
3 Grad, Div and Curl

In this section we’re going to further develop the ways in which we can di↵erentiate.

We’ll be particularly interested in how we can di↵erentiate scalar and vector fields. Our

definitions will be straightforward but, at least for the time being, we won’t be able to

o↵er the full intuition behind these ideas. Perhaps ironically, the full meaning of how to

di↵erentiate will become clear only in Section 4 where we also learn the corresponding

di↵erent ways to integrate.

3.1 The Gradient

We’ve already seen how to di↵erentiate a scalar field � : Rn
! R. Given Cartesian

coordinates xi with i = 1, . . . , n on Rn, the gradient of � is defined as

r� =
@�

@xi
ei (3.1)

Note that di↵erentiating a scalar field leaves us with a vector field.

The definition above relies on a choice of Cartesian coordinates. Later in this section,

we’ll find expressions for the gradient in di↵erent coordinate systems. But there is also

a definition of the gradient that does not rely on any coordinate choice at all. This

starts by considering a point x 2 Rn. We don’t, yet, think of x as defined by a string of

n numbers: that comes only with a choice of coordinates. Instead, it should be viewed

as an abstract point in Rn.

The first principles, coordinate-free definition of the gradient r� simply compares

the value of � at some point x to the value at some neighbouring point x + h with

h = |h| ⌧ 1. For a di↵erentiable function �, we can write

�(x+ h) = �(x) + h ·r�+O(h2) (3.2)

where this should be thought of as the definition of the gradient r�. Note that it’s

similar in spirit to our definition of the tangent to a curve ẋ given in (1.2). If we pick

a choice of coordinates, with x = (x1, . . . , xn), then we can take h = ✏ ei with ✏ ⌧ 1.

The definition (3.2) then coincides with (3.1),

An Example

Consider the function on R3,

�(x, y, z) = �
1p

x2 + y2 + z2
= �

1

r
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where r2 = x2 + y2 + z2 is the distance from

the origin. We have

@�

@x
=

x

(x2 + y2 + z2)3/2
=

x

r3

and similar for the others. The gradient is then

given by

r� =
xx̂+ yŷ + zẑ

r3
=

r̂

r2

where, in the final expression, we’ve introduced

the unit vector r̂ which points out radially outwards in each direction, like the spikes

on a hedgehog as shown in the figure. The vector field r� points radially, decreasing as

1/r2. Vector fields of this kind are important in electromagnetism where they describe

the electric field E(x) arising from a charged particle.

An Application: Following a Curve

Suppose that we’re given a curve in Rn, defined by the map x : R ! Rn, together

with a scalar field � : Rn
! R. Then we can combine these into the composite map

�(x(t)) : R! R. This is simply the value of the scalar field evaluated on the curve. We

can then di↵erentiate this map along the curve using the higher dimensional version of

the chain rule.

d�(x(t))

dt
=
@�

@xi

dxi

dt

This has a nice, compact expression in terms of the gradient,

d�(x(t))

dt
= r� ·

dx

dt

This tells us how the function �(x) changes as we move along the curve.

3.2 Div and Curl

At this stage we take an interesting and bold mathematical step. We view r as an

object in its own right. It is called the gradient operator.

r = ei
@

@xi
(3.3)

This is both a vector and an operator. The fact that r is an operator means that it’s

just waiting for a function to come along (from the right) and be di↵erentiated.
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The gradient operator r sometimes goes by the names nabla or del, although usually

only when explaining to students in a first course on vector calculus that r sometimes

goes by the names nabla or del. (Admittedly, the latex command for r is \nabla which

helps keep the name alive.)

With r divorced from the scalar field on which it originally acted, we can now think

creatively about how it may act on other fields. As we’ve seen, a vector field is defined

to be a map

F : Rn
! Rn

Given two vectors, we all have a natural urge to dot them together. This gives a

derivative acting on vector fields known as the divergence

r · F =

✓
ei

@

@xi

◆
· (ejFj) =

@Fi

@xi

where we’ve used the orthonormality ei · ej = �ij. Note that the gradient of a scalar

field gave a vector field. Now the divergence of a vector field gives a scalar field.

The divergence isn’t the only way to di↵erentiate a vector field. If we’re in Rn,

a vector field has N components and we could di↵erentiate each of these in one of N

di↵erent directions. This means that there are N2 di↵erent meanings to the “derivative

of a vector field”. But the divergence turns out to be the combination that is most

useful.

