The Higgs and The Cosmological Constant: They're Just Not Natural

David Tong

Trinity Science Society

Nature is Organised by Scale

Experimental Science

Nature is Organised by Scale

Renormalization

little things affect big things

Example 1: Fluid mechanics

Example 2: Heavy Fermions

e.g. CeCu₆, CeAl₃,UPt₃.

Renormalization

$m_{\rm observed} = m_{\rm bare} + m_{\rm induced}$

Ping pong ball: $m_{\rm observed} \approx 10 \, m_{\rm bare}$

Electron in heavy fermion material: $m_{\rm observed} \approx 1000 \, m_{\rm bare}$

Part I: The Cosmological Constant

Energy budget

Dark energy

a.k.a the cosmological constant

How do we know?

And...

Einstein's field equations

$$G_{\mu\nu} = \frac{1}{M_{\rm pl}^2} T_{\mu\nu}$$

$$M_{\rm pl} \approx 10^{27} \ eV$$

Adding a cosmological constant

$$G_{\mu\nu} = \frac{1}{M_{\rm pl}^2} T_{\mu\nu} - \Lambda g_{\mu\nu}$$

$$\Lambda \approx (10^{-3} \ eV)^4$$

But we don't get to choose...

What we should see

$\Lambda_{\rm observed} = \Lambda_{\rm bare} + \Lambda_{\rm induced}$

$$\Lambda_{\text{observed}} \approx (10^{-3} \ eV)^4$$
$$\Lambda_{\text{induced}} \approx (10^{12} \ eV)^4$$
$$= 10^{60} \Lambda_{observed}$$

Possible solution 1: fine tuning

$\Lambda_{\rm observed} = \Lambda_{\rm bare} + \Lambda_{\rm induced}$

Unnatural!

$$\Lambda_{\text{bare}} \approx -(10^{12} \ eV)^4$$
$$\Lambda_{\text{induced}} \approx (10^{12} \ eV)^4$$
$$\Longrightarrow \Lambda_{\text{observed}} \approx (10^{-3} \ eV)^4$$

Possible solution 2:

An analogy: the mass of the electron

Energy =
$$\int d^3 r \ \vec{E} \cdot \vec{E}$$

= $\int_0^\infty dr \ \frac{e^2}{4\pi r^2} = \infty$

An analogy: the mass of the electron

Natural if
$$\frac{e^2}{4\pi a} < m_e c^2 \iff \frac{e^2}{4\pi\hbar c} < 1$$

An analogy: the mass of the electron

Natural if
$$\frac{e^2}{4\pi a} < m_e c^2 \iff \frac{e^2}{4\pi\hbar c} < 1$$
 $\frac{e^2}{4\pi\hbar c} \approx \frac{1}{137}$

No similar story for dark energy!

And that's the cosmological constant problem

Part II: The Higgs Boson

Fields are primary, particles secondary

The Higgs field

The Higgs particle

The Higgs particle?

The standard model

 $V(\phi) = m^2 \phi^2 + \lambda \phi^4$

 $m \approx 125 \, GeV$

But we don't get to choose...

What we should see

$m_{\rm observed} = m_{\rm bare} + m_{\rm induced}$

 $m_{\rm observed} \approx 10^{11} \ eV$

 $m_{\rm induced} \approx 10^{27} \ eV$ $\approx 10^{16} \ m_{\rm observed}$

Possible solution 1: fine tuning

$m_{\rm observed} = m_{\rm bare} + m_{\rm induced}$

$$m_{\text{bare}} \approx -10^{27} \ eV$$

 $m_{\text{induced}} \approx 10^{27} \ eV$
 $\implies m_{\text{observed}} \approx 10^{11} \ eV$

Unnatural!

Possible solutions 2,3,4,5...

- Supersymmetry
- Extra Dimensions
- Technicolor
- Deconstruction
- Many many more

But...

Where are they?

Part III: Living With Fine Tuning

Coincidences Happen

Anthropic principle: live where you can

$\Lambda_{\rm max} \approx \Lambda_{\rm observed}$

Weinberg

The Multiverse

Part IV: A Better Solution...