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Part I: The Cosmological Constant 



Energy budget 



Dark energy a.k.a the cosmological constant 



How do we know? 



And… 



Einstein’s field equations 
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Hi Bobby - hope you’re well. And welcome to the long-promised musings on the
Alfy project. Below I’ve concentrated on the hyper-kähler quotient construction of ALF
spaces.

To set notations, let’s begin by considering a D-brane on the AN−1 ALE space. The
metric on this space is given by,

ds
2 = H(r)dr · dr+H

−1(r)Dψ2

where r is a 3-vector and the coordinate ψ has period 4π. The covariant derivative is
Dψ = dψ +ω · dr, where ∇H = ∇×ω. Finally, the harmonic function H(r) is given by,

H(r) =
N�

i=1

1

|r− ζi|
(1)

The parameters ζ are blow-up parameters of the space. Note that, through a constant
shift of r, we may always choose

�
i ζi = 0. Notice also that, for N = 1, the above metric

is a re-writing of the flat metric on R
4 as can be simply seen by defining R =

√
r.

Consider a Dp-brane probe, for p ≤ 5, with worldvolume transverse to the ALE space.
From the work of Douglas and Moore, we know that the gauge theory living on this space
is the quiver theory with 8 supercharges based on the AN−1 affine Dynkin diagram. More
specifically, we have gauge group G =

�N
i=1 U(ki) with ki = 1 for all i = 1, · · · , N . The

matter content consists of a bi-fundamental hypermultiplet transforming under each pair
of adjacent gauge groups, (+ki,−ki+1) where we have defined kN+1 ≡ k1 (i.e. the quiver
is a circle). Note that the overall “centre of mass” gauge group is free. Let ωi denote the
SU(2)R doublet of complex scalars in the i

th hypermultiplet. Then the D-terms of this
gauge theory read,

N�

i=1

e
2
i

�
ω†
i τωi − ω†

i+1τωi+1 − ζi

�2
(2)

where ei are gauge coupling constants, τ are the Pauli matrices and ζi are FI parameters.
Once again, we have used “periodic” notation, ωN=1 ≡ ω1. Notice that the choice

�
i ζi =

0 ensures that there is no constant energy contribution from the free centre of mass U(1)
in (2)
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Adding a cosmological constant 
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But we don’t get to choose… 



What we should see 
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Possible solution 1: fine tuning 
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Possible solution 2:  



An analogy: the mass of the electron 
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ds
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No similar story for dark energy! 

Observable 
Universe 

1026 m 

Planck  
Scale 

10-33 m 

LHC 

10-18 m 10-9m 

DNA Earth 

107m 

Cosmological  
Constant 

10-3 eV = 1 mm 



And that’s the cosmological  
constant problem 



Part II: The Higgs Boson 



Fields are primary, particles secondary 



The Higgs field 



The Higgs particle 



The Higgs particle? 



The standard model 
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But we don’t get to choose… 



What we should see 
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Possible solution 1: fine tuning 

Unnatural! 
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Possible solutions 2,3,4,5… 

n  Supersymmetry 
n  Extra Dimensions 
n  Technicolor 
n  Deconstruction 
n  Many many more 

But… 



Where are they? 



Part III: Living With Fine Tuning 



Coincidences Happen 



Anthropic principle: live where you can  

Contents

1. Introduction 1

1. Introduction

V (φ) = m2φ2 + λφ4

m ≈ 125GeV

mobserved = mbare +minduced

mobserved ≈ 10mbare

mobserved ≈ 1000mbare

mobserved ≈ 1011 eV

minduced ≈ 1027 eV

≈ 1016 mobserved

minduced ≈ 1027 eV

mbare ≈ −1027 eV

Λmax ≈ Λobserved

Acknowledgement

My thanks to Nick Dorey for many useful discussions. I’m supported by the Royal

Society.

References

[1] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75,

4724 (1995) [arXiv:hep-th/9510017].

1
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The Multiverse 



Part IV: A Better Solution… 