Both the gradient and divergence operations can be applied to fields in Rn. In

contrast, our final operation holds only for vector fields that map

F : R3
! R3

In this case, we can take the cross product. This gives a derivative of a vector field

known as the curl,

r⇥ F =

✓
ei

@

@xi

◆
⇥ (ejFj) = ✏ijk

@Fj

@xi
ek

Or, written out in its full glory,

r⇥ F =

✓
@F3

@x2
�
@F2

@x3
,
@F1

@x3
�
@F3

@x1
,
@F2

@x1
�
@F1

@x2

◆
(3.4)
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The curl of a vector field is, again, a vector field. It can also be written as the deter-

minant

r⇥ F =

��������

e1 e2 e3
@

@x1
@

@x2
@

@x3

F1 F2 F3

��������

As we proceed through these lectures, we’ll build intuition for the meaning of these

two derivatives. We will see, in particular, that the divergence r · F measures the net

flow of the vector field F into, or out of, any given point. Meanwhile, the curl r⇥ F

measures the rotation of the vector field. A full understanding of this will come only

in Section 4 when we learn to undo the di↵erentiation through integration. For now

we will content ourselves with some simple examples.

Simple Examples

Consider the vector field

F(x) = (x2, 0, 0)

Clearly this flows in a straight line, with increasing strength. It hasr·F = 2x, reflecting

the fact that the vector field gets stronger as x increases. It also has r⇥ F = 0.

Next, consider the vector field

F(x) = (y,�x, 0)

This swirls, as shown in the figure on the right. We

have r · F = 0 and r ⇥ F = (0, 0,�2). The curl

points in the ẑ direction, perpendicular to the plane

of the swirling.

Finally, we can consider the hedgehog-like radial

vector field that we met previously,

F =
r̂

r2
=

1

(x2 + y2 + z2)3/2
(x, y, z) (3.5)

You can check that this obeys r ·F = 0 and r⇥F = 0. Or, to be more precise, it obeys

these equations almost everywhere. Clearly something fishy is going on at the origin

r = 0. In fact, we will later see that we can make this less fishy: a correct statement is

r · F = 4⇡�3(x)

where �3(x) is the higher-dimensional version of the Dirac delta function. We’ll under-

stand this result better in Section 5 where we will wield the Gauss divergence theorem.
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When evaluating the derivatives of radial fields, like the hedgehog (3.5), it’s best to

work with the radial distance r, given by r2 = xixi. Taking the derivative then gives

2r@r/@xi = 2xi and we have @r/@xi = xi/r. You can then check that, for any integer

p,

rrp = ei
@(rp)

@xi
= prp�1r̂

Meanwhile, the vector x = xiei can equally well be written as x = r = rr̂ which

highlights that it points outwards in the radial direction. We have

r · r =
@xi

@xi
= �ii = n

where the n arises because we’re summing over all i = 1, . . . , n. (Obviously, if we’re

working in R3 then n = 3.) We can also take the curl

r⇥ r = ✏ijk
@xj

@xi
ek = 0

which, of course, as always holds only in R3.

3.2.1 Some Basic Properties

There are a number of straightforward properties obeyed by grad, div and curl. First,

each of these is a linear di↵erential operator, meaning that

r(↵�+  ) = ↵r�+r 

r · (↵F+G) = ↵r · F+r ·G

r⇥ (↵F+G) = ↵r⇥ F+r⇥G

for any scalar fields � and  , vector fields F and G, and any constant ↵.

Next, each of them has a Leibniz property, which means that they obey a generali-

sation of the product rule. These are

r(� ) = �r +  r�

r · (�F) = (r�) · F+ �(r · F)

r⇥ (�F) = (r�)⇥ F+ �(r⇥ F)

In the last of these, you need to be careful about the placing and ordering of r, just

like you need to be careful about the ordering of any other vector when dealing with

the cross product. The proof of any of these is simply an exercise in plugging in the
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component definition of the operator and using the product rule. For example, we can

prove the second equality thus:

r · (�F) =
@(�Fi)

@xi
=
@�

@xi
Fi + �

@Fi

@xi
= (r�) · F+ �(r · F)

There are also a handful of further Leibnizian properties involving two vector fields.

