
4 The Integral Theorems

The fundamental theorem of calculus states that integration is the inverse of the dif-

ferentiation, in the sense that

Z
b

a

dx
df

dx
= f(b)� f(a)

In this section, we describe a number of generalisations of this result to higher dimen-

sional integrals. Along the way, we will also gain some intuition for the meaning of the

various vector derivative operators.

4.1 The Divergence Theorem

The divergence theorem, also known as Gauss’ theorem, states that, for a smooth vector

field F(x) over R3,
Z

V

r · F dV =

Z

S

F · dS (4.1)

where V is a bounded region whose boundary @V = S is a piecewise smooth closed

surface. The integral on the right-hand side is taken with the normal n pointing

outward.

The Meaning of the Divergence

We’ll prove the divergence theorem shortly. But first, let’s make good on our promise

to build some intuition for the divergence. To this end, integrate r ·F over some region

of volume V centred at the point x. If the region is small enough, then r · F will be

roughly constant, and so
Z

V

r · F dV ⇡ V r · F(x)

and this becomes exact as the region shrinks to zero size. The divergence theorem then

provides a coordinate independent definition of the divergence

r · F = lim
V!0

1

V

Z

S

F · dS (4.2)

This is the result that we advertised in Section 3: the right way to think about the

divergence of a vector field is as the net flow into, or out of, a region. If r · F > 0 at

some point x, then there is a net flow out of that point; if r · F < 0 at some point x

then there is a net flow inwards.
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We can illustrate this by looking at a couple of

the Maxwell equations (3.7). The magnetic field B is

solenoidal, obeying

r ·B = 0

This means that the magnetic vector field can’t pile up

anywhere: at any given point in space, there is as much magnetic field coming in as

there is going out. This leads us to draw the magnetic field as continuous, never ending

streamlines. For example, the magnetic field lines for solenoid, a long coil of wire

carrying a current, is shown in the figure (taken from the website hyperphysics).

Meanwhile, electric field E obeys

r · E =
⇢

✏0

where ⇢(x) is the electric charge density. In any region of

space where there’s no electric charge, so ⇢(x) = 0, the

electric field lines act just like the magnetic field and can’t

pile up anywhere. However, the presence of electric charge

changes this, and causes the field lines to pile up or disap-

pear. In other words, the electric charge acts as a source or

a sink for electric field lines. The electric field lines arising from two pointlike, positive

charges which act as sources, are shown in the figure.

Example

Before proving the theorem, we first give an example. Take

the volume V to be the solid hemispherical ball, defined as

x2 + y2 + z2  R2 and z � 0. Then boundary of V then

has two pieces

@V = S1 + S2

where S1 is the hemisphere and S2 the disc in the z = 0

plane. We’ll integrate the vector field

F = (0, 0, z +R)

The +R doesn’t contribute in the volume integral since we have r · F = 1. Then
Z

V

r · F dV =

Z

V

dV =
2

3
⇡R3 (4.3)
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which is the volume of the hemispherical ball. For the surface integral, we work with

S1 and S2 separately. On the hemisphere S1, the unit normal vector is n = 1
R
(x, y, z)

and so

F · n =
z(z +R)

R
= R cos ✓(cos ✓ + 1)

where we’ve used polar coordinates z = R cos ✓. The integral is then

Z

S1

F · dS =

Z 2⇡

0

d�

Z
⇡/2

0

d✓ (R2 sin ✓)R cos ✓(cos ✓ + 1)

= 2⇡R3


�
1

3
cos3 ✓ �

1

2
cos2 ✓

�⇡/2

0

= = 2⇡R3

✓
1

3
+

1

2

◆
=

5⇡R3

3
(4.4)

where the R2 sin ✓ factor in the first line is the Jacobian that we previously saw in (2.9).

Meanwhile, for the integral over the disc S2, we have the normal vector n = (0, 0,�1),

and so (remembering that the disc sits at z = 0),

F · n = �R )

Z

S2

F · dS = (�R)⇥ ⇡R2

with ⇡R2 the area of the disc. Adding these together, we have
Z

S1+S2

F · dS =
2

3
⇡R3

which reproduces the volume integral as promised.

It’s worth tracking what became of the +R term in the vector field F. Obviously

it didn’t contribute to the volume integral. For the surface integral over S1, it gave

the +1/2 term in the penultimate expression in (4.4). This was then cancelled by the

surface integral over S2, which only received a contribution from the +R term. We see

that this constant vector field when in the top surface, and out the bottom surface,

giving no contribution to the overall surface integral. This is how we get agreement

with the volume integral which, due to the derivative, is oblivious to any constant (or,

indeed, divergent free) components of F.

4.1.1 A Proof of the Divergence Theorem

We start by giving an informal sketch of the basic idea underlying the divergence

theorem. We’ll then proceed with a more rigorous proof.
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To get some intuition for the divergence theorem,

take the volume V and divide it up into a bunch of

small cubes. A given cube Vx has one corner of the

cube sitting at x = (x, y, z) and sides of lengths �x,

�y and �z.

