particle number n = 2|k|.

This is where our operators hit the unitarity bound. Are these vortices new operators/states in the
theory? Seems natural, but not at all obvious...



Thank you for your attention