The first of these is straightforward to state:

r · (F⇥G) = (r⇥ F) ·G� F · (r⇥G)

This is simplest to prove using index notation. Alternatively, it follows from the usual

scalar triple product formula for three vectors. To state the other properties, we need

one further small abstraction. Given a vector field F and the gradient operator r, we

can construct further di↵erential operators. These are

F ·r = Fi

@

@xi
and F⇥r = ek✏ijkFi

@

@xj

Note that the vector field F sits on the left, so isn’t acted upon by the partial derivative.

Instead, each of these objects is itself a di↵erential operator, just waiting for something

to come along so that it can di↵erentiate it. In particular, these constructions appear

in two further identities

r(F ·G) = F⇥ (r⇥G) +G⇥ (r⇥ F) + (F ·r)G+ (G ·r)F

r⇥ (F⇥G) = (r ·G)F� (r · F)G+ (G ·r)F� (F ·r)G

Again, these are not di�cult to prove: they follow from expanding out the left-hand

side in components.

3.2.2 Conservative is Irrotational

Recall that a conservative vector field F is one that can be written as

F = r�

for some scalar field �. We also say that F is irrotational if r ⇥ F = 0. There is a

beautiful theorem that says these two concepts are actually equivalent:

Theorem: For fields defined everywhere on R3, conservative is the same as irrota-

tional.

r⇥ F = 0 () F = r�
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Half Proof: It is trivial to prove this in one direction, Suppose that F = r�, so that

Fi = @i�. Then

r⇥ F = ✏ijk@iFjek = ✏ijk@i@j� ek = 0

which vanishes because the ✏ijk symbol means that we’re anti-symmetrising over ij,

but the partial derivatives @i@j are symmetric, so the terms like @1@2 � @2@1 cancel.

It is less obvious that the converse statement holds, i.e. that irrotational implies

conservative. We’ll show this only in Section 4.4 where it appears as a corollary of

Stokes’ theorem. ⇤

Recall that in Section 1.3 we showed that the line integral of a conservative field was

independent of the path taken. Putting this together with the result above, we have

the following, equivalent statements:

r⇥ F = 0 () F = r� ()

I

C

F · dx = 0

where we’ve yet to see the proof of the first =). In fact, we will complete this step

through Stokes’ theorem which shows that the statement on the far-left is equivalent

to the statement on the far-right.

3.2.3 Solenoidal Fields

Here is another definition. A vector field F is called divergence free or solenoidal if

r · F = 0. (The latter name comes from electromagnetism, where a magnetic field B

is most easily generated by a tube with a bunch of wires wrapped around it known as

a “solenoid” and has the property r ·B = 0.)

There is a nice theorem about divergence free fields that is a counterpart to the one

above:

Theorem: Any divergence free field can be written as the curl of something else,

r · F = 0 () F = r⇥A

again, provided that F is defined everywhere on R3. Note that A is not unique. In

particular, if you find one A that does the job then any other A+r� will work equally

as well. In later courses, we will see that this theorem and the previous one both get

subsumed into a single theorem known as the Poincaré lemma.
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Proof: It’s again straightforward to show this one way. If F = r ⇥ A, then Fi =

✏ijk@jAk and so

r · F = @i(✏ijk@jAk) = 0

which again vanishes for the symmetry reasons.

This time, we will prove the converse statement by explicitly exhibiting a vector

potential A such that F = r⇥A. We pick some arbitrary point x0 = (x0, y0, z0) and

then construct the following vector field

A(x) =

✓Z
z

z0

Fy(x, y, z
0) dz0 ,

Z
x

x0

Fz(x
0, y, z0) dx

0
�

Z
z

z0

Fx(x, y, z
0) dz0 , 0

◆
(3.6)

Since Az = 0, the definition of the curl (3.4) becomes

r⇥A =

✓
�
@Ay

@z
,
@Ax

@z
,
@Ay

@x
�
@Ax

@y

◆

Using the ansatz (3.6), we find that the first two components of r ⇥ A immediately

give what we want

(r⇥A)x = Fx(x, y, z) and (r⇥A)y = Fy(x, y, z)

both of which follow from the fundamental theorem of calculus. Meanwhile, we still

have a little work ahead of us for the final component

(r⇥A)z = Fz(x, y, z0)�

Z
z

z0

@Fx

@x
(x, y, z0) dz0 �

Z
z

z0

@Fy

@y
(x, y, z0) dz0

At this point we use the fact that F is solenoidal, so r · F = 0 and so @Fz/@z0 =

�(@Fx/@x+ @Fy/@y). We then have

(r⇥A)z = Fz(x, y, z0) +

Z
z

z0

@Fz

@z0
(x, y, z0) dz0 = Fz(x, y, z)

This is the result we want. ⇤

Note that both theorems above come with a caveat: the fields must be defined

everywhere on R3. This is important as counterexamples exist that do not satisfy this

requirement, similar to the one that we met in a previous context in Section 1.3.4.