For a small enough cube, we can think of F · n as

being approximately constant on any given side. To

start, we look at the flux of F through the two sides that lie in the (y, z) plane is given

by

[Fx(x+ �x, y, z)� Fx(x, y, z)] �y �z ⇡
@Fx

@x
�x �y �z (4.5)

where the minus sign comes because the flux is calculated using the outward pointing

normal and the right-hand side comes from Taylor expanding Fx(x+ �x, y, z). We get

similar expressions for the integrals over the sides that lie in the (x, y) plane and in

the (x, z) plane. Summing over six sides, the total flux through the surface of this tiny

cube is then
Z

tiny⌧ F · dS =

✓
@Fx

@x
+

@Fy

@y
+

@Fz

@z

◆
�x �y �z = r · F �x �y �z

But now we’ve tiled our volume V with a whole

bunch of these cubes, we can apply the formulae above

to each of them. On the right-hand side, we add up

the value of r · F in each cube. This, of course, is

the volume integral that we’re after. On the left-hand

side, something more interesting happens. Now we get

a term like the left-hand side of (4.5) for each box, and

we sum over all boxes. But this means that all contributions from interior faces cancel

out because the outward normal of one box is in the opposite direction to the outward

normal from the other box. The upshot is that any interior contribution to the flux

vanishes, and we are left only with the contribution from the boundary S = @V . This

then gives us the claimed result
Z

S

F · dS =

Z

V

r · F dV
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The derivation above is simple and intuitive, but it might

leave you a little nervous. The essence of the divergence the-

orem is to relate a bulk integral to a boundary integral. But

it’s not obvious that the boundary can be well approximated

by stacking cubes together. To give an analogy, if you try to

approximate a 45� line by a series of horizontal and vertical

lines, as shown on the right, then the total length of the steps is always going to be
p
2

larger than the length of the horizontal line, no matter how fine you make them. You

might worry that these kind of issues a✏ict the proof above. For that reason, we now

give a more careful derivation of the divergence theorem.

Before we proceed, first note that, suitably interpreted, the divergence theorem holds

in arbitrary dimension Rn, where a “surface” now means a codimension one subspace.

In particular, the divergence theorem holds in R2, where a surface is a curve. This

result, which is interesting in its own right, will serve as a warm-up exercise to proving

the general divergence theorem.

The 2d Divergence Theorem: Let F be a vector field in R2. Then
Z

D

r · F dA =

Z

C

F · n ds (4.6)

where D is a region in R2, bounded by the closed curve C and n is the outward normal

to C.

Proof of the 2d Divergence Theorem: For simplicity, we’ll assume that F =

F (x, y) ŷ. The proof that we’re about to give also works if F points solely in the x̂

direction, but a general F is just a linear sum of the two.

We then have
Z

D

r · F dA =

Z

X

dx

Z
y+(x)

y�(x)

dy
@F

@y

where, as the notation shows, we’ve chosen to do

the area integral by first integrating over y, and

then over x. We’ll assume, for now, that the region

D is convex, as shown in the figure, so that eachR
dy is over just a single interval with limits y±(x).

These limits trace out an upper curve C+, shown
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in red in the figure, and a lower curve C� shown in blue. We then have
Z

D

r · F dA =

Z

X

dx
⇣
F (x, y+(x))� F (x, y�(x))

⌘

We’ve succeeded in converting the area integral into an

ordinary integral, but it’s not quite of the line integral form

that we need. The next part of the proof is to massage the

integral over
R
dx into a line integral over

R
ds. This is

easily achieved if we look at the zoomed-in figure to the

right. Along the upper curve C+, the normal n points

upwards and makes an angle cos ✓ = ŷ · n with the vertical. Moving a small distance

�s along the curve is equivalent to moving

�x = cos ✓ �s = ŷ · n �s along C+

Along the lower curve, C�, the normal n points downwards and so ŷ · n is negative.

We then have

�x = �ŷ · n �s along C�

The upshot is that we can write the area integral as
Z

D

r · F dA =

Z

X

ds
⇣
n · F(x, y+(x)) + n · F(x, y�(x))

⌘

=

Z

C+

F · n ds+

Z

C�

F · n ds

=

Z

C

F · n ds

with C = C+ + C� = @D the boundary of the region.

We’re left with one small loophole to close: if the

region D is not convex, then the range of the inte-

gral
R
dy may be over two or more disconnected in-

tervals, as shown in the figure. In this case, the bound-

ary curve decomposes into more pieces, but the basic

strategy still holds. ⇤
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Figure 13. Performing the
R
dz integral for the proof of the 3d divergence theorem.

Proof of the 3d Divergence Theorem

The proof of the 3d (or, indeed, higher dimensional) divergence theorem follows using

the same strategy. If we focus on F = F (x, y, z) ẑ we have
Z

V

r · F dV =

Z

D

dA

Z
z+(x,y)

z�(x,y)

dz
@F

@z

=

Z

D

dA
⇣
F (x, y, z+(x, y))� F (x, y, z�(x, y))

⌘

where the limits of the integral z±(x, y) are the upper and lower surfaces of the volume

V . The area integral over D is an integral in the (x, y) plane, while to prove Gauss’

theorem we need to convert this into a surface integral over S = @V . This step of the

argument is the same as before: at any given point, the di↵erent between dA = dxdy

and dS is the angle cos ✓ = n · ẑ (up to a sign). This then gives the promised result

(4.1). ⇤

The Divergence Theorem for Scalar Fields

There is a straightforward extension of the divergence theorem for scalar fields �:

Claim: For S = @V , we have
Z

V

r� dV =

Z

S

� dS

Proof: Consider the divergence theorem (4.1) with F = �a where a is a constant

vector. We have
Z

V

r · (�a)dV =

Z

S

(�a) · dS ) a ·

✓Z

V

r� dV �

Z

S

� dS

◆
= 0
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This is true for any constant vector a, and so the expression in the brackets must itself

vanish. ⇤

4.1.2 Carl Friedrich Gauss (1777-1855)

Gauss is regarded by many as the greatest mathematician of all time. He made seminal

contributions to number theory, algebra, geometry, and physics.