These counterexamples will take on a life of their own in future courses where they

provide the foundations to think about topology, both in mathematics and physics.
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We’ve seen two related results above. A vector field F = r� obeys r⇥F = 0 and a

vector field F = r⇥A obeys r ·F = 0. In fact, it can be shown that the most general

vector field on R3 can be decomposed a

F = r�+r⇥A

for some � and A. This is known as the Helmholtz decomposition. We won’t prove this

statement here, although it follows from the result above if you can show that, for any

F, there always exists a potential � such that F � r� is solenoidal. (This ultimately

follows from properties of the Laplace equation that we describe in section 5.2.)

3.2.4 The Laplacian

The Laplacian is a second order di↵erential operator defined by

r
2 = r ·r =

@2

@xi@xi

For example, in 3d the Laplacian takes the form

r
2 =

@2

@x2
+

@2

@y2
+

@2

@z2

This is a scalar di↵erential operator meaning that, when acting on a scalar field �, it

gives back another scalar field r
2�. Similarly, it acts component by component on a

vector field F, giving back another vector field r
2F. If we use the vector triple product

formula, we find

r⇥ (r⇥ F) = r(r · F)�r
2F

which we can rearrange to give an alternative expression for the Laplacian acting on

the components of a vector field

r
2F = r(r · F)�r⇥ (r⇥ F)

We’ll devote Section 5 to solving various equations involving the Laplacian.

3.2.5 Some Vector Calculus Equations in Physics

I mentioned in the introduction that all laws of physics are written in the language

of vector calculus (or, in the case of general relativity, a version of vector calculus

extended to curved spaces, known as di↵erential geometry). Here, for example, are the

four equations of electromagnetism, known collectively as the Maxwell equations

r · E =
⇢

✏0
, r⇥ E = �

@B

@t
(3.7)

r ·B = 0 , r⇥B = µ0

✓
J+ ✏0

@E

@t

◆
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Here E and B are the electric and magnetic fields, while ⇢(x) is a scalar field that

describes the distribution of electric charge in space and J(x) is a vector field that

describes the distribution of electric currents. The equations also include two constants

of nature, ✏0 and µ0 which describe the strengths of the electric and magnetic forces

respectively.

This simple set of equations describes everything we know about electricity, mag-

netism and light. Extracting this information requires the tools that we will develop

in the rest of these lectures. Along the way, we will sometimes turn to the Maxwell

equations to illustrate new ideas.

You’ll find the Laplacian sitting in many other equations of physics. For example,

the Schrödinger equation describing a quantum particle is written using the Laplacian.

A particularly important equation, that crops up in many places, is the heat equation,

@T

@t
= Dr

2T

This tells us, for example, how temperature T (x, t) evolves over time. Here D is called

the di↵usion constant. This same equation also governs the spread of many other

substances when there is some random element in the process, such as the constant

bombardment from other atoms. For example, the smell of that guy who didn’t shower

before coming to lectures spreads through the room in manner described by the heat

equation.

3.3 Orthogonal Curvilinear Coordinates

The definition of all our di↵erential operators relied heavily on using Cartesian co-

ordinates. The purpose of this section is simply to ask what these objects look like

in di↵erent coordinate systems. As usual, the spherical polar and cylindrical polar

coordinates in R3 will be of particular interest to us.

In general, we can describe a point x in R3 using some coordinates u, v, w, so x =

x(u, v, w). Changing either of these coordinates, leaving the others fixed, results in a

change in x. We have

dx =
@x

@u
du+

@x

@v
dv +

@x

@w
dw (3.8)

Here @x/@u is the tangent vector to the lines defined by v, w = constant, with similar

statements for the others. A given set of coordinates provides a good parameterisation

of some region provided that

@x

@u
·

✓
@x

@v
⇥
@x

@w

◆
6= 0
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The coordinate (u, v, w) are said to be orthogonal curvilinear if the three tangent vectors

are mutually orthogonal. Here the slightly odd name “curvilinear” reflects the fact that

these tangent vectors are typically not constant, but instead depend on position. We’ll

see examples shortly.

For orthogonal curvilinear coordinates, we can always define orthonormal tangent

vectors simply by normalising them. We write

@x

@u
= hueu ,

@x

@v
= hvev ,

@x

@w
= hwew

where we’ve introduced scale factors hu, hv, hw > 0 and eu, ev and ew form a right-

handed orthonormal basis so that eu⇥ev = ew. This can always be achieved simply by

ordering the coordinates appropriately. Our original equation (3.8) can now be written

as

dx = hueudu+ hvevdv + hwewdw (3.9)

Squaring this, we have

dx2 = h2
u
du2 + h2

v
dv2 + h2

w
dw2

from which it’s clear that hu, hv and hw are scale factors that tell us the change in

length as we change each of the coordinates.

Throughout this section, we’ll illustrate everything with three coordinate systems.

Cartesian Coordinates

First, Cartesian coordinates are easy:

x = (x, y, z) =) hx = hy = hz = 1 and ex = x̂, ey = ŷ, ez = ẑ

Cylindrical Polar Coordinates

Next, cylindrical polar coordinates are defined by (see also (2.7))

x = (⇢ cos�, ⇢ sin�, z)

with ⇢ � 0 and � 2 [0, 2⇡) and z 2 R. Inverting,

⇢ =
p

x2 + y2 and tan� =
y

x
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Figure 12. Cylindrical polar coordinates, on the left, and spherical polar coordinates, on

the right.

It’s straightforward to calculate

e⇢ = ⇢̂ = (cos�, sin�, 0)

e� = �̂ = (� sin�, cos�, 0)

ez = ẑ

with

h⇢ = hz = 1 and h� = ⇢

The three orthonormal vectors are shown on the left-hand side of Figure 12 in red.

Note, in particular, that the vectors depend on � and rotate as you change the point

at which they’re evaluated.

Spherical Polar Coordinates

Spherical polar coordinates are defined by (see also (2.5).)

x = (r sin ✓ cos�, r sin ✓ sin�, r cos ✓)

with r � 0 and ✓ 2 [0, ⇡] and � 2 [0, 2⇡). Inverting,

r =
p

x2 + y2 + z2 , tan ✓ =

p
x2 + y2

z
, tan� =

y

x

Again, we can easily calculate the basis vectors

er = r̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓)

e✓ = ✓̂ = (cos ✓ cos�, cos ✓ sin�,� sin ✓)

e� = �̂ = (� sin�, cos�, 0)
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These are shown in the right-hand side of Figure 12 in red. This time, the scaling

factors are

hr = 1 , h✓ = r , h� = r sin ✓

We’ll now see how various vector operators appear when written in polar coordinates.

3.3.1 Grad

The gradient operator is straightforward. If we shift the position from x to x + �x,

then a scalar field f(x) changes by

df = rf · dx (3.10)

This definition can now be used in any coordinate system. In a general coordinate

system we have

df =
@f

@u
du+

@f

@v
dv +

@f

@w
dw = rf · (hueudu+ hvevdv + hwewdw)

Using the orthonormality of the basis elements vectors, and comparing the terms on

the left and right, this then gives us the gradient operator

rf =
1

hu

@f

@u
eu +

1

hv

@f

@v
ev +

1

hw

@f

@w
ew (3.11)

In cylindrical polar coordinates, the gradient of a function f(⇢,�, z) is

rf =
@f

@⇢
⇢̂+

1

⇢

@f

@�
�̂+

@f

@z
ẑ

In spherical polar coordinates, the gradient of a function f(r, ✓,�) is

rf =
@f

@r
r̂+

1

r

@f

@✓
✓̂ +

1

r sin ✓

@f

@�
�̂

Note, in particular, that when we di↵erentiate with respect to an angle there is always

a compensating 1/length prefactor to make sure that the dimensions are right.