Gauss was born to working class parents in what is now Lower Saxony, Germany. In

1795 he went to study at the university of Göttingen and remained there for the next

60 years.

There are remarkably few stories about Gauss that do not, at the end of the day,

boil down to the observation that he was just really good at maths. There is even a

website that has collected well over 100 retellings of how Gauss performed the sumP100
1 n when still a foetus. (You can find an interesting dissection of this story here.)

4.2 An Application: Conservation Laws

Of the many important applications of the divergence theorem, one stands out. In

many situations, we have the concept of a conservation law: some quantity that doesn’t

change over time. There are conservation laws in fundamental physics, including energy,

momentum, angular momentum and electric charge and several more that emerge when

we look to more sophisticated theories. There are also approximate conservation laws

at play when we model more complicated systems. For example, if you’re interested in

how the population distribution of some species evolves over time then it might well

serve you to ignore birth rates and tra�c accidents and consider the total number of

animals to be fixed.

In all these cases, the quantity is conserved. But we can say something stronger

than that: it is conserved locally. For example, an electric charge sitting in the palm

of your hand can’t disappear and turn up on Jupiter. That would satisfy a “global”

conservation of charge, but that’s not the way the universe works. If the electric charge

disappears from your hand, then most likely it has fallen o↵ and is now sitting on the

floor. Or, said more precisely, it must have moved to a nearby region of space.

The divergence theorem provides the technology to describe local conservation laws

of this type. First, we introduce the density ⇢(x, t) of the conserved object. For

the purposes of this discussion, we will take this to be the density of electric charge,

although it could equally well be the density of any of the other conserved quantities
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described above. The total electric charge in some region V is then given by the integral

Q =

Z

V

⇢ dV

The conservation of charge is captured by the following statement: there exists a vector

field J(x, t) such that

@⇢

@t
+r · J = 0

This is known as the continuity equation and J is called the current density.

The continuity equation doesn’t tell us that the density ⇢ can’t change in time; that

would be overly prohibitive. But it does tell us that ⇢ must change only in a certain

way. This ensures that the change in the charge Q in a fixed region V is given by

dQ

dt
=

Z

V

@⇢

@t
dV = �

Z

V

r · J dV = �

Z

S

J · dS

where the second equality follows from the continuity

equation and the third from the divergence theorem

at some fixed time t. We learn that the charge inside

a region can only change if there is a current flowing

through the surface of that region. This is how the

conservation of charge is enforced locally.

The intuition behind this idea is straightforward. If you want to keep tabs on the

number of people in a nightclub, you don’t continuously count them. Instead you

measure the number of people entering and leaving through the door.

If the current is known to vanish outside some region, so J(x) = 0 for |x| > R,

then the total charge contained inside that region must be unchanging. Often, in such

situations, we ask only that J(x, t) ! 0 suitably quickly as |x| ! 1, in which case the

total charge is unchanging

Qtotal =

Z

R3

⇢ dV and
dQtotal

dt
= 0

In later courses, we’ll see many examples of the continuity equation. The example of

electric charge discussed above will be covered in the lectures on Electromagnetism,

where the flux of J through a surface S is

I =

Z

S

J · dS

and is what we usually call the electric current.
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We will also see the same equation in the lectures on Quantum Mechanics where ⇢(x)

has the interpretation of the probability density for a particle to be at some point x

and Q =
R
V
⇢ dV is the probability that the particle sits in some region V . Obviously,

in this example we must have Qtotal = 1 which is the statement that particle definitely

sits somewhere.

Finally, the continuity equation also plays an important role in Fluid Mechanics

where the mass of the fluid is conserved. In that case, ⇢(x, t) is the density of the fluid

and the current is J = ⇢u where u(x, t) is the velocity field. The continuity equation

then reads

@⇢

@t
+r · (⇢u) = 0

In this case the flux is the mass of fluid that passes through a surface S in time t.

In many circumstances, liquids can be modelled as incompressible, meaning that

⇢(x, t) is a constant in both space and time. In these circumstances, we have ⇢̇ = r⇢ = 0

and the continuity equation tells us that the velocity field is necessarily solenoidal:

r · u = 0 (4.7)

This makes sense: for a solenoidal vector field, the flow into any region must be accom-

panied by an equal outgoing flow, telling us that the fluid can’t pile up anywhere, as

expected for an incompressible fluid. The statement that fluids are incompressible is a

fairly good approximation until we come to think about sound, which arises because of

changes in the density which propagate as waves.

4.2.1 Conservation and Di↵usion

There is a close connection between conserved quantities and the idea of di↵usion. We’ll

illustrate this with the idea of energy conservation. The story takes a slightly di↵erent

form depending on the context, but here we’ll think of the energy contained in a hot

gas. First, since energy is conserved there is necessarily a corresponding continuity

equation

@E

@t
+r · J = 0 (4.8)

where E(x, t) is the energy density of the gas, and J is the heat current which tells us

how energy is transported from one region of space to another.
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At this point we need to invoke a couple of physical principles. First, the energy

density in a gas is proportional to the temperature of the gas,

E(x, t) = c T (x, t) (4.9)

where cV is the specific heat capacity. Next comes a key step: in hot systems, where

everything is jiggling around randomly, the heat flow is due to temperature di↵erences

between di↵erent parts of the system. The relation between the two is captured by the

equation

J = �rT (4.10)

where  is called the thermal conductivity and the minus sign ensures that heat flows

from hot to cold. This relation is known as Fick’s law. Neither (4.9) nor (4.10) are

fundamental equations of physics and both can be derived from first principles by

thinking about the motion of the underlying atoms. (This will be described in the

lectures on Statistical Physics and, for Fick’s law, the lectures on Kinetic Theory.)

Combining the continuity equation (4.8) with the definition of temperature (4.9) and

Fick’s law (4.10), we find the heat equation

@T

@t
= Dr

2T

where the di↵usion constant is given by D = /c. This tells us how the temperature

of a system evolves. As we mentioned previously, the same heat equation describes the

di↵usive motion of any conserved quantity.

4.2.2 Another Application: Predator-Prey Systems

We’ll see more applications of the divergence theorem in Section 5, mainly in the con-

text of the gravitational and electrostatic forces. However, the uses of the theorem are

many and varied and stretch far beyond applications to the laws of physics. Here we

give an example in the world of ecology which is modelled mathematically by di↵er-

ential equations. As we’ll see, the use of r here is somewhat novel because we’re not

di↵erentiating with respect to space but with respect to some more abstract variables.

First some background. Predator-prey systems describe the interaction between two

species. We will take our predators to be wolves. (Because they’re cool.) We will denote

the population of wolves at a given time t as w(t). The wolves prey upon something

cute and furry. We will denote the population of this cute, furry thing as c(t).
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We want to write down a system of di↵erential equations to describe the interaction

between wolves and cute furry things. The simplest equations were first written down

by Lotka and Volterra and (after some rescaling) take the form

dw

dt
= w(�↵ + c)

dc

dt
= c(� � w)

with ↵, � > 0 are some constants. There is a clear meaning to the di↵erent terms in

these equations. Without food, the wolves die out. That is what the �↵w term in

the first equation is telling us which, if c = 0, will cause the wolf population to decay

exponentially quickly. In contrast, without wolves the cute furry things eat grass and

prosper. That’s what the +�c term in the second equation is telling us which, if w = 0,

ensures that the population of cute furry things grows exponentially. The second term

in each equation, ±wc, tells us what happens when the wolves and cute furry things

meet. The ± sign means that it’s good news for one, less good for the other.

The Lotka-Volterra equations are straightforward to

solve. There is a fixed point at c = ↵ and w = � at which

the two populations are in equilibrium. Away from this, we

find periodic orbits as the two populations wax and wane.

To see this, we think of w = w(c) and write the pair of

equations as

dw

dc
=

w(c� ↵)

c(� � w)

This equation is separable and we have
Z

� � w

w
dw =

Z
c� ↵

c
dc ) � log! � ! + ↵ log c� c = constant

These orbits are plotted in the (c, w) plane, also known as the phase plane, for di↵erent

constants in the figure.

So much for the Lotka-Volterra equations. Let’s now look at something more com-

plicated. Suppose that there is some intra-species competition: a little wolfy bickering

that sometimes gets out of hand, and some cute, furry in-fighting. We can model this

by adding extra terms to the original equations:

dw

dt
= w(�↵ + c� µw)

dc

dt
= c(� � w � ⌫c) (4.11)
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where the two new constants are also positive, µ, ⌫ > 0. Both new terms come with

minus signs, which is appropriate because fighting is bad.

What do we do now? There is still a fixed point, now given by (1 + µ⌫)w = � � ⌫↵

and (1+µ⌫)c = ↵+µ�. But what happens away from this fixed point? Do the periodic

orbits that we saw earlier persist? Or does something di↵erent happen?

Sadly, we can’t just solve the di↵erential equation like we did before because it’s no

longer separable. Instead, we’re going to need a more creative method to understand

what’s going on. This is where the divergence theorem comes in. We will use it to

show that, provided µ 6= 0 or ⌫ 6= 0, the periodic orbits of the Lotka-Volterra equation

no longer exist.

We first change notation a little. We write the pair of predator-prey equations (4.11)

in vector form

da

dt
= p with a =

 
w

c

!
and p =

 
w(�↵ + c� µw)

c(� � w � ⌫c)

!

Any solution to these equations traces out a path a(t) in the animal phase plane. The

re-writing above makes it clear that p is the tangent to this path. The question that

we wish to answer is: does this path close? In other words, is there a periodic orbit?