3.3.2 Div and Curl

To construct the div and curl in a general coordinate system, we first extract the vector

di↵erential operator

r =
1

hu

eu
@

@u
+

1

hv

ev
@

@v
+

1

hw

ew
@

@w
(3.12)

– 64 –



where, importantly, we’ve placed the vectors to the left of the di↵erentials because, as

we’ve seen, the basic vectors now typically depend on the coordinates. If we act on a

function f with this operator, we recover the gradient (3.11). But now we have this

abstract operator, we can also take it to act on a vector field F(u, v, w). We can expand

the vector field as

F(u, v, w) = Fueu + Fvev + Fwew

Each of the components depends on the coordinates u, v and w. But so too, in general,

do the basis vectors {eu, ev, ew}. This means that when the derivatives in the di↵erential

operator (3.12) hit F, they also act on both the components and the basis vectors.

Given an explicit expression for the basis vectors, it’s not hard to see what happens

when they are di↵erentiated. For example, in cylindrical polar coordinates we find

r · F =
1

⇢

@(⇢F⇢)

@⇢
+

1

⇢

@F�

@�
+
@Fz

@z

and

r⇥ F =

✓
1

⇢

@Fz

@�
�
@F�

@z

◆
⇢̂+

✓
@F⇢

@z
�
@Fz

@⇢

◆
�̂+

1

⇢

✓
@(⇢F�)

@⇢
�
@F⇢

@�

◆
ẑ

There is a question on Examples Sheet 2 that asks you to explicitly verify this. Mean-

while, in spherical polar coordinates, we have

r · F =
1

r2
@(r2Fr)

@r
+

1

r sin ✓

@(sin ✓F✓)

@✓
+

1

r sin ✓

@F�

@�

and

r⇥ F =
1

r sin ✓

✓
@(sin ✓F�)

@✓
�
@F✓

@�

◆
r̂

+
1

r

✓
1

sin ✓

@Fr

@�
�
@(rF�)

@r

◆
✓̂

+
1

r

✓
@(rF✓)

@r
�
@Fr

@✓

◆
�̂

For completeness, we also give the general results

Claim: Given a vector field F(u, v, w) in a general orthogonal, curvilinear coordinate

system, the divergence is given by

r · F =
1

huhvhw

✓
@

@u
(hvhwFu) +

@

@v
(huhwFv) +

@

@w
(huhvFw)

◆
(3.13)
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and the curl is given by the determinant

r⇥ F =
1

huhvhw

��������

hueu hvev hwew
@

@u

@

@v

@

@w

huFu hvFv hwFw

��������

where the derivatives on the second line should now be thought of as acting on the

third line only, but not the first. This means that, in components, we have

r⇥ F =
1

hvhw

✓
@

@v
(hwFw)�

@

@w
(hvFv)

◆
eu + two similar terms

Proof: Not now. Later. It turns out to be a little easier when we have some integral

technology in hand. For this reason, we’ll revisit this in Section 4.4.4.

3.3.3 The Laplacian

Finally, we have the Laplacian. From (3.11) and (3.13), this takes the general form

r
2f = r ·rf =

1

huhvhw


@

@u

✓
hvhw

hu

@f

@u

◆
+

@

@v

✓
huhw

hv

@f

@v

◆
+

@

@w

✓
huhv

hw

@f

@w

◆�

Obviously in Cartesian coordinates, the Laplacian is

r
2f =

@2f

@x2
+
@2f

@y2
+
@2f

@z2

In cylindrical polar coordinates it takes the form

r
2f =

1

⇢

@

@⇢

✓
⇢
@f

@⇢

◆
+

1

⇢2
@2f

@�2
+
@2f

@z2
(3.14)

and in spherical polar coordinates

r
2f =

1

r2
@

@r

✓
r2
@f

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@f

@✓

◆
+

1

r2 sin2 ✓

@2f

@�2
(3.15)

The most canonical of canonical physics textbooks is J.D. Jackson’s “Classical Elec-

trodynamics”. I don’t know of any theoretical physicist who doesn’t have a copy on

their shelf. It’s an impressive book but I’m pretty sure that, for many, the main selling

point is that it has these expressions for div, grad and curl in cylindrical and polar

coordinates printed on the inside cover. You can also find these results collated on the

last pages of these lecture notes. We’ll return to the Laplacian in di↵erent coordinate

systems in Section 5.2 where we’ll explore the solutions to equations like r
2f = 0.
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