It turns out that there are no periodic orbits. To show

this, we will suppose that periodic orbits exist and then

argue by contradiction. The normal n to the path a(t)

obeys n · p = 0, as shown in the figure. This means that if

we integrate any function b(w, c) around the periodic orbit

we have
I

b(w, c)p · n dt = 0

By the 2d divergence theorem, this in turn means that the following integral over the

area enclosed by the periodic orbit must also vanish:
Z

D

r · [b(w, c)p] dA = 0

where, in this context, the gradient operator is r = (@/@w, @/@c). At this juncture,

the trick is to find a cunning choice of function b(w, c). The one that works for us is

b = 1/wc. This is because we have

r ·
p

wc
= �

µ

c
�

⌫

w
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Both of these terms are strictly negative. (For this it is important to remember that

populations w and c are strictly positive!) But if r · (p/wc) is always negative then

there’s no way to integrate it over a region and get zero. Something has gone wrong.

And what’s gone wrong was our original assumption of closed orbits. We learn that the

nice periodic solutions of the Lotka-Volterra equations are spoiled by any intra-species

competition. We’re left just with the fixed point which is now stable. All of which is

telling us that a little in-fighting may not be so bad after all. It keeps things stable.

The general version of the story above goes by the name of the Bendixson-Dulac

theorem and is a powerful tool in the study of dynamical systems.

4.3 Green’s Theorem in the Plane

Let P (x, y) and Q(x, y) be smooth functions on R2. Then
Z

A

✓
@Q

@x
�

@P

@y

◆
dA =

I

C

Pdx+Qdy (4.12)

where A is a bounded region in the plane and C = @A is a piecewise smooth, non-

intersecting closed curve which is traversed anti-clockwise.

Proof: Green’s theorem is equivalent to the 2d divergence theorem (4.6). Let F =

(Q,�P ) be a vector field in R2. We then have
Z

A

r · F dA =

Z

A

✓
@Q

@x
�

@P

@y

◆
dA (4.13)

If x(s) = (x(s), y(s)) is the parameterised curve C, then the tangent vector is t(s) =

(x0(s), y0(s)) and the normal vector n = (y0(s),�x0(s)) obeys n · t.

You’ll need to do a little sketch to convince yourself

that, as shown on the right, n is the outward pointing nor-

mal provided that the arc length s increases in the anti-

clockwise direction. We then have

F · n = Q
dy

ds
+ P

dx

ds
and so the integral around C is

Z

C

F · n ds =

Z

C

Pdx+Qdy (4.14)

The 2d divergence theorem is the statement that the left-hand sides of (4.13) and (4.14)

are equal; Green’s theorem in the plane is the statement that the right-hand sides are

equal. ⇤
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Applied to a rectangular region, Green’s theorem in the

plane reduces to the fundamental theorem of calculus. We

take the rectangular region to be 0  x  a and 0  y  b.

Then
Z

A

�
@P

@y
dA = �

Z
a

0

dx

Z
b

0

dy
@P

@y

=

Z
a

0

dx
⇣
� P (x, b) + P (x, 0)

⌘
=

Z

C

P dx

where only the horizontal segments contribute, and the minus signs are such that C is

traversed anti-clockwise. Meanwhile, we also have
Z

A

@Q

@x
dA =

Z
b

0

dy

Z
a

0

dx
@Q

@y

=

Z
b

0

dy
⇣
Q(x, a)�Q(x, 0)

⌘
=

Z

C

Qdx

where, this time, only the vertical segments contribute.

Green’s theorem also holds if the area A has a number of disconnected components,

as shown in Figure 14. In this case, the integral should be done in an anti-clockwise

direction around the exterior boundary, and in a clockwise direction on any interior

boundary. The quickest way to see this is to do the integration around a continu-

ous boundary, as shown in the right-hand figure, with an infinitesimal gap. The two

contributions across the gap then cancel.

An Example

Let P = x2y and Q = xy2. We’ll take A to be the region bounded by the parabola

y2 = 4ax and the line x = a, both with �2a  y  2a. Then Green’s theorem in the

plane tells us that
Z

A

(y2 � x2) dA =

Z

C

x2y dx+ xy2 dy

But this was a problem on the examples sheet, where you found that both give the

answer 104
105a

4.

4.3.1 George Green (1793-1841)

George Green was born in Nottingham, England, the son of a miller. If you were born

to a family of millers in the 18th century, they didn’t send you to a careers o�cer at

school to see what you want to be when you grow up. You’d be lucky just to be sent to

school. Green got lucky. He attended school for an entire year before joining his father

baking and running the mill.
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Figure 14. Don’t mind the gap. Green’s theorem for an area with disconnected boundaries.

It is not known where Green learned his mathematics. The Nottingham subscription

library held some volumes, but not enough to provide Green with the background

that he clearly gained. Yet, from his mill, Green produced some of the most striking

mathematics of his time, including the development of potential theory and, most

importantly, the formalism of Green’s functions that you will meet in Section 5, as

well as in later courses. Much of this was contained in a self-published pamphlet, from

1828, entitled “An Essay on the Application of Mathematical Analysis to the Theories

of Electricity and Magnetism”. 51 copies were printed.

Green’s reputation spread and, at the age of 40, with no formal education, and

certainly no Latin or Greek, Green the miller came to Cambridge as a mathematics

undergraduate, clothes covered in flour and pretending it was chalk. (University motto:

nurturing imposter syndrome since 1209.) With hindsight, this may not have been the

best move. Green did well in his exams, but his published papers did not reach the

revolutionary heights of his work in the mill. He got a fellowship at Caius, developed

a taste for port, then gout, and died before he reached his 50th birthday.

There are parallels between Green’s story and that of Ramanujan who came to

Cambridge several decades later. To lose one self-taught genius might be regarded as

a misfortune. To lose two begins to look like carelessness.

4.4 Stokes’ Theorem

Stokes’ theorem is an extension of Green’s theorem, but where the surface is no longer

restricted to lie in a plane.

Let S be a smooth surface in R3 with boundary C = @S a piecewise smooth curve.

Stokes’ theorem states that, for any smooth vector field F(x), we have
Z

S

r⇥ F · dS =

Z

C

F · dx
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Figure 15. The surface S and bounding curve C for Stokes’ theorem. The normal to the

surface is shown (at one point) by the red arrow. The theorem invites us to compute the flux

of a vector field F, shown by the green arrows, through the surface, and compare it to the

line integral around the boundary.

The orientations of S and C should be compatible. The former is determined by the

choice of normal vector n to S; the latter by the choice of tangent vector t to C. The

two are said to be compatible if t ⇥ n points out of S. In practice, this means that if

you orient the open surface so that n points towards you, then the orientation of C is

anti-clockwise. The general set-up is shown in Figure 15.

Note that there will typically be many surfaces S that share the same boundary

C. By Stokes’ theorem, the integral of r ⇥ F over S must give the same answer for

all such surfaces. The theorem also holds if the boundary @S consists of a number of

disconnected components, again with their orientation determined by that of S.

We’ll give a proof of Stokes’ theorem shortly. But first we put it to some use.

The Meaning of the Curl

Stokes’ theorem gives us some new intuition for the curl of a vector field. If we integrate

r ⇥ F over a small enough surface such that r ⇥ F is approximately constant, then

we will have
Z

S

r⇥ F · dS ⇡ An · (r⇥ F)
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where A is the area and n the normal of the surface. Taking the limit in which this

area shrinks to zero, Stokes’ theorem then tell us that

n · (r⇥ F) = lim
A!0

1

A

Z

C

F · dx (4.15)

In other words, at any given point, the value of r⇥F in the direction n tells us about

the circulation of F in the plane normal to n

A useful benchmark comes from considering the vector field u = ! ⇥ x, which

describes a rigid rotation with angular velocity !. (See, for example, the lectures on

Dynamics and Relativity.) In that case, we have r ⇥ u = 2!, so twice the angular

velocity.

Turning this on its head, we can get some in-

tuition for Stokes’ theorem itself. The curl of the

vector field tells us about the local circulation of

F. When you integrate this circulation over some

surface S, most of it cancels out because the cir-

culation going one way is always cancelled by a

neighbouring circulation going the other, as shown

in the figure. The only thing that’s left when you

integrate over the whole surface is the circulation around the edge.

A Corollary: Irrotational Implies Conservative

Before we prove Stokes’ theorem, we can use it to tie o↵ a thread that we previously

left hanging. Recall that in Section 3.2, we proved that F = r� =) r ⇥ F = 0,

but we didn’t then have the tools to prove the converse. Now we do. It follows

straightforwardly from Stokes’ theorem because an irrotational vector field, obeying

r⇥ F = 0, necessarily has
I

C

F · dx = 0

around any closed curve C. But we showed in Section 1.2 that any such conservative

field can be written as F = r� for some potential �.
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An Example

Let S be the cap of a sphere of radius R that is

covered by the angle 0  ✓  ↵, as shown in the

figure. We’ll take

F = (0, xz, 0) ) r⇥ F = (�x, 0, z) (4.16)

This is the example that we discussed in Section

2.2.5, where we computed (see (2.11))
Z

S

r⇥ F · dS = ⇡R3 cos↵ sin2 ↵ (4.17)

That leaves us with the line integral around the rim. This curve C is parameterised by

the angle � and is given by

x(�) = R(sin↵ cos�, sin↵ sin�, cos↵) ) dx = R(� sin↵ sin�, sin↵ cos�, 0) d�

We then have
Z

C

F · dx =

Z 2⇡

0

d� Rxz sin↵ cos� = R3 sin2 ↵ cos↵

Z 2⇡

0

d� cos2 � = ⇡R3 sin2 ↵ cos↵

in agreement with the surface integral (4.17).

Another Example

As a second example, consider the conical surface S defined by z2 = x2 + y2 with

0 < a  z  b. This surface is parameterised, in cylindrical polar coordinates, by

x(⇢,�) = (⇢ cos�, ⇢ sin�, ⇢) (4.18)

with a  ⇢  b and 0  � < 2⇡. We can compute

two tangent vectors

@x

@⇢
= (cos�, sin�, 1) and

@x

@�
= ⇢(� sin�, cos�, 0)

and take their cross product to get the normal

n =
@x

@⇢
⇥

@x

@�
= (�⇢ cos�,�⇢ sin�, ⇢)

This points inwards, as shown in the figure. The

associated vector area element is

dS = (� cos�,� sin�, 1)⇢d⇢ d�
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We’ll integrate the same vector field (4.16) over this surface. We have

r⇥ F · dS = (x cos�+ z)⇢ d⇢ d� = ⇢2(cos2 �+ 1)d⇢ d�

where we’ve substituted in the parametric expressions for x and z from (4.18). The

integral is then

Z

S

r⇥ F · dS =

Z
b

a

d⇢

Z 2⇡

0

d� ⇢2(1 + cos2 �) = ⇡(b3 � a3) (4.19)

Now the surface has two boundaries, and we must integrate over both of them. We

write @S = Cb � Ca where Cb has radius b and Ca radius a. Note the minus sign,

reflecting the fact that the orientation of the two circles is opposite.

For a circle of radiusR, we have x(�) = R(cos�, sin�, 1), and so dx = R(� sin�, cos�, 0) d�

and
Z

CR

F · dx =

Z 2⇡

0

d� R3 cos2 � = ⇡R3

Remembering that the orientation of Ca in the opposite direction, we reproduce the

surface integral (4.19).

4.4.1 A Proof of Stokes’ Theorem

It’s clear that Stokes’ theorem is a version of Green’s theorem in the plane, but

viewed through 3d glasses. Indeed, it’s trivial to show that the latter follows from

the former. Consider the vector field F = (P,Q, 0) in R3 and a surface S that

lies flat in the z = 0 plane. The normal to this surface is n = ẑ, and we have

Z

S

r⇥ F · dS =

Z

S

✓
@Q

@x
�

@P

@y

◆
dS

But Stokes’ theorem then tells us that this can also

be written as
Z

C

F · dx =

Z

C

Pdx+Qdy

However, with a little more work we can also show that the converse is true. In other

words, we can lift Green’s theorem out of the plane to find Stokes’ theorem.

– 86 –



Consider a parameterised surface S defined by x(u, v) and denote the associated area

in the (u, v) plane as A. We parameterise the boundary C = @S as x(u(t), v(t)) and

the corresponding boundary @A as (u(t), v(t)). The key idea is to use Green’s theorem

in the (u, v) plane for the area A and then uplift this to prove Stokes theorem for the

surface S.

We start by looking at the integral around the boundary. It is

Z

C

F · dx =

Z

C

F ·

✓
@x

@u
du+

@x

@v
dv

◆
=

Z

@A

Fu du+ Fv dv

where Fu = F · @x/@u and Fv = F · @x/@v. Now we’re in a position to invoke Green’s

theorem, in the form

Z

@A

Fu du+ Fv dv =

Z

A

✓
@Fv

@u
�

@Fu

@v

◆
dA

Now our task is clear. We should look at the partial derivatives on the right hand side.

We just need to be careful about what thing depends on what thing:

@Fv

@u
=

@

@u

✓
F ·

@x

@v

◆
=

@

@u

✓
Fi

@xi

@v

◆
=

✓
@Fi

@xj

@xj

@u

◆
@xi

@v
+ Fi

@2xi

@u@v

Meanwhile, we have

@Fu

@v
=

@

@v

✓
F ·

@x

@u

◆
=

@

@v

✓
Fi

@xi

@u

◆
=

✓
@Fi

@xj

@xj

@v

◆
@xi

@u
+ Fi

@2xi

@v@u

Subtracting the second expression from the first, the second derivative terms cancel,

leaving us with

@Fv

@u
�

@Fu

@v
=

@xj

@u

@xi

@v

✓
@Fi

@xj
�

@Fj

@xi

◆
= (�jk�il � �jl�ik)

@xk

@u

@xl

@v

@Fi

@xj

At this point we wield everyone’s favourite index notation identity

✏jip✏pkl = �jk�il � �jl�ik

We then have

@Fv

@u
�

@Fu

@v
= ✏jip✏pkl

@xk

@u

@xl

@v

@Fi

@xj
= (r⇥ F) ·

✓
@x

@u
⇥

@x

@v

◆

– 87 –



Figure 16. You may now turn the page. . . the original version of Stokes’ theorem, set as an

exam question.

Now we’re done. Following through the chain of identities above, we have

Z

C

F · dx =

Z

A

✓
@Fv

@u
�

@Fu

@v

◆
dudv

=

Z

A

(r⇥ F) ·

✓
@x

@u
⇥

@x

@v

◆
dudv

=

Z

S

(r⇥ F) · dS

This is Stokes’ theorem. ⇤

4.4.2 George Gabriel Stokes (1819-1903)

Stokes was born in County Sligo, Ireland, but moved to

Cambridge shortly after his 19th birthday and remained

there for the next 66 years, much of it as Lucasian professor.

He contributed widely to di↵erent area of mathematics and

physics, with the Navier-Stokes equation, describing fluid

flow, a particular highlight.

What we now call Stokes’ theorem was communicated

to Stokes by his friend William Thomson, better known by

his later name Lord Kelvin. The theorem first appeared

in print in 1854 as part of the Smith’s prize examination

competition, a second set of exams aimed at those students

who felt the Tripos wasn’t brutal enough.
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If you’re in Cambridge and looking for a tranquil place away from the tourists to

sit, drink co↵ee, and ponder the wider universe, then you could do worse than the Mill

Road cemetery, large parts of which are overgrown, derelict, and beautiful. Stokes is

buried there, as is Cayley, although both gravestones were destroyed long ago. You can

find Stokes’ resting place nestled between the graves of his wife and daughter1.

4.4.3 An Application: Magnetic Fields

Consider an infinitely long wire carrying a current. What is the magnetic field that is

produced? We can answer this by turning to the Maxwell equations (3.7). For time

independent situations, like this, one of the equations reads

r⇥B = µ0J (4.20)

where J is the current density and µ0 is a constant of nature that determines the

strength of the magnetic field and has some pretentious name that I can never remem-

ber. Another of the Maxwell equations readsr·B = 0 and in most situations we should

solve this in conjunction with (4.20) but here it will turn out, somewhat fortuitously,

that if we just find the obvious solution to (4.20) then it solves r ·B = 0 automatically.

The equation (4.20) provides a simple opportunity to use Stokes’ theorem. We inte-

grate both sides over a surface S that cuts through the wire, as shown in the figure to

the right. We then have
Z

S

r⇥B · dS =

Z

C

B · dx = µ0

Z

S

J · dS = µ0I

where the integral of the current density gives I,

the total current through the wire. This equa-

tion tells us that there must be a circulation of

the magnetic field around the wire. In particular,

there must be a component of B that lies tangent

to any curve C that bounds a surface S.

Let’s suppose that the wire lies in the z-

direction. (Rotate your head or your screen if you

1
A long, tree lined avenue runs north o↵ Mill Road. At the end, turn right to enter the cemetery.

There is a gravel path immediately o↵ to your left, which you should ignore, but take the first mud

track that runs parallel to it. Just after the gravestone bearing the name “Frederick Cooper” you will

find the Stokes’ family plot.
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don’t like the z direction to be horizontal.) Then if S is a disc of radius ⇢, then the

boundary C = @S is paramterised by the curve

x = ⇢(cos�, sin�, 0) =) t =
@x

@�
= ⇢(� sin�, cos�, 0)

We’ll make the obvious guess that B lies in the same direction as t and work with the

ansatz

B(x) = b(⇢)(� sin�, cos�, 0)

Then B · t = ⇢b(⇢). Provided that ⇢ is bigger than the radius of the wire, Maxwell’s

equation tells us that

µ0I =

Z

C

B · dx =

Z 2⇡

0

d� ⇢b(⇢) =) B(x) =
µ0I

2⇡⇢
(� sin�, cos�, 0)

You can check that this answer also satisfies the other Maxwell equation r · B = 0.

We learn that the magnetic field circulates around the wire, and drops o↵ as 1/⇢ with

⇢ the distance from the wire.

4.4.4 Changing Coordinates Revisited

Back in Section 3.3, we wrote down the expressions for the divergence and curl in a

general orthonormal curvilinear coordinate system. Now we can o↵er a proof using the

integral theorems above.

Claim: The divergence of a vector field F(u, v, w) in a general orthogonal, curvilinear

coordinate system is given by

r · F =
1

huhvhw

✓
@

@u
(hvhwFu) +

@

@v
(huhwFv) +

@

@w
(huhvFw)

◆
(4.21)

Proof: We sketch a proof that works with the integral definition of the divergence

(4.2),

r · F = lim
V!0

1

V

Z

S

F · dS

We can take the volume V to consist of a small

cuboid at point (u, v, w) with sides parallel to the ba-

sis vectors eu, ev and ew. The volume of the cube

is huhvhw�u �v �w. Meanwhile, the area of, say, the
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upper face in the figure is roughly huhv�u �v. Since hu and hv may depend on the

coordinates, this could di↵er from the area of the lower face, albeit only by a small

amount �w. Then, assuming that F is roughly constant on each face, we have
Z

S

F · dS ⇡

h
huhvFw(u, v, w + �w)� huhvFw(u, v, w)

i
�u �v + two more terms

⇡
@

@w
(huhvFw)�u �v �w + two more terms

Dividing through by the volume then gives us the advertised expression for r · F. ⇤

Claim: The curl of a vector field F(u, v, w) in a general orthogonal, curvilinear coor-

dinate system is given by

r⇥ F =
1

huhvhw

��������

hueu hvev hwew
@

@u

@

@v

@

@w

huFu hvFv hwFw

��������

=
1

hvhw

✓
@

@v
(hwFw)�

@

@w
(hvFv)

◆
eu + two similar terms

Proof: This time we use the integral definition of curl

(4.15)

n · (r⇥ F) = lim
A!0

1

A

Z

C

F · dx

We’ll take a surface S with normal n = ew and in-

tegrate over a small region, bounded by one of the

squares in the figure on the right. The area of the

square huhv�u �v while the length of each side is hu�u and hv�v. Assuming that the

square is small enough so that F is roughly constant along any given side, we have
Z

C

F · dx ⇡ huFu(u, v)�u+ hvFv(u+ �u, v)�v � huFu(u, v + �v)�u� hvFv(u, v)�v

⇡

h @

@u
(hvFv)�

@

@v
(huFu)

i
�u �v

Dividing by the area, this gives

ew ·r⇥ F =
1

huhv

h @

@u
(hvFv)�

@

@v
(huFu)

i

which is one of the three promised terms in the expression for r⇥ F. ⇤
